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Abstract — Aims: To assess the effectiveness of procysteine (PRO) supplementation provided during a period of abstinence (ABS)
on alcohol-induced skeletal muscle atrophy and oxidant stress. Methods: Age- and gender-matched Sprague–Dawley rats were fed
the Lieber–DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 12 week. Next, subgroups of
alcohol-fed rats were fed the control diet for 2 week (ABS) supplemented with either PRO (0.35%, w/v) or vehicle. Plantaris mor-
phology was assessed by hematoxylin and eosin staining. Total, reduced and oxidized glutathione (GSH) levels and total antioxidant
potential were determined by commercially available assay kits. Antibody arrays were used to determine cytokine levels. Real-time
polymerase chain reaction was used to determine gene expressions of two E3 ubiquitin ligases, atrogin-1 and muscle ring finger
protein-1 (MuRF-1). Results: Plantaris muscles from alcohol-fed rats displayed extensive atrophy, as well as decreased GSH levels,
a trend for decreased total antioxidant potential and elevated atrogin-1 and MuRF-1 mRNA levels. GSH levels and total antioxidant
potential continued to decrease during 2 weeks of ABS from alcohol, which were normalized in abstinent rats provided PRO. Gene
levels of both E3 ligases returned to baseline during ABS. In parallel, plantaris cross-sectional area increased in both groups during
ABS. Conclusions: PRO supplementation during ABS significantly attenuated alcohol-induced redox stress compared with untreated
abstinent rats. Thus, our data may suggest that GSH restoration therapy may provide therapeutic benefits to the overall antioxidant
state of skeletal muscle when prescribed in conjunction with an established detoxification program for recovering alcoholics.

INTRODUCTION

Chronic alcohol abuse may lead to a host of skeletal muscle
complications, including soreness and atrophy with concomi-
tant losses in strength, altered gait and impaired mobility.
These derangements, clinically classified as alcoholic myopa-
thy, are likely caused by severe metabolic, physiological and
structural alterations to skeletal muscle (Fernandez-Sola
et al., 2007; Preedy et al., 2003). For example, development
of alcoholic myopathy has been attributed in part to altered
redox states and antioxidant imbalance (Adachi et al., 2000;
Fernandez-Sola et al., 2007; Otis and Guidot, 2009; Otis
et al., 2007), disparities between protein catabolism and
protein synthesis (Kumar et al., 2002; Lang et al., 1999; Otis
and Guidot, 2009) and acetaldehyde–protein adduct for-
mation (Worrall et al., 2001).
In general, most research has suggested that chronic alco-

holic myopathy is reversible with abstinence (ABS; Martin
and Peters, 1985; Vary et al., 2004). For example, Vary et al.
(2004) have shown that alcohol-induced deficits in protein
synthesis were normalized following 72 h of alcohol withdra-
wal due, in part, to restoration of initiation and elongation
factors. However, some case reports have suggested that
muscle weakness and atrophy may endure for years (Ekbom
et al., 1964; Rossouw et al., 1976), suggesting that long-term
alcohol abuse may produce irreversible molecular or struc-
tural changes (Fernandez-Sola et al., 2007).
Intriguingly, a recent report has suggested that supple-

menting the diets of abstinent rats with N-acetylcysteine
(NAC), a glutathione (GSH) precursor, significantly
increased myocardial GSH peroxidase and citrate synthase
activities compared with ABS alone (Seiva et al., 2009).
These data suggested that dietary GSH precursors may
improve antioxidant defense systems and energy metabolism

in abstinent rats; however, it is unclear whether similar
benefits of GSH restoration extend to skeletal muscles.
Encouragingly, when the GSH precursor procysteine (PRO)
is provided concurrently with alcohol, alcohol-induced
oxidant stress was abated and components of several ana-
bolic pathways were induced, thereby mitigating alcoholic
myopathy (Otis and Guidot, 2009). On the basis of this
work, we hypothesized that muscle dysfunction reported by
a subset of abstinent patients (Ekbom et al., 1964; Rossouw
et al., 1976) may be due in part to alterations in the GSH
antioxidant system and persistent oxidant stress. We further
hypothesized that PRO supplementation provided concur-
rently with 2 weeks of ABS would alleviate these derange-
ments to a greater degree than ABS alone.

MATERIALS AND METHODS

Animals and diet

Male Sprague–Dawley rats (200–250 g) were purchased
from Charles River (Wilmington, MA, USA) and housed in
pairs under a 12:12 light–dark cycle. All procedures were
approved by the Emory University Institutional Animal Care
and Use Committee (protocol 043-2010). Rats were ran-
domly organized into one of four groups (six per group): (a)
isocaloric-fed, alcohol-naïve controls, (b) alcohol-fed for 12
week (EtOH), (c) alcohol-fed for 12 week followed by a
2-week ABS period and (d) alcohol-fed for 12 week
followed by a 2-week ABS period in which animals were
provided PRO (0.35% w/v, Sigma, St. Louis, MO, USA;
ABS + PRO) as described previously (Bechara et al., 2005;
Otis and Guidot, 2009; Otis et al., 2007).
Rats were fed the Lieber–DeCarli liquid diet (Research

Diets, New Brunswick, NJ, USA) containing either alcohol
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or an isocaloric substitution with Maltin–Dextrin (control
diet) for 12 weeks as described previously (Otis and Guidot,
2009; Otis et al., 2007). Alcohol was added gradually to
acclimatize the rats to the diet. Alcohol was added as 18% of
total calories for 1 week, then 27% of total calories for 1
week and finally as 36% of total calories for 10 weeks. Rats
were anesthetized with sodium pentobarbital (60 mg/kg i.p.).
All plantaris muscles were removed in the morning, blotted
dry, weighed and mounted in HistoPrep for histochemical
analysis or flash frozen in liquid nitrogen for other analyses
as described subsequently. Animals were sacrificed by
removal of the diaphragm muscle.

Cross-sectional area measurements

Plantaris muscles were embedded in OCT and immediately
frozen in isopentane cooled in liquid nitrogen as described
previously (Otis and Guidot, 2009; Otis et al., 2007, 2008).
Serial sections from the mid-belly of the plantaris muscle
were cut at 14 μm and adhered to superfrost slides. Plantaris
sections were processed for hematoxylin and eosin staining,
dehydrated, mounted and visualized with a Leica micro-
scope. Approximately 125 fibers per muscle were analyzed
and cross-sectional areas (CSAs) were determined using
ImageJ software (NIH, Bethesda, MD, USA).

GSH and GSH disulfide levels

GSH and GSH disulfide levels were quantified in fresh plan-
taris homogenates via commercially available kits according
to the manufacturer’s instructions (Arbor Assay Systems,
Ann Arbor, MI, USA). Briefly, total and oxidized GSH
levels were determined using a colorimetric substrate that
reacted with the free thiol group on GSH. Absorbance at
405 nm was measured on a Multilabel counter (PerkinElmer,
Waltham, MA, USA). Free (reduced) GSH was then calcu-
lated as the difference between total and oxidized GSH.

Total antioxidant potential

Total antioxidant potential (e.g. GSH, albumin, ascorbic acid
and α-tocopherol) was determined in fresh plantaris hom-
ogenates via commercially available kits (OxisResearch,
Foster City, CA, USA). Briefly, the reduction potential of the
homogenates converted Cu2+ to Cu1+. This reduced form of
copper creates a stable 2:1 complex with the chromogenic
reagent with a maximum absorption at 450 nm. Absorbance
was measured on a Multilabel counter (PerkinElmer), and
antioxidant potentials were calculated according to the manu-
facturer’s instructions.

Real-time polymerase chain reaction

Plantaris muscles were collected, immediately frozen in liquid
nitrogen and stored at −80°C until processed for real-time
polymerase chain reaction (PCR) analyses as describedpre-
viously (Otis and Guidot, 2009; Otis et al., 2007, 2008).
Trizol was added to the tissues (1 ml/100 mg tissue) that were
then homogenized using an electric tissue homogenizer. Total
RNA (2.5 μg) was reverse transcribed in a 40-μl final reaction
volume, using random primers and Moloney Murine
Leukemia Virus reverse transcriptase (Invitrogen, Carlsbad,
CA, USA). The reverse transcription reaction was incubated at
65°C for 10 min, 80°C for 3 min and 42°C for 60 min,

respectively. Real-time PCR products were analyzed using the
iCycler iQ system (Bio-Rad, Hercules, CA, USA). cDNA
(5 μl of a 1:10 dilution) was amplified in a 25-μl reaction,
containing 400 nm gene-specific primer pair and iQ Sybr
Green Supermix (Bio-Rad). Primer sequences of superoxide
dismutase 1–3 (SOD1–3), catalase, atrogin-1 and muscle ring
finger protein-1 (MuRF-1) were previously designed using
Primer3 (Otis and Guidot, 2009) and ordered from
Sigma-Genosys (The Woodlands, TX, USA). Samples were
incubated at 95°C for 15 min, followed by 40 cycles of dena-
turation, annealing and extension at 95, 60 and 72°C, respect-
ively, with fluorescence recorded at the end of each annealing
and extension step. As a control, real-time PCR was also per-
formed on 2 μl of each RNA sample to confirm the absence
of contaminating genomic DNA. All reactions were performed
in triplicate, and the starting quantities of the genes of interest
were normalized to 18S rRNA (primers supplied by Ambion,
Austin, TX, USA). The 2�DDCT method was used to analyze
alterations in gene expression, and values were expressed as
fold changes relative to control (Otis and Guidot, 2009; Otis
et al., 2007, 2008).

Statistics

One-way analyses of variance were performed followed by
Student–Newman–Keuls post hoc tests using SigmaStat v2.0
software. Significance was accepted at P ≤ 0.05.

RESULTS

Body weight and plantaris morphology

Rats fed alcohol for 12 weeks had a 29% decrease in body
weight compared with control-fed rats (Fig. 1A). In parallel,
plantaris fiber CSA from alcohol-fed rats displayed a signifi-
cant reduction in average CSA compared with controls
(Fig. 1B). Although 2 weeks of ABS was insufficient to
restore body weight, both groups of abstinent rats had
increased plantaris CSAs compared with muscles from
alcohol-fed rats (P ≤ 0.05).

Markers of oxidant stress

We next determined the levels of total GSH, free GSH
(reduced form) and GSH disulfide (GSSG, oxidized form).
Chronic alcohol ingestion reduced total and free GSH levels
(Fig. 2A and B, respectively; P ≤ 0.05). Interestingly, total
and free GSH levels continued to plunge during this 2-week
ABS period, but were improved by PRO supplementation
(P ≤ 0.05). GSSG levels were increased in abstinent rats sup-
plemented with PRO (Fig. 2C).
We also determined the total antioxidant potential of plan-

taris muscles. This assay measures the activities of several
antioxidant mechanisms, including enzymatic systems such
as GSH peroxidase and catalase, large molecule systems
such as albumin and small molecule systems such as uric
acid, α-tocopherol and ascorbic acid. Although not statisti-
cally significant (P = 0.06), there was a trend for a decreased
total antioxidant potential in plantaris muscles from
alcohol-fed rats compared with controls (Fig. 3). Total anti-
oxidant potential continued to decrease during this 2-week
ABS period, which mirrored the decrements in the GSH
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system. PRO supplementation improved total antioxidant
potential compared with ABS alone.
To determine whether the reduced total antioxidant

capacity was also due in part to decreased antioxidant
enzyme levels, we next quantified gene expressions of cata-
lase, SOD-1, SOD-2 and SOD-3. However, the mRNA
levels of these enzymes were unchanged by chronic alcohol
ingestion or during the ABS period (Fig. 4).

Atrogin-1 and MuRF-1 gene expressions

Twelve weeks of daily alcohol ingestion induced mRNA
expressions of the muscle-specific E3 ubiquitin ligases,
atrogin-1 and MuRF-1 (Fig. 5). Regardless of nutritional
intervention, a 2-week period of ABS was sufficient to abro-
gate both gene levels compared with plantaris muscles from
alcohol-fed rats (P ≤ 0.05).

DISCUSSION

In this study, we attempted to enhance muscle recovery
during a period of ABS with GSH precursor supplemen-
tation. As expected, 12 weeks of daily alcohol ingestion
caused significant oxidant stress and plantaris atrophy. In

parallel, we showed that chronic alcohol ingestion strongly
induced atrogin-1 and MuRF-1, E3 ubiquitin ligases impli-
cated in skeletal muscle atrophy (Attaix et al., 2005; Bodine
et al., 2001; Glass, 2005; Gomes et al., 2001). Two weeks of
ABS was sufficient to abate expressions of the E3 ligases
and minimize the extent of alcohol-induced muscle atrophy.
Despite these improvements, several markers of oxidant

Fig. 2. GSH and GSH disulfide levels in rat plantaris. (A) Total GSH levels
(i.e. the sum of free and oxidized GSH pools) were reduced in plantaris
muscles from rats chronically fed alcohol (EtOH) for 12 weeks. This trend
continued during a 2-week period of ABS that was normalized in rats
receiving PRO. (B) The available pool of free (reduced) GSH was decreased
in plantaris muscles from alcohol-fed rats and continued to decrease during
ABS. PRO supplementation effectively restored the GSH pool. (C) GSH
disulfide (oxidized) was increased in plantaris muscles from ABS + PRO
rats. Values are expressed as means + SEM (n = 6–7 rats/group). Significance
was accepted at P ≤ 0.05. *, compared with control group. #, compared with

EtOH group.

Fig. 1. Body weights and plantaris fiber areas. (A) Body weights were
significantly reduced in alcohol-fed, abstinent and abstinent rats provided
PRO compared with controls. (B) Plantaris muscles from rats chronically fed
alcohol (EtOH) for 12 weeks had a 32% reduction in CSA compared with
controls. Two weeks of ABS was sufficient to improve alcohol-induced
plantaris CSA with no additional benefits conferred by PRO
supplementation. Values are expressed as means + SEM (n = 6–7 rats/group).
Significance was accepted at P ≤ 0.05. *, compared with control group.

#, compared with EtOH group.
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stress continued to decrease during ABS. Importantly, absti-
nent rats provided PRO displayed marked improvements in
GSH availability and total antioxidant potential compared
with ABS alone. Together, these data suggest that antioxi-
dant therapy using GSH precursors such as PRO, NAC or
S-adenosyl-L-methionine may provide additional therapeutic
benefits to muscle oxidant states when prescribed in conjunc-
tion with an appropriate detoxification program.
Reduced levels of skeletal muscle GSH have been

reported in a variety of disease states, including HIV

infection (Droge et al., 1994), critical illnesses that may
result in prolonged bed rest and reduced muscle activity
(Burnham et al., 2005; Servais et al., 2007) and chronic
obstructive pulmonary disease (Rabinovich et al., 2006).
Similarly, we and others have shown that chronic alcohol
ingestion altered normal GSH metabolism in skeletal muscle
(Fernandez-Sola et al., 2002; Otis and Guidot, 2009; Otis
et al., 2007). We now suggest that the deleterious effects of
long-term alcohol ingestion on GSH metabolism and antioxi-
dant capacity continued for at least 2 weeks of ABS.
Persistent oxidant stress in muscles from abstinent rats is
likely not due to defects in the SOD1–3 or catalase scaven-
ging systems and may suggest oxidant stress may normalize
with longer durations of ABS. Nevertheless, oxidant stress
and reduced GSH levels did not affect muscle hypertrophy
during ABS, but GSH deficiency may have significant
impacts on multiple biological mechanisms. For example,
GSH is the principal nucleophilic scavenger of free radicals
in skeletal muscle, stabilizes other antioxidant systems,
reduces proteins and helps to maintain their function, attenu-
ates redox-sensitive catabolic factors and has salutary effects
on membranes through the reduction of alcohol-induced
lipid peroxidation (Jackson, 2008; Otis et al., 2007; Wu
et al., 2004). Thus, this enduring oxidant stress may provide
a partial reason why muscle dysfunction persists in small
subsets of abstinent patients (Ekbom et al., 1964; Rossouw
et al., 1976).
Nevertheless, muscle atrophy is often reversible for former

alcoholics enrolled in a rehabilitation program that focuses
on ABS and nutritional support (Andersen et al., 1998;
Fernandez-Sola et al., 2000; Peters et al., 1985; Sestoft et al.,
1994; Slavin et al., 1983). Our data may suggest that these

Fig. 4. Catalase and SOD isozymes gene expressions in rat plantaris. Gene expressions of (A) catalase and (B–D) three SOD isozymes (i.e. Cu/Zn-SOD1,
Mn-SOD2 and Cu/Zn-SOD3) were unchanged in any group. Data are represented as means ± range of potential values based on the 2−ΔΔCT method (Otis et al.,

2007; Otis et al., 2008) and expressed as fold changes relative to controls (n = 6–7 rats/group). Significance was accepted at P ≤ 0.05.

Fig. 3. Antioxidant potential in rat plantaris. There was a trend (P = 0.06)
for reduced total antioxidant potential in plantaris muscles from rats fed
alcohol (EtOH) for 12 weeks. Total antioxidant potential continued to
decrease during ABS, but was increased due to PRO supplementation.
Values are expressed as means + SEM (n = 6–7 rats/group). Significance was
accepted at P ≤ 0.05. *, compared with control group. #, compared with

EtOH group, $, compared with ABS group.
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gains in muscle fiber size may be due in part to the normal
attenuation of catabolic factors such as atrogin-1 and
MuRF-1 once the alcohol stimulus has been removed.
Unfortunately, complete ABS from alcohol is often difficult
to achieve with documented success rates of 33% (Fillmore
et al., 1991). Fernandez-Sola et al. (2000) have shown that
muscle strength can be improved in recovering alcoholics
who adhere to a controlled, low-dose alcohol (≤60 g/day)
consumption paradigm. Although these data are encouraging
for 67% of recovering alcoholics that struggle to completely
abstain from alcohol, the impact of low-dose alcohol con-
sumption on oxidant stress was not considered. In light of
our current work, alcohol treatment centers may recommend
low-dose alcohol consumption in combination with dietary
GSH restoration to maximize muscle recovery and more
quickly normalize muscle redox states.
Atrogin-1 and MuRF-1 are E3 ubiquitin ligases implicated

in skeletal muscle atrophy (Attaix et al., 2005; Bodine et al.,
2001; Gomes et al., 2001; Lang et al., 2007; Mastrocola
et al., 2008; Otis et al., 2008) and appear to regulate early
stages of alcoholic myopathy. Specifically, atrogin-1 was
strongly induced in plantaris muscles from rats chronically
fed alcohol for 6 weeks, a duration of abuse that preceded

muscle atrophy (Otis et al., 2007). Here, both atrogin-1 and
MuRF-1 remained elevated in atrophied plantaris muscles
from rats fed alcohol for 12 weeks. Importantly, atrogin-1
was attenuated following GSH restoration during these
shorter durations of abuse. Yet, when alcohol abuse contin-
ued for longer durations (e.g. 35 weeks), we have shown that
atrogin-1 levels become refractory to GSH restoration (Otis
and Guidot, 2009), suggesting that early intervention with
GSH precursors is integral to combat alcohol-induced cata-
bolic factors. Interestingly, the current work unveiled a cycli-
cal response of atrogin-1 as we have previously shown that
28 weeks of chronic alcohol abuse did not induce expression
of this ligase, despite the presence of overt plantaris atrophy
(Otis and Guidot, 2009). In support of this notion, several
reports suggested that muscle proteolysis or atrophy may
occur independently of changes in atrogin-1 mRNA levels
(Cai et al., 2004; Fareed et al., 2006; Vary et al., 2008).
Together, these data may reveal important temporal associ-
ations between alcohol-induced GSH depletion, redox-
sensitive induction of E3 ligases and resultant muscle
atrophy.
In conclusion, we showed that long-term alcohol ingestion

created an overall catabolic state in atrophied rat plantaris
muscles, as evidenced by oxidant stress and induction of ubi-
quitin ligases. Although ABS alone was sufficient to improve
skeletal muscle fiber diameter, several markers of oxidant
stress persisted. PRO supplementation provided during this
abstinent period abrogated oxidant stress, improved muscle
antioxidant capacity and attenuated production of the E3
ligase atrogin-1. Thus, our data may suggest that GSH restor-
ation therapy may provide therapeutic benefits to the overall
antioxidant state of skeletal muscle when prescribed in con-
junction with an established detoxification program for reco-
vering alcoholics.
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