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Abstract

Mutations in the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine
kinase, result in distal myopathy with rimmed vacuoles (DMRV)/hereditary inclusion body myopathy (HIBM) in humans.
Sialic acid is an acidic monosaccharide that modifies non-reducing terminal carbohydrate chains on glycoproteins and
glycolipids, and it plays an important role in cellular adhesions and interactions. In this study, we generated mice with a
V572L point mutation in the GNE kinase domain. Unexpectedly, these mutant mice had no apparent myopathies or motor
dysfunctions. However, they had a short lifespan and exhibited renal impairment with massive albuminuria. Histological
analysis showed enlarged glomeruli with mesangial matrix deposition, leading to glomerulosclerosis and abnormal
podocyte foot process morphologies in the kidneys. Glycan analysis using several lectins revealed glomerular epithelial cell
hyposialylation, particularly the hyposialylation of podocalyxin, which is one of important molecules for the glomerular
filtration barrier. Administering Neu5Ac to the mutant mice from embryonic stages significantly suppressed the albuminuria
and renal pathology, and partially recovered the glomerular glycoprotein sialylation. These findings suggest that the
nephrotic-like syndrome observed in these mutant mice resulted from impaired glomerular filtration due to the
hyposialylation of podocyte glycoproteins, including podocalyxin. Furthermore, it was possible to prevent the nephrotic-like
disease in these mice by beginning Neu5Ac treatment during gestation.

Citation: Ito M, Sugihara K, Asaka T, Toyama T, Yoshihara T, et al. (2012) Glycoprotein Hyposialylation Gives Rise to a Nephrotic-Like Syndrome That Is Prevented
by Sialic Acid Administration in GNE V572L Point-Mutant Mice. PLoS ONE 7(1): e29873. doi:10.1371/journal.pone.0029873

Editor: Tadayuki Akagi, Kanazawa University, Japan

Received November 10, 2011; Accepted December 5, 2011; Published January 13, 2012

Copyright: � 2012 Ito et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by Grants-in-Aid for Scientific Research (B) (grant No. 19300144 and 22300142) (to M.A.) from the Ministry of
Education, Culture, Sports, Science and Technology of Japan (http://www.mext.go.jp/english/). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: asano@kiea.m.kanazawa-u.ac.jp

Introduction

UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine

kinase is a dual-function enzyme that catalyzes the rate-limiting

step in sialic acid biosynthesis (Figure 1A) [1]. Mice with a null

mutation in the GNE gene are embryonic lethal, indicating that

GNE is essential for early embryonic development [2]. Human

GNE mutations result in an adult-onset, progressive, autosomal

recessive muscular disorder, distal myopathy with rimmed

vacuoles (DMRV)/hereditary inclusion body myopathy (HIBM)

[3–5]. Among the various GNE mutations, one GNE founder

mutation (V572L) has been reported in Japanese families affected

by DMRV [3].

Sialic acid is an acidic monosaccharide known to modify non-

reducing terminal carbohydrates on glycoproteins and glycolipids,

where it functions in cellular adhesions and interactions in the

nervous and immune systems [6–8]. In renal functions, sialic acid

residues are important in glomerular filtration, and their deficiency

is implicated in proteinuria [9–13]. It has been reported that

glomerular podocyte and podocyte foot process morphologies are

maintained by the anionic charge of sialic acid residues on

podocyte glycoproteins and glycolipids [12,14], and that a barrier

to protein permeability is controlled by functional endothelial

glycocalyx in glomeruli [15,16]. The glomerular filtration barrier,

which consists of podocytes, the glomerular basement membrane

(GBM), and fenestrated endothelial cells, prevents the leakage of

albumin and other proteins from the blood stream by size- and

charge-dependent filtration [15,17]. A lack of sialic acid residues

on renal glycoproteins and glycolipids neutralizes their negative

charge, disrupting the podocyte structure and resulting in massive

proteinuria and podocytopathy [9,13,18,19]. For instance, it was

previously shown that loss of podocyte foot processes was induced

by the injection of puromycin aminonucleoside to neutralize the

glomerular negative charge in normal rats [13,19]. However, it is

still not clear whether the development of proteinuria is caused by

the defects of sialic acid residues on podocyte glycoproteins and

glycolipids.

To develop an animal DMRV model and clarify the role of

sialic acid residues in the development of DMRV or other diseases,

we generated mice with a kinase-domain point mutation (V572L)

in GNE. Surprisingly, there were no apparent myopathic features

or motor dysfunctions in the GNE V572L point-mutant homo-
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Figure 1. The sialic acid biosynthesis pathway and the generation of GNE V572L point-mutant mice. (A) The sialic acid biosynthesis
pathway. GNE has dual-function enzymatic activity, UDP-N-acetylglucosamine-2-epimerase (*1) and N-acetylmannosamine kinase (*2), in the cytosol.
(B) Targeting strategy to create a point mutation in exon 10 of the mouse GNE gene: to make the targeted allele, the wild-type GNE locus was
replaced with a targeting vector, which contained a point mutation in exon 10, a neo cassette and a DT-A cassette, by homologous recombination.
The neo cassette, flanked by two loxP sites, was deleted by a Cre-expressing adenoviral vector to make the point mutation allele. Neo, neomycin-
resistance gene; DT-A, diphtheria toxin A fragment; triangles, loxP sites; open boxes with numbers, exons; closed boxes, exon 10 containing the point
mutation. (C) A base exchange from G (wild-type; wt) to C (mutant; mt) at the 1714 site was confirmed by DNA sequencing. (D) Quantitative RT-PCR
analysis of the GNE mRNA level normalized to the GAPDH mRNA level in the quadriceps femoris and kidney of the mutant (mt), heterozygous (ht), and
wild-type (wt) mice. (E) Survival ratio of mt (squares, n = 37), ht (triangles, n = 33), and wt mice (circles, n = 12), analyzed by Kaplan Meier methods.
doi:10.1371/journal.pone.0029873.g001
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zygous mice (mt-mice). However, the mt-mice had a short lifespan,

massive proteinuria after birth, and abnormal kidney morphology.

Other than GNE-null mice, two GNE mutant mice have been

reported previously. Transgenic mice expressing a human D176V

point-mutant GNE gene in a mouse GNE knockout background

develop myopathic disorders similar to DMRV [20], which are

rescued by administering sialic acid metabolites [21]. However, no

renal features have been described in these mice. On the other

hand, another knock-in mouse carrying a GNE M712T point

mutation cannot survive beyond 3 days due to severe glomerular

hematuria, proteinuria, and podocytopathy [18]. Administering N-

acetyl-mannosamine (ManNAc) partially suppresses these renal

disorders and slightly prolongs their lifespan. However, these

mutant mice do not display any myopathic features [18]. It is not

clear why these two mice develop such different phenotypes.

Here, we present a third GNE mutant mouse, carrying a V572L

mutation. This mouse shows renal but not myopathic features,

much like the GNE M712T mutant [18]. However, our GNE

V572L mutant mice have a much longer lifespan than the GNE

M712T mutant. In this study, we examined the effect of

hyposialylation caused by the GNE mutation on the renal

disorders of the mt-mice, and attempted to suppress the renal

disorders by administering 5-N-acetylneuraminic acid (Neu5Ac), a

major sialic acid. We also evaluated the usefulness of the mt-mouse

as an animal model of renal disease with proteinuria, such as

congenital nephrotic syndrome (CNS) [17,22], and the potential of

administering Neu5Ac as a therapeutic strategy to prevent renal

disorders resulting from hyposialylation.

Materials and Methods

Generation of GNE V572L point-mutant mice
Mice containing a V572L point mutation in the GNE gene were

generated using the ES-cell gene-targeting method. A targeting

vector was constructed as follows (Figure 1B). The left arm

(9.0 kb), containing exons 6 to 10, and the right arm (1.1 kb),

containing exon 11, were amplified by PCR using a BAC clone

(male CJ7/129Sv, Research Genetics, Huntsville, AL, USA)

containing the mouse GNE gene as a template. DNA sequencing

verified that there was no PCR error, at least in these exons.

Primers used for amplifying exons 6, 7, 8, 9, 10 and 11 are listed in

Table S1. A point mutation (G to C at the 1714 site) was created in

exon 10 in the left arm using the Gene-editor in vitro Mutagenesis

system (Promega Co, Madison, WI) according to the manufac-

turer’s protocol, resulting in a change of Valine (GTG) to Leucine

(CTG) at the amino acid 572 site in the GNE kinase domain. A neo

cassette [23] flanked by two loxP sites was inserted between the left

and right arms for positive selection, and a DT-A cassette [24] was

ligated at the end of the right arm for negative selection. The

resulting targeting vector is shown in Figure 1B.

The targeting vector was introduced into E14-1 ES cells (129/

Ola strain) [25] by electroporation, and G418-resistant colonies

were picked up as described previously [26]. We were only able to

obtain one PCR-positive clone out of 670 colonies screened.

Primers (GNE screening) used for PCR screening are listed in

Table S1. DNA sequencing verified a point mutation in exon 10 of

this clone using primers (GNE sequence) listed in Table S1. The

homologous recombinant clone was infected with an adenoviral

vector expressing the Cre gene [27] to delete the neo cassette in the

genome, as shown in Figure 1B. Chimeric mice generated by the

aggregation method [28] were mated with C57BL/6 mice to

confirm germ-line transmission. The mt-mice on a mixed 129/Ola

and C57BL/6 background, obtained by crossing heterozygous

point-mutant mice (ht-mice), were used for experiments. Sex- and

age-matched wild-type mice (wt-mice) and ht-mice were used as

controls because the ht-mice did not show any renal disorder

indistinguishable from wt-mice.

All mice were housed under specific pathogen-free conditions at

the Institute for Experimental Animals of Kanazawa University.

Animal experiments were conducted in strict accordance with the

recommendations in the Fundamental Guidelines for Proper

Conduct of Animal Experiments and Related Activities in

Academic Research Institutions under the jurisdiction of the

Ministry of Education, Culture, Sports, Science and Technology

of Japan. The protocol was approved by the Committee on

Animal Experimentation of Kanazawa University (Permit Num-

ber: AP-111959). All efforts were made to minimize suffering. All

experiments were conducted according to the safety guidelines for

gene manipulation experiments at Kanazawa University.

Genotyping by DNA sequencing and PCR
Mice were genotyped by the direct DNA sequencing of PCR

products targeting the GNE gene exon 10, using genomic DNA

taken from the mouse tail (Figure 1C, Table S1). Primers used for

PCR are listed in Table S1. Alternatively, PCR genotyping was

performed using allele-specific locked nucleic acid (LNATM)-

containing primers (Table S1) [29]. The PCR product of the wild-

type allele (153 bp) of the GNE gene was amplified using primers 1

and 2, while the PCR product of the mutant allele (153 bp) was

amplified using primers 1 and 3 (Figure S1A). PCR conditions

were as follows: 98uC for 3 min, 20 cycles of 97uC for 20 s, 68.5uC
for 30 s, and 72uC for 25 s, followed by 25 cycles of 96uC for 20 s,

52uC for 20 s, and 72uC for 15 s.

Rota-rod test
To investigate limb motor functions, we used the accelerating

rota-rod paradigm [30]. Mice were tested in 3 trials per day for 3

consecutive days with a 300-s accelerating program (from 5 to

40 rpm), and the latency of the animal to fall from the rod was

recorded.

Clinical chemistry test
Mice were placed individually in metabolic cages (Shinano

Factory Co., Tokyo, Japan) for 24 hours with free access to food

and water. Urine samples and heart serum samples were collected.

Clinical chemistry tests of these samples, performed at the

Nagahama Life Science Laboratory, measured the urine albumin,

urine creatinine, serum albumin, and serum cystatin C. To

analyze proteinuria in postnatal mice, urine samples (8 ml) were

applied directly to SDS polyacrylamide gel electrophoresis (SDS-

PAGE), and albumin was detected by Coomassie Brilliant Blue

(CBB) staining.

Antibodies and lectins
The following primary antibodies and lectins were used for

experiments: goat anti-mouse podocalyxin (R&D Systems, Inc.,

Minneapolis, MN), goat anti-mouse podoplanin (R&D Systems,

Inc.), rabbit anti-mouse nephrin (Abcam, Tokyo, Japan), rabbit

anti-mouse ezrin (Abcam), goat anti-mouse NHERF2 (Santa

Cruz, Santa Cruz, CA), rabbit anti-mouse podocin (Santa Cruz),

rabbit anti-mouse NEPH1 (Abcam), biotin-conjugated Peanut

agglutinin (PNA) lectin (Seikagaku Biobusiness Co., Tokyo, Japan),

biotin-conjugated Ricinus communis Agglutinin (RCA-I) lectin (Seika-

gaku Biobusiness Co.), Dolichos biflorus agglutinin (DBA) lectin

(Vector Laboratories, Inc., Burlingame, CA), fluorescein isothio-

cyanate (FITC)-conjugated Lotus tetragonolobus (LTA) lectin (Vector

Laboratories, Inc.), FITC-conjugated Lycopersicon Esculentum (LEL)
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lectin (Vector Laboratories, Inc.), and Lectin Kit I, Fluorescein

Labeled (Vector Laboratories, Inc, FLK-2100). PNA, RCA-I,

DBA, LTA, and LEL recognized the following glycan structures:

Galb1-3GalNAc, Galb1-4GlcAc, GalNAca1-3GalNAc, L-Fucose,

and GlcNAc oligomers, respectively.

The following secondary antibodies were used for experiments:

Alexa Fluor 546-conjugated donkey anti-goat IgG (Life Technol-

ogies Japan, Ltd.,Tokyo, Japan), Alexa Fluor 488-conjugated goat

anti-rabbit IgG (Molecular Probes, Eugene, OR), biotinylated goat

anti-rabbit IgG (Vector Laboratories, Inc.), and biotinylated rabbit

anti-goat IgG (Vector Laboratories, Inc.).

Histological analysis
Mouse kidneys were fixed in 10% neutral buffered formalin or

4% paraformaldehyde (PFA), respectively, in phosphate-buffered

saline (PBS) (pH 7.4), then dehydrated and embedded in paraffin

according to standard procedures. Tissue was sectioned (5 mm),

deparaffinized, rehydrated, and stained with Periodic acid-Schiff

(PAS) or Van-Gieson staining (a mixture of picric acid and acid

fuchsin), each using standard methods. Fresh-frozen sections

(10 mm) of mouse skeletal muscles were stained with modified

Gomori trichrome staining method. For immunofluorescent

staining, sections were deparaffinized and blocked with Super-

Block blocking buffer (Pierce Biotechnology, Inc., Rockford, IL).

They were incubated with anti-PC antibody (1/200 dilution) at

4uC overnight, incubated with Alexa Fluor 546-conjugated or

Alexa Fluor 488-conjugated secondary antibodies (1/200 dilution)

at room temperature (r.t.) for 2 hours, and mounted in ProLong

Gold antifade reagent (Molecular Probes). Nuclei were stained

with 49, 6-diamidine-2-phenylindole (DAPI). Stained sections were

observed under a fluorescence microscope (Olympus IX 71;

Olympus, Corp., Tokyo, Japan) and confocal laser-scanning

microscope (LMS510 META; Zeiss, Inc., Thornwood, NY).

For lectin staining, sections were deparaffinized and blocked with

0.1% Tween-20 in Tris-buffered saline (TBS) (pH 7.4), incubated

with FITC-conjugated lectins (PNA, RCA-I, LTA, and DBA

diluted 1/200) at r.t. for 2 hours, then mounted and observed.

Electron microscopy
Mouse kidneys were fixed with glutaraldehyde and osmium

tetroxide, embedded in Epon 812 (Oken Shoji Co., Tokyo, Japan),

and sliced into 0.1 mm sections. Sections were double-stained with

uranyl acetate and lead citrate, and examined under an electron

microscope (JEM-1210; JEOL Ltd., Tokyo, Japan) [31,32].

Western and lectin blotting
Frozen mouse kidneys were homogenized and dissolved in RIPA

buffer, consisting of 50 mM Tris-HCl (pH 7.5), 150 mM NaCl,

1 mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate, 1.0%

TritonX-100, and 0.1% SDS. Tissue lysates were centrifuged at

12,0006 g at 4uC for 15 minutes to remove insoluble debris. The

supernatants were mixed with Laemmli’s sample buffer, consisting

of 3% SDS, 5% glycerol, 1.67 mM Tris-HCl (pH 7.5), 0.05%

bromophenol blue, and 10% 2-mercapto-ethanol, then boiled at

100uC for 3 minutes. The lysate protein concentration was

measured using a BCATM Protein Assay Kit (Pierce Biotechnology,

Inc.) according to the manufacturer’s protocol.

For Western blotting, proteins were separated by 12% or 8%

SDS-PAGE using the Laemmli’s buffer system, then transferred to

PVDF membranes (Millipore Corp., Bedford, MA). After blocking

with Block Ace (Yukijirushi Co, Ltd., Tokyo, Japan), the

membranes were incubated overnight with primary antibodies

(1/1000 or 1/500 dilution) at 4uC. After the membranes were

treated with secondary antibody (1/2000 dilution) at r.t. for

30 minutes, the protein bands were detected with a Vectastain

Elite ABC standard kit (Vector Laboratories, Inc.) and a Metal

Enhanced DAB Substrate Kit (Thermo Scientific Inc., Rockford,

IL) according to the manufacturers’ protocols.

For lectin blotting, in brief, proteins were separated and

transferred to PVDF membranes, as for Western blotting. After

blocking with 0.05% Tween-20 in TBS, the membranes were

incubated overnight with biotin-conjugated lectins at 4uC, and

protein bands were detected as for Western blotting.

For neuraminidase treatment, 1 mU/mg neuraminidase from

Arthrobacter ureafaciens (Nacalai Tesque, Inc., Kyoto, Japan) was

added to the soluble proteins in the RIPA buffer and incubated at

37uC for 30 minutes. The desialylated proteins were mixed with

Laemmli’s sample buffer and boiled at 100uC for 3 minutes, and

the lysates were used for Western blotting.

Immunoprecipitation
For immunoprecipitation, Protein G Sepharose 4 Fast Flow (GE

Healthcare, Upsala, Sweden) was used according to the manufac-

turer’s protocol. In brief, soluble kidney lysates prepared as the

above Western blotting method were incubated with anti-PC

antibody at 4uC for 1 hour with rotating, and then incubated with

50 ml of Protein G Sepharose at 4uC for 1 hour with rotating.

Precipitated proteins were recovered by spin-down, washed, and

then dissolved in Laemmli’s sample buffer. The precipitated proteins

were analyzed by Western and lectin blotting as described above.

Neu5Ac rescue experiments
Neu5Ac was administered as follows (Figure S2): briefly,

pregnant ht-mice were left untreated or were treated with Neu5Ac

(Nacalai Tesque, Inc.) (1 g/kg/day) in drinking water, from the

time of mating through the nursing period. After weaning, pups

were left untreated or were treated with Neu5Ac (0.2 g/kg/day) in

the drinking water until 2 months of age; these Neu5Ac doses were

selected based on other studies. [18,21]. The treated mice were

sacrificed at 2 months old and analyzed by histological and

biochemical methods.

Quantitative RT-PCR
Total RNA was extracted from mouse kidneys by the guanidine

isothiocyanate method [33]. Complementary DNA (cDNA) was

synthesized by a PrimeScript RT reagent kit (Takara Bio, Inc.,

Shiga, Japan), and real-time PCR amplification was performed

using a Thermal Cycler Dice (Takara Bio, Inc.) with SYBR

Premix Ex Taq II (Takara Bio, Inc.). The primer sequences are

listed in Table S1. The PCR conditions were 94uC for 5 minutes,

followed by 40 cycles of 94uC for 15 seconds, 60uC for 30 seconds,

and a dissociation protocol. The mRNA copy numbers were

calculated and normalized to the GAPDH mRNA levels.

Statistics
Statistical evaluation was performed using the Mann-Whitney

U-test for clinical chemistry tests or Student’s t-test for quantitative

RT-PCR between the mt-mice and control mice. Two-way

ANOVA was used for rescue experiments to confirm the effect

of compound treatment and genotypes. A P-value,0.05 was

considered statistically significant.

Results

Generation of GNE V572L point-mutant mice (mt-mice)
We generated mt-mice by the gene targeting method described

in Materials and Methods (Figure 1B). A point mutation (G to C)

at the 1714 site, resulting in a V572L mutation, was confirmed by

DNA sequencing (Figure 1C). GNE mRNA levels in the
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quadriceps femoris and kidney were comparable among the three

genotypes—homozygous mutant (mt), heterozygous (ht), and wild-

type—in spite of the point mutation (Figure 1D).

The mt-mice were born according to Mendelian inheritance

and grew normally with a normal appearance. However, they

began to die at around 100 days after birth, and about half of them

died by 500 days (Figure 1E). Their kidneys appeared abnormal,

being pale and irregularly shaped, but gross examination of

various organs revealed no other abnormalities in these mice.

Severe albuminuria and high serum cystatin C levels in
the mt-mice

We carried out urinary and serologic tests in the mice of various

ages. The urinary albumin/creatinine ratio was markedly higher

in the mt-mice than in control (wt and ht) mice at 3 and 6 months

of age, while the serum albumin levels in the mt-mice were

significantly lower than in control mice (Figure 2A, B), suggesting

albumin leakage from the blood stream. Moreover, the serum

cystatin C levels, which indicate the glomerular filtration rate

(GFR) in humans, were also significantly higher in the mt-mice

than in control mice (Figure 2C). At 10 days of age, albuminuria

was already detectable by SDS-PAGE and CBB staining

(Figure 2D). Differences in the urinary albumin/creatinine ratio

and serum cystatin C level between mt and ht mice were not

significant at 12–15 months old, probably because the severely

affected mt-mice had already died, and only the less-affected mt-

mice were still alive beyond 1 year.

Histological analysis of kidneys in the mt-mice
We examined PAS-stained renal sections of the mt-mice at 8

days, 3 months, 6 months and 12 months of age. At 8 days after

birth, cast formation in the renal tubules consistent with

albuminuria at the early postnatal stage was observed in the mt-

mice. Glomeruli were enlarged in the mt-mice compared to

Figure 2. Clinical chemistry tests. (A) Serum albumin in wt (open diamonds), ht (gray squares), and mt (black triangles) mice at 3 months
(n = 4 wt, 2 ht, 6 mt), 6 months (n = 9 wt, 3 ht, 9 mt), and 12–15 months (n = 1 wt, 11 ht, 12 mt). Data of the wt and ht mice are presented in the
same column. (B) Urinary albumin/creatinine ratio in wt (open diamonds), ht (gray squares), and mt (black triangles) mice at 3 months (n = 8 wt, 3 ht,
9 mt), 6 months (n = 4 wt, 5 ht, 11 mt), and 12–15 months (n = 5 ht, 5 mt). (C) Serum cystatin C at 3 months (n = 4 wt, 2 ht, 6 mt), 6 months (n = 6 wt,
1 ht, 6 mt), and 12–15 months (n = 1 wt, 5 ht, 6 mt). (D) SDS-PAGE analysis of urinary proteins in ht and mt mice at 10 days after birth; 8 ml of urine
was separated by SDS-PAGE and stained by CBB. Arrowhead: albumin band (60 kDa). Results are shown as means (bars) with individual data points
(A, B, C). *P,0.05, **P,0.01 (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029873.g002
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ht-mice (Figure 3A, the first panel from the left). Glomerular

lesions with mesangial matrix deposits, including glomeruloscle-

rosis and enlarged Bowman’s spaces as well as urinary tubule

dilatation with cast, were observed at 3 months of age in the mt-

mice (Figure 3A, the second panel from the left). At 6 and 12

months of age these glomerular lesions had progressed, and some

mt-mice exhibited renal failure with severe glomerulosclerosis

(Figure 3A, the third and forth panels from the left) and

inflammatory cell infiltration in the interstitium (data not shown).

In addition, Van-Gieson staining revealed interstitial fibrosis

(Figure S3A). Consistent with these observations, tissue fibrosis

markers such as crlf, TGF-b, and CTGF were significantly elevated

in the kidneys of the mt-mice compared with those of ht-mice

(Figure S3B). We further analyzed the ultrastructure of the

podocyte foot processes and the filtration glomeruli barrier by

electron microscopy; the podocyte foot processes of mt-mice at 4

months old were remarkably flattened and fused compared with

the well-shaped foot processes of the wt-mice (Figure 3B).

Since glomerular lesions were observed shortly after birth, we

examined whether nephron development was impaired. The size

of the nephrogenic zone, where nephrons develop, and the

number of nephrons in the cortex at 3 and 8 days after birth,

respectively, were comparable between mt- and ht-mice, while the

number of nephrons was significantly reduced in the 2-month-old

mt-mice (Figure 4). These observations suggest that nephron

development was normal in the mt-mice, but nephron mainte-

nance was impaired.

Lectin staining of kidneys
To investigate the cell-surface glycan structures in the mt-mouse

kidneys, we stained sections with several lectins, including PNA for

Galb1-3GalNAc, RCA-I for Galb1-4GlcAc, LTA for L-Fucose, and

DBA for GalNAca1-3GalNAc (Figure 5A). In the mt-mouse

kidneys, PNA-positive signals were aberrantly detected in glomeruli,

and the RCA-I signals were more intense than in ht-mouse kidneys.

High-magnification confocal microscopy revealed that PNA colo-

calized well with the epithelial cell marker podocalyxin (PC) in the

mt-mouse glomeruli, while PNA was not observed in the ht-mouse

glomeruli (Figure 5B). In contrast, PNA did not colocalize with the

endothelial cell marker LEL in mt-mice; this indicates that PNA

localized to glomeruli epithelial cells (Figure S4). PNA was observed

in even immature glomeruli in 8-day-old mt-mice, but not in ht-mice

(Figure 5C). These abnormal PNA and RCA-I signals suggested that

glycoproteins and glycolipids in the mt-mouse kidneys, particularly

in glomerular epithelial cells, were hyposialylated, since PNA and

RCA-I recognize asialo glycans. On the other hand, the staining

patterns of LTA and DBA, which recognize glycans with no relation

to sialic acid, were comparable between the mt- and ht-mice,

suggesting that the glycan structures recognized by LTA and DBA

were not affected in the mt-mice.

Figure 3. Histological kidney analysis. (A) PAS-stained kidney sections at 8 days, 3 months, 6 months and 12 months of age in ht (upper panels)
and mt (lower panels) mice. Scale bars: 20 mm. (B) Electron microscopy of the glomeruli of wt (left panel) and mt mice (right panel) at 4 months old.
Asterisks indicate flattened and fused podocyte foot processes.
doi:10.1371/journal.pone.0029873.g003
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Hyposialylation of a major podocyte sialoprotein,
podocalyxin (PC) in the mt-mice

Western blotting analysis of several renal proteins was performed

using whole kidney lysates. There was no difference in the band

intensity or mobility of NHERF2, ezrin, nephrin, podocin,

podoplanin, or NEPH1 between the ht- and mt-mice (Figure S5).

However, while 140–150 kDa bands of PC were detected in lysates

from both the control and mt-mice, the lysates from mt-mice also

produced higher molecular-weight 250-kDa smear bands by

appearance (Figure 6A). Since sialoprotein hyposialylation gives

rise to smear bands with higher molecular weights than expected,

we treated the PC with neuraminidase (sialidase). The PC bands in

neuraminidase-treated lysates from wt-mice shifted to about

250 kDa, much like the PC bands in untreated lysates from mt-

mice (Figure 6B). We further investigated the PC glycan chains in

the mt-mice by lectin blotting. The 250-kDa smear band could be

detected in mt-mice lysates after immunoprecipitation with the anti-

PC antibody (Figure 6C), and was detected only in these samples by

the lectins RCA-I and PNA, which recognize asialo glycans

(Figure 6D, E). These results collectively indicate that the PC in

mt-mouse kidneys was highly hyposialylated.

Suppression of the renal disorders in mt-mice by Neu5Ac
administration

If the hyposialylation of PC and other sialoproteins is a major

cause of the renal disorders in mt-mice, administering Neu5Ac

from early developmental stages onward can suppress disease

development. Pregnant ht-mice were given Neu5Ac in their

drinking water, and their mt-pups were given Neu5A-containing

water according to the experimental schedule (Figure S2). At 2

months old, mt-mice and ht-mice, untreated or Neu5Ac-treated,

were sacrificed for histological and urinary analysis.

The urinary albumin/creatinine ratio of the Neu5Ac-treated

mt-mice was significantly reduced compared with untreated mt-

mice, and was not significantly different from that of the Neu5Ac-

treated ht-mice (Figure 7A). PAS-stained kidney sections of

untreated and Neu5Ac-treated ht-mice appeared normal

(Figure 7B left panel, and data not shown). Although the kidneys

of untreated mt-mice were impaired, as described in Figure 3A

(Figure 7B, middle panel), those of the Neu5Ac-treated mt-mice

were much less affected. Enlarged glomeruli and dilatation of

Bowman’s spaces were rarely observed, and the mesangial matrix

deposits were milder in the kidneys of the Neu5Ac-treated,

compared with the untreated, mt-mice (Figure 7B right panel).

Ultrastructural analysis showed that most of the podocyte foot

processes in the Neu5Ac-treated mt-mice were well formed, and

flattened and fused foot processes were observed less often than in

untreated mt-mice (Figure 7C).

Since PC can be used as a marker for glomerular epithelial cells,

we double-stained kidney sections with an anti-PC antibody and

PNA to estimate the ratio of PNA-positive to total glomeruli

(Figure 8). While PNA-positive glomeruli were not detected in ht

Figure 4. Nephrogenic zone formation and nephron numbers in kidneys. (A) PAS-stained kidney sections of ht (upper panel) and mt (lower
panel) mice at 3 days after birth. Red bars indicate the nephrogenic zone. (B) Nephrogenic zone thickness compared between ht (open bars, n = 4)
and mt (closed bars, n = 3) mice at 3 days after birth. (C) Relative nephron numbers compared between ht (open bars) and mt (closed bars) mice at 8
days (n = 10 ht, 9 mt) and 2 months (n = 6 ht, 6 mt) of age. Nephron number per mm2 in the ht renal cortex at each age was designated as 100%.
*P,0.05 (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029873.g004

Nephrotic-Like Syndrome in GNE Mutant Mice

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29873



-mice, a large number of glomeruli were positive for PNA in the

mt-mice (0% vs 56%) (Figure 8A, B). Neu5Ac treatment

significantly reduced the proportion of PNA-positive glomeruli in

the mt-mice (35%), indicating that Neu5Ac administration

partially recovered the sialylation of PC and/or other glomerular

glycoproteins and glycolipids.

Discussion

GNE is a dual-functioning enzyme, and various GNE gene point

mutations have been identified in DMRV patients. To elucidate

the pathological mechanisms of GNE point mutations and their

effect on sialic acid biosynthesis, we generated mice with a GNE

V572L point mutation found in Japanese DMRV patients [3]. We

showed that the GNE V572L mt-mice had a shorter lifespan than

wt- and ht-mice, and that they developed renal disorders with

massive proteinuria shortly after birth. However, these mice did

not exhibit apparent myopathies and motor dysfunction seen in

DMRV (Figure S1B, S1C), and no renal disorder has been

reported in DMRV patients. It is still not clear why the same

V572L GNE point mutation caused different diseases in mice than

those seen in humans. One possibility is that hyposialylation causes

Figure 5. Lectin staining and glycan analysis of podocalyxin (PC) in kidneys. (A) Kidney sections stained with PNA, RCA-I, LTA, and DBA lectins
(from left panels to right panels, respectively) in 3-month-old ht (upper panels) and mt (lower panels) mice. Scale bars: 120 mm. (B) Confocal laser
scanning microscopic analysis of kidneys double-stained for PC and PNA, from 2-month-old ht (upper panels) and mt (lower panels) mice. Sections were
stained with an anti-PC antibody (left panels; red), PNA (middle panels; green), and both (right panels; merge). Scale bars: 50 mm. (C) Confocal laser
scanning microscopic analysis of kidneys double-stained for PC and PNA, from ht (upper panels) and mt (lower panels) mice at 8 days after birth. Sections
were stained with the anti-PC antibody (left panels), PNA (middle panels; green), and both (right panels; merge). Scale bars: 50 mm.
doi:10.1371/journal.pone.0029873.g005
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the dysfunction of different tissues and cells in mice than in

humans. To know such differences, it will be very informative to

examine the sialylation status of glomeruli, especially the PC

sialylation status, in human DMRV patients. Another possibility is

that the molecular Neu5Ac and Neu5Gc sialic acid species might

function differently in humans and mice, since humans, but not

mice, are genetically defective in synthesizing Neu5Gc, a common

mammalian sialic acid [34].

Furthermore, the phenotype of our mice was different than that

of the two previously reported GNE point-mutant mice, a

transgenic mouse carrying a human D176V point-mutant GNE

gene in a mouse GNE gene-knockout background [20,21], and a

knockin mouse carrying a GNE M712T point mutation [18]. The

D176V GNE point-mutant mice exhibit myopathic features, but

not renal disorders, while the M712 T point-mutant mice display

severe renal hematuria and neonatal lethality, but not myopathy.

The genetic situation of the D176V point-mutant mouse is

different from the other two GNE mutant mice and from human

DMRV patients, because the introduced human D176V point-

mutant GNE gene is over-expressed. The M712T point-mutant

mice suffer from far more severe renal disorders than those seen in

our mice. It is not certain why the renal disorders differ between

the two GNE-mutant mice. Although the V572L and M712T

mutations are both located in the GNE kinase domain, they might

affect different GNE functions. The V572L mutation may

interfere with kinase domain dimerization, while the M712T

mutation may change the GNE structure to affect in ATP

catalysis, carbohydrate binding, and phosphoryl transfer [35].

These differences might affect the degree of hyposialylation of

glycoproteins and glycolipids including PC.

Our mt-mice displayed glomerular defects with massive

proteinuria shortly after birth, and had abnormally flattened and

diffused podocyte foot processes. Their lifespan was significantly

shortened by renal failure. These features resemble CNS, a very

rare type of nephrotic syndrome. It is identified primarily in

families of Finnish origin. Children born with the Finnish type of

CNS die within a few months after birth due to massive

proteinuria caused by impaired podocyte function [17,36,37].

The causative genes, NPHS1, which encodes nephrin and CD2-

accosiated protein, which encodes CD2AP, have been identified in

humans and mice [36,38–40]. These genes are expressed in

glomerular epithelial cells in the kidney. Nephrin-deficient pups

die with severe proteinuria immediately after birth. The kidneys of

nephrin-deficient mice show fibrotic and hypercellular glomeruli,

enlarged Bowman’s spaces, dilated tubules, effaced podocyte foot

processes, and the absence of slit-diaphragms, all characteristic

features seen in human CNS. In heterozygous mice, approxi-

mately one third of the foot processes are fused, and nephrin

mRNA levels are reduced [17,22,40]. On the other hand,

CD2AP-deficient pups show proteinuria from two weeks of age

onward, and most die of renal failure at six to seven weeks of age.

They exhibit defective podocyte foot processes, accompanied by

mesangial cell hyperplasia and extracellular matrix deposits similar

to that found in nephrin-deficient mice. CD2AP associates with

nephrin to form components of the slit diaphragms. Furthermore,

heterozygous CD2AP mice also show proteinuria and glomeru-

losclerosis-like damage at nine months of age [17,22,38,39].

Therefore, the histological and pathological characteristics of our

mt-mice resembled those of nephrin-deficient and CD2AP-

deficient mice. However, our mt-mice survived longer than these

Figure 6. Western blot and lectin blot PC analysis. (A) Western blotting analysis of kidney lysates, using an anti-PC antibody. PC bands in wt
and ht mice were about 140–150 kDa (arrowheads), while those in mt mice showed a shift to higher molecular weights (bracketed). (B)
Neuraminidase treatment shifted the PC bands in wt mice to higher molecular weights similar to those seen in untreated mt mice. (C to E) Glycan
analysis of PC by lectin blotting. After immunoprecipitation with an anti-PC antibody, PC bands were detected by PC (C), RCA-I (D), and PNA (E).
doi:10.1371/journal.pone.0029873.g006
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CNS model mice, and our ht-mice did not show adverse effects in

the kidneys, suggesting that the GNE V572L point mutation had a

milder effect on renal pathologies than that seen in the CNS model

mice.

The formation of the nephrogenic zone and the number of

nephrons in the renal cortex were comparable between neonatal

mt-mice and ht-mice, suggesting that nephron development was

not impaired and that nephronophthisis did not occur (Figure 4).

On the other hand, by two months of age, the mt-mice had

significantly fewer nephrons than did ht-mice, suggesting that

nephron maintenance in these mice was affected by the

glomerular damage with massive albuminuria. The remarkably

enlarged glomeruli in the mt-mice might be caused by compen-

satory effects of the reduced number of nephrons.

The PNA and RCA-I lectin-staining patterns in the kidneys of

the mt-mice were considerably different from those in the ht-mice

(Figure 5); PNA-positive signals were detected in the glomeruli,

and the RCA-I signals were more intense in the mt-mouse kidneys.

Figure 7. Urinary and histological analysis of mt mice treated with Neu5Ac. (A) Urinary albumin/creatinine ratios in untreated ht (green
diamonds, n = 10) and mt (red triangles, n = 7) mice, and in Neu5Ac-treated ht (blue circles, n = 13) and mt (yellow squares, n = 8) mice at 1 and 2
months of age. ***P,0.001 (Two-way ANOVA). (B) PAS-stained kidney sections of untreated ht (left panel) and mt (middle panel) mice, and of
Neu5Ac-treated mt (right panel) mice at 2 months old. Scale bars: 20 mm. (C) Electron microscopy of the glomeruli of mt mice at 2 months old that
were untreated (left panels) or treated (right panels) with Neu5Ac. Low (upper panels, scale bars: 1 mm) and high magnification pictures (lower
panels, scale bars: 500 nm).
doi:10.1371/journal.pone.0029873.g007
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PNA-positive glomeruli are also observed in human glomerular

disease, due to increased endogenous glomerular sialidase, and in

diabetic nephropathy due to disturbed glycan turnover [41,42].

Since galactose-containing epitopes, Galb1-3GalNAc and Galb1-

4GlcAc, which are recognized by PNA and RCA-I, respectively,

are usually highly sialylated, these lectins cannot recognize these

sialylated epitopes in ht-mice. Therefore, our results suggest that

the GNE V572L mutation causes glycoproteins and glycolipids in

the glomeruli to be highly hyposialylated. In western blot analyses

of various glomerular epithelial proteins, only PC showed a

mobility shift in the mt-mice. Neuraminidase treatment, immu-

noprecipitation/lectin blotting, and the colocalization of PC and

PNA in the glomeruli confirmed that PC was highly hyposialylated

in the mt-mouse kidney. PC hyposialylation is also observed in

M712T mutant mice [18], suggesting that certain GNE point

mutations cause PC hyposialylation. Since PC is a highly sialylated

glycoprotein, its hyposialylation is easily detected by a mobility

shift. We cannot rule out, however, the possibility that the

sialylation of other glomerular epithelial proteins was slightly

affected by the GNE mutation.

PC is a CD34-related sialomucin that is strongly expressed in

podocytes. The negative charge of its highly sialylated extracellular

domain makes PC important for maintaining the characteristic

architecture of foot processes and the patency of slit-diaphragms

[13,14,43–45]. PC-null mice die of anuric renal failure within

twenty-four hours of birth [46]. They fail to form foot processes

and slit-diaphragms, which impairs urine production. Interesting-

ly, CD34 and endoglycan mRNA expression in the kidneys was

about two-fold higher in the mt-mice than in ht-mice, while the PC

mRNA levels were comparable between the two (Figure S6). CD34

mRNA levels are also increased in the kidneys of PC-null mice

compared to wt-mice [46]. These results suggest that PC protein

Figure 8. Reduced PNA-positive glomeruli ratios in Neu5Ac-treated mt mice. (A) Kidneys double-stained for PC and PNA, from untreated ht
(upper panels) and mt (middle panels) mice, and Neu5Ac-treated mt mice (bottom panels). Sections were stained with an anti-PC antibody (left
panels; red), PNA (middle panels; green), and both (right panels; merge). Scale bars: 200 mm. (B) Ratio of PNA-positive to PC-positive glomeruli in the
kidneys of 2-month-old untreated ht (green diamonds, n = 4) and mt (red triangles, n = 6) mice, and of Neu5Ac-treated ht (blue circles, n = 5) and mt
(yellow squares, n = 8) mice. ***P,0.001 (Two-way ANOVA).
doi:10.1371/journal.pone.0029873.g008
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dysfunction due to hyposialylation may cause a compensatory

increase in the related sialomucins CD34 and endoglycan. Takeda

et al. [19] reported that PC hyposialylation or desialylation in rats,

generated by treatment with reagents such as puromycin amino-

nucleoside, disrupts PC complexes containing PC, NHERF2 and

ezrin, and their interactions with the actin cytoskeleton, resulting

in a loss of foot processes similar to that seen in human nephrotic

syndrome. Therefore, hyposialylated PC could be a cause of the

nephrotic-like syndrome in mt-mice.

To clarify whether hyposialylation is the cause of the nephrotic-

like syndrome in mt-mice, we conducted a therapeutic study by

administering sialic acid metabolites to mt-mice from embryonic

stages through two months of age. Since ManNAc phosphoryla-

tion is affected by the GNE V572L point mutation in the sialic

acid biosynthesis pathway [35], Neu5Ac, a final product in the

pathway, rather than ManNAc, was administrated in the

therapeutic study. Neu5Ac treatment markedly suppressed the

albuminuria and renal disorders, including fused podocyte foot

processes, dilatation of Bowman’s space and glomerulosclerosis, in

the mt-mice. The proportion of PNA-positive glomeruli was

reduced, indicating that PC sialylation was recovered. Therefore,

starting Neu5Ac treatment prenatally prevented mt-mice from

developing the nephrotic-like syndrome. These results suggest that

the hyposialylation of renal proteins, including PC, causes the

nephrotic-like syndrome in the mt-mice. Similar therapeutic

studies using sialic acid metabolites have been demonstrated in

GNE D176V and GNE M712T-mice, with the amelioration of

myopathies and renal hematuria, respectively [18,21].

In conclusion, the GNE V572L mutation caused the hyposia-

lylation of renal glycoproteins such as PC, resulting in glomerular

filtration barrier failure and nephrotic syndrome-like phenotypes.

Our mt-mice are suitable for long-term therapeutic trials and the

pathological analysis of nephrotic-like syndromes. We consider the

negatively charged monosaccharide Neu5Ac to be a promising thera-

peutic tool for some nephrotic syndromes; candidate disorders

include focal and segmental glomerulonephritis [42,47], membra-

nous glomerulopathy [42], and other unexplained nephrotic syn-

dromes, congenital or otherwise. However, no renal diseases caused

by hyposialylation have been identified to date, and renal

abnormality has not been reported in DMRV patients. Several

issues still need to be addressed, such as the pathomechanisms of the

massive proteinuria caused by the hyposialylated glomerular

glycoproteins and glycolipids, and the therapeutic effect of other

sialic acid metabolites, in our mt-mice.

Supporting Information

Figure S1 PCR genotyping, skeletal muscle histology,
and rota-rod tests. (A) Mice were genotyped by PCR using

allele-specific locked nucleic acid (LNATM)-containing primers. A

wild-type band (153 bp) of the GNE gene was detected by wild-

type allele-specific primers (left panel), and a mutant band

(153 bp) was detected by mutant allele-specific primers (right
panel). (B) Modified Gomori’s trichrome-stained sections of

quadriceps femoris muscles of 6-month-old ht (left panel) and mt

(right panel) mice. (C) Motor coordination and learning was

assessed by an accelerating (5–40 rpm) rota-rod paradigm (wt,

green circles; ht, blue triangles; mt, red squares).

(TIF)

Figure S2 Scheme of the therapeutic Neu5Ac experi-
ment. Pregnant ht mice were not treated or were treated with

1 g/kg/day of Neu5Ac in the drinking water, from mating

through the nursing period. After weaning, pups were not treated

or were treated with Neu5Ac (0.2 g/kg/day) in the drinking water

until they were 2 months old. The mice were sacrificed at 2

months of age and were analyzed by histological and biochemical

methods. Urine was collected at 1 and 2 months of age.

(TIF)

Figure S3 Kidney fibrosis. (A) Van-Gieson-stained kidney

sections of ht (upper panels) and mt (lower panels) mice at 3

months (left panels) and 12 months (right panels) of age. (B)

Quantitative RT-PCR analysis of the expression levels of several

genes implicated in renal fibrosis in 3-month-old ht (n = 6) and mt

(n = 5) mice. The expression level of each gene was normalized to

that of the GAPDH gene. Results are shown as means 6 SD.

*P,0.05, **P,0.01 (student’s t-test).

(TIF)

Figure S4 Lectin staining analysis of glomerular endo-
thelial cells. Confocal laser scanning microscopic analysis of

double-staining for LEL, a marker for endothelial cells, and PNA

in the kidneys of 3-month-old ht (upper panels) and mt (lower
panels) mice. Sections were stained with LEL (left panels;
green), PNA (middle panels; red), and both (right panels;
merge). Scale bars: 25 mm.

(TIF)

Figure S5 Western blot analysis of podocalyxin-related
proteins expressed in podocytes. Protein bands were

detected at the expected molecular sizes and similar intensities in

the ht and mt mice: NHERF2 (40 kDa), ezrin (80 kDa), nephrin

(100 kDa), podocin (42 kDa), podoplanin (38 kDa), and NEPH1

(65 kDa).

(TIF)

Figure S6 Expression levels of CD34 family genes in the
kidneys. Expression levels of CD34 family genes were analyzed

in the kidneys of 6-month-old ht (open bars, n = 5–6) and mt

(closed bars, n = 5–6) mice by quantitative RT-PCR. Expression

levels of each gene were normalized to those of the GAPDH gene.

Results are shown as means 6 SD. *P,0.05, **P,0.01 (student’s

t-test).

(TIF)

Table S1 List of primers used for QRT-PCR.
(TIF)
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