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Abstract

To mitigate SARS‐CoV‐2 transmission, vaccines have been urgently approved. With their

limited availability, it is critical to distribute the vaccines reasonably. We simulated the

SARS‐CoV‐2 transmission for 365 days over four intervention periods: free transmission,

structural mitigation, personal mitigation, and vaccination. Sensitivity analyses were

performed to obtain robust results. We further evaluated two proposed vaccination

allocations, including one‐dose‐high‐coverage and two‐doses‐low‐coverage, when the

supply was low. 33.35% (infection rate, 2.68 in 10 million people) and 40.54% (2.36) of

confirmed cases could be avoided as the nonpharmaceutical interventions (NPIs)

adherence rate rose from 50% to 70%. As the vaccination coverage reached 60% and

80%, the total infections could be reduced by 32.72% and 41.19%, compared to the

number without vaccination. When the durations of immunity were 90 and 120 days, the

infection rates were 2.67 and 2.38. As the asymptomatic infection rate rose from 30% to

50%, the infection rate increased 0.92 (SD, 0.16) times. Conditioned on 70% adherence

rate, with the same amount of limited available vaccines, the 20% and 40% vaccination

coverage of one‐dose‐high‐coverage, the infection rates were 2.70 and 2.35;

corresponding to the two‐doses‐low‐coverage with 10% and 20% vaccination coverage,

the infection rates were 3.22 and 2.92. Our results indicated as the duration of immunity

prolonged, the second wave of SARS‐CoV‐2 would be delayed and the scale would be

declined. On average, the total infections in two‐doses‐low‐coverage was 1.48 times (SD,

0.24) as high as that in one‐dose‐high‐coverage. It is crucial to encourage people in order

to improve vaccination coverage and establish immune barriers. Particularly when the

supply is limited, a wiser strategy to prevent SARS‐CoV‐2 is equally distributing doses to

the same number of individuals. Besides vaccination, NPIs are equally critical to the

prevention of widespread of SARS‐CoV‐2.
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1 | INTRODUCTION

The outbreak of COVID‐19 caused by severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) has led to an unprecedented

public health and economic crisis worldwide since December 2019.1

To mitigate the spread, a variety of nonpharmaceutical interventions

(NPIs) have been implemented, including screening and isolation,

travel restriction, remote schooling and work distancing.2–4 Although

these efforts are beneficial to control the spread in a short

term, globally, as of March 4, 2022, there have been 440 807 756

confirmed cases of COVID‐19, including 5 978 096 deaths, reported

by the World Health Organization (WHO).5 Additionally, in many

countries, relaxation of NPIs has led to a resurgence of the epidemic

as herd immunity has not been reached thus far.6 A long‐term

solution, such as vaccines that protect from SARS‐CoV‐2 infection,

remains urgently needed.

The competition for developing vaccines against SARS‐CoV‐2

started in early 2020 and more than 50 companies began development

of the first vaccine.7 At present, 14 vaccines have been approved for

urgent use, including 3 nucleic acid vaccines (Curevac, Moderna,

and BioNTech), 3 inactivated virus vaccines (Bharat, Sinovac, and

Sinopharm), and 8 viral‐vectored vaccines (Clover Biopharmaceutical,

Serum institute, Novavax, Sanofi, AstraZeneca, Janssen, Gamaleya, and

CanSino).8 As of March 5, 2022, a total of 10 704 043 684 vaccine

doses have been administered globally.5 The benefits of an effective

vaccine for individuals and their communities have resulted in

widespread demand, so it is critical that decision‐making on vaccine

distribution is well‐motivated, particularly in the initial phases when

vaccine availability is limited.7,9–11

As the basis of regulatory approvals, the initial vaccine was

released in early 2021, there are two main suggested approaches to

vaccine prioritization: (i) directly vaccinate those at highest risk for

severe outcomes and (ii) protect them indirectly by vaccinating

those who do the most transmitting.12,13 Model‐based investiga-

tions of the trade‐offs between these strategies have found that

the optimal balance between direct and indirect protection

depends on both vaccine efficacy and supply, recommending direct

vaccination of older adults for low‐efficacy vaccines and for

high‐efficacy but supply‐limited vaccines.14 Rather than comparing

prioritization strategies, others have compared hypothetical

vaccines, showing that even those with lower efficacy for direct

protection may be more valuable if they also provide better

indirect protection by blocking transmission.14 Prioritization of

transmission‐blocking vaccines can also be dynamically updated on

the basis of the current state of the epidemic, shifting prioritization

to avoid decreasing marginal returns.15 However, the strategies of

prioritizing and optimizing doses complement are highly dependent

on different vaccine efficacy (VE) and durability of immunity. An

optimal resource allocation will largely reduce the transmission

economically.

To evaluate the vaccine allocation strategies, we built an age and

occupation stratified SEIRS (susceptible, exposed, infectious, recov-

ered, and susceptible) model. Since age has been shown to be an

important correlate of susceptibility, seroprevalence, severity, and

mortality, this model includes an age‐dependent contact matrix,

susceptibility to infection, and infection fatality rate (IFR), allowing us

to estimate the cumulative incidence of SARS‐CoV‐2 infections by

means of forward simulations of disease dynamics.16–23

2 | METHODS

An individual‐based dynamic model, stratified by age and occupation,

was built to simulate the transmission of SARS‐CoV‐2 based on the

epidemical progression of susceptible‐exposed‐infectious‐removed‐

susceptible (SEIRS) structure. This model includes NPIs aimed at

mitigating the epidemic.

2.1 | Model construction

In the model simulation, each healthy individual (susceptible) has a

chance of being infected with SARS‐CoV‐2 under the force

transmission rate depending on the number of daily contacts and

the probability of SARS‐CoV‐2 being transmitted from an infected to

uninfected contact. Once infected, the individual enters the exposed

period. At the end of the exposure period, an individual will become

infectious, either symptomatic or asymptomatic. Most infectious

individuals recover but some will die (with IFR). We assumed that the

recovered individual would be re‐infected after waned immunity,

including natural immunity.

The population was grouped by age and occupation, and

interactions between groups (or individuals) were simulated, taking

into account the number of daily contacts. The global age structure

was from the United Nations (2019), people aged 0–100 years were

divided into eight groups (0–4, 5–14, 15–24, 25–34, 35–44, 45–54,

55–64, and over 65). The occupations (nonworker, student, worker,

and others) and social contact patterns (home community, school,

workplace, and other contacts) were then assigned according to the

economic structure from the Chinese 2010 and 2020 census data.

Each individual was assigned a social contact parameter (location‐

specific contact matrices, including home community, school, work-

place, and other) by their occupation. This study assumed an individual

has no age‐dependence in transmissibility, and the likelihood of viral

exposure varied by individuals depending on the number of infectious

people in their social network. We considered age‐stratified contact

matrices from the BBC pandemic project in describing the average

daily effective number of contacts that an individual has with others.24

Age‐stratified IFRs were collected from a model‐based analysis under

New York City during the 2020 spring pandemic wave.25

2.2 | Infection parameters

Each modeled individual was ascribed demographic characteristics (e.g.,

age and occupation) and epidemiological characteristics (e.g., exposed
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period, infectious period, symptomatic or asymptomatic status, recovery

or death from infection). We incorporated asymptomatic infections into

this model, although it remains unclear as to the asymptomatic rate and

the extent asymptomatic patients contribute to viral transmission.26–29 All

the detailed information is presented in the supplementary materials.

Although existing studies have been focusing on the antibody

responses to SARS‐CoV‐2, it is still vague in the natural and vaccine

acquired immunity.8,30 Therefore, we considered 90 and 120 days of

acquired immunity priority before getting susceptible again in our

simulation.31–33 The transmission was dependent upon the period of

exposure, period of infectiousness, and basic reproductive number

(R0).
34–37 We also incorporated an asymptomatic rate denoting the

probability of an infected case being asymptomatic and assumed a

reduced rate of infection for asymptomatic cases. 24,26,35,36,38 After the

infectious period, an individual has the chance to recover or die.34,39

2.3 | Interventions

In this model, we mimicked the transmission in four assumed periods.

The first period is the free transmission period, during which no NPIs

are implemented. The second period is the structural mitigation period,

during which structural NPIs including isolation and quarantine are

implemented. In this period, the infected individuals are isolated until

they recover or die, and their close contacts are quarantined for

14 days. The accuracy rate of screening (sensitivity) was considered in

this modeling.40,41 The third period is the personal mitigation period,

during which personal NPIs including social distancing, mask‐wearing,

and hand washing are in place. The individuals begin to change their

protection behavior depending on the government policy adherence

rate. The assumed efficacy of mask‐wearing and hand washing is

introduced into this model.42 The final period is the vaccination period.

In our study, we introduced VEs into our simulation to predict

the effect of the vaccine, which is associated with the NPIs adherence

rate.8 Risk compensation was considered in our model. When the

coverage rates reach the target value (≥50%), the adherence of

personal NPIs becomes 50% lower among vaccinated people. In this

situation, the theoretical immunity is elicited after all recommended

doses of the vaccine are injected. We proposed two scenarios of

vaccine‐allocation strategies (assumed two injections) based on the

limited vaccine supply. Scenario 1 (one‐dose‐high‐coverage): distribut-

ing the two doses to two people, each person with one dose (lower VE);

Scenario 2 (two‐doses‐low‐coverage): distributing the two doses to one

person, each person with two doses (higher VE). Among these

scenarios, we assumed time varied supplies, increased by 0.5% per day.

2.4 | Simulation and sensitivity analysis

We simulated 100 million individual‐level transmission events by

repeatedly generating contact distributions for a primary case and

randomly generating infections among these contacts. This process

was repeated a thousand times, and each simulation was to generate

a set of epidemic trends including (1) daily newly confirmed cases and

(2) daily total cumulative confirmed cases. Our primary sensitivity

analyses were to the level of vaccination coverage (60% and 80%),

the adherence rate of NPIs (50% and 70%), and the asymptomatic

rate (30% and 50%). We further assumed the (natural and vaccinated)

immunity waned after 90 and 120 days.

3 | RESULTS

3.1 | Main analysis

Overall, in ages, the distribution of infections was 1.06% (0–4 years old),

7.13% (5–14 years old), 19.14% (15–24 years old), 23.16% (25–34 years

old), 19.82% (35–44 years old), 16.05% (45–54 years old), 9.13% (55–64

years old), and 4.50% (over 65 years old). In all, 53.64% of the dead were

people over 35 years old. Most of the dead were students (16.09%) and

workers (70.00%). In occupations, 12.88%, 17.71%, 67.28%, and 2.12%

were accounted for by nonworker, students, workers and others

(Figure 1).

On average, the infection rate (in 100 million people) reduced

from 2.68 (95% confidence interval [CI], 2.25–3.11) to 2.36 (95% CI,

1.94–2.78) as the NPIs adherence rate rose from 50% to 70%

(Figure 2). 33.35% (95% CI, 22.22–43.78) and 40.54% (95% CI,

27.75–52.25) confirmed cases can be avoided if 50% and 70% of

people followed the instruction.

As the vaccination coverage reached 60% and 80%, the number

of infections can be reduced by about 32.72% (95% CI, 22.03–43.41)

and 41.19% (95% CI, 30.32–52.06), compared to the number without

vaccination. The average IFRs were 0.68% (95% CI, 0.66–0.69) and

0.58% (95% CI, 0.57–0.58) when the vaccination coverages were

60% and 80%. When the durations of immunity were 90 and 120

days, the infection rates were 2.67 (95% CI, 2.20–3.14) and 2.38

(95% CI, 1.99–2.77).

Furthermore, our model suggested that with the increase in the

asymptomatic infection rate, the prevention and control of SARS‐CoV‐2

was becoming more and more unfavorable. As the asymptomatic

infection rate rose from 30% to 50%, the infection rate increased from

1.73 (95% CI, 1.59–1.87) to 3.31 (95% CI, 3.14–3.47), which was 0.92

(SD, 0.16) times higher. However, no matter how high the asymptomatic

rate was, higher NPIs adherence and higher vaccination coverage can

always prevent more SARS‐CoV‐2 infections (Figure 2).

According to our simulation, relying on a 30% asymptomatic rate,

70% NPIs adherence rate, 80% vaccination coverage, and 180 days of

immunity, the infection rate remained at 1.42% (total confirmed cases,

142243; 95% CI, 134598–152471), which reduced the infections most.

3.2 | Vaccine distribution scenarios

The epidemiological impacts of the different dosing scenarios on

mitigating the SARS‐CoV‐2 spread, when the vaccine supply was

limited, are shown in Figure 3.
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Assuming the adherence rate of NPIs was 70%, supposing

the same amount of vaccines were available, under scenario 2

(completely vaccinated), relying on an immunity duration of 90

days, the IFR and infection rate were 0.74 (SD, 0.01%) and 3.38%

(SD, 0.83%), whereas the values were 0.72% (SD, 0.01%) and

2.76% (SD, 0.90%) when immunity waning after 120 days.

Considering scenario 1 (partially vaccinated), when the duration

of immunity was 90 days, the IFR and infection rate were 0.74%

(SD, 0.01%) and 2.69% (SD, 1.16%), whereas the values were

0.72% (SD, 0.01%) and 2.37% (SD, 1.12%) when immunity waning

after 120 days (Table 1).

Figure 3 indicated as the duration of immunity prolonged, the

second peak of SARS‐CoV‐2 will be delayed and the scale will be

declined. On average, the total infections in scenario 2 was 1.48

times (SD, 0.24) higher than that in scenario 1.

Considering the same amount of supplies, and 20% and 40%

vaccination coverage of scenario 1, the total number of infections

were 270 256 (95% CI, 171 631–368 870) and 235 254 (95% CI,

113 440–357 060); corresponding to the scenario 2 with 10% and 20%

vaccination coverage, the number of infections were 321 535 (95% CI,

241 342–401 658) and 291 523 (95% CI, 193 086–389 914).

4 | DISCUSSION

In this modeling, the findings showed that the vaccines and NPIs

substantially contributed to the SARS‐CoV‐2 transmission control.

With higher vaccination coverage and NPIs adherence rate, more

infections can be avoided. Compared to no vaccination, the number

of infections can be reduced by 40% or 26% if the vaccination

coverage reached 80% or 60%). Furthermore, when the adherence

rate increases from 50% to 70%, 28% of infected cases can be further

saved. To acquire the theoretical vaccine immunity, all recommended

vaccine doses should be injected. However, when the vaccine

(assumed more than two injections) supply was limited, the partially

vaccinated strategy was superior to the completely vaccinated since

it helped to reduce the infections by 67.57%. Finally, the transmission

F IGURE 1 Distribution infections among age and occupation. The top panel shows the distribution of infections among eight age groups
(0–4, 5–14, 15–24, 25–34, 35–44, 45–54, 55–64, and over 65 years old), and the bottom panel shows the distribution infections among four
occupation groups (nonworker, student, worker, and other).

F IGURE 2 The proportion of total infected cases among the
population. The infection rate of SARS‐CoV‐2 among 16 (24)
different hypotheses. The primary sensitivity analyses were on the
level of vaccination coverage (60% and 80%), the adherence of NPIs
(50% and 70%), the asymptomatic rate (30% and 50%), and the
assumed (natural and vaccinated) waned immunity after 90 and
120 days.
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of SARS‐CoV‐2 was more difficult to control as the asymptomatic

infection rate increased.

Vaccines, which can induce and establish the immune response

against SARS‐CoV‐2, are crucial to the prevention and mitigation of

morbidity and mortality cases by infection.8,30 Multiple candidate

vaccines, including nucleic acid vaccines (Moderna—mRNA‐1273;

BioNTech—BNT162b1 and BNT162b2), inactivated virus vaccines

(Sinovac—CoronaVac; Sinopharm—BBIBP‐CorV and Vero cells), live

attenuated vaccines, protein or peptide subunit vaccines, and viral‐

vectored vaccines (AstraZeneca—AZD1222; Janssen—Ad26. COV2.S;

Gamaleya—rAd5 and rAd26; CanSino—Ad5CoV), are being developed

and tested.43 Each type has advantages and disadvantages and vaccine

manufacturers have published articles to present the findings of their

Phase III trials, each involving tens of thousands of participants, and

commenced in various geographical locations.7,9–11 These results have

shown the VEs are over 90% with all recommended doses completed.

Even after a partial dose, the VE can still reach 70%. In addition, the

antibody responses from vaccination enhance the protection in

preventing the disease progression.7,9–11

SARS‐CoV‐2 variants are circulating globally and quickly became

dominant in countries, such as the United Kingdom (WHO label,

Alpha; Pango lineage B.1.1.7), South Africa (Beta; B.1.351), Brazil

(Gamma; P.1), India (Delta and Kappa, B.1.617.2 and B.1.617.1),

America (Iota, B.1.526), Peru (Lambda; C.37), and multiple countries

(Omicron; B.1.1.529).44 The reason for the strong infectivity of

SARS‐CoV‐2 variants is that it can escape the neutralizing antibodies

produced by the immune system, and the more lethal variants could

substantially decrease the net benefit of vaccination.45–52 Therefore,

the current issues on whether a third dose of enhanced vaccine is

needed and when to vaccinate it has also become a topic of public

concern.53–55 Moreover, how to cope with the evolution of the

SARS‐CoV‐2 and develop a vaccine with a "broad‐spectrum effect" in

avoiding virus escape is an important problem that researchers

need to urgently solve.56,57 The variants reduced the VE to varying

degrees, but the vaccine is still protective.58,59

Whichever vaccine appears, rational allocation of resources is very

important. The current vaccination modeling research is mainly

focusing on two directions. First, to minimize the deaths, Bubar

et al.12 recommended older adults enjoy a vaccine priority due to its

higher fatality rate. Second, to mitigate the spread, Yang et al.13

suggested several essential workers could be prioritized for

F IGURE 3 Daily SARS‐CoV‐2 incidence rate among the population. Focusing on 70% NPIs adherence rate and considering the same
amounts of limited vaccine supplies. The daily incidence rates with different asymptomatic rates and durations of immunity are represented as
black and red curves, respectively. The panels in the left and right columns represent different scenarios.

TABLE 1 Infection rate of SARS‐CoV‐2 among different
scenarios

Scenario 1 (partially vaccinated)

Asymptomatic rate Days
Vaccine coverage
20% 40%

Duration of
immunity

30% 90 1.97 1.43

120 1.72 1.13

50% 90 3.78 3.56

120 3.34 3.29

Scenario 2 (completely vaccinated)

Asymptomatic rate Days
Vaccine coverage
10% 20%

Duration of

immunity

30% 90 2.84 2.50

120 2.30 1.71

50% 90 4.19 3.97

120 3.53 3.48
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vaccination to maintain essential services in the early phase of a

vaccination program due to its higher contacts. In our model, we

propose an interesting idea that when the vaccines are lacking in the

early stage, to maximize the coverage, the total number of doses to

be vaccinated should be equally distributed to the same amount of

people even if it reduces the VE so that individuals can quickly

establish an immune barrier.

All kinds of NPIs have been introduced in mitigating the

transmission of SARS‐CoV‐2. The major NPIs, including isolation

and quarantine, social distancing, mask, and hand washing, are

recommended by WHO.60 Isolating confirmed cases stops the

offspring generating and effectively blocks the transmission of

SARS‐CoV‐2, and the contact tracing helps to minimize the potential

transmission from second cases.61 However, this NPI is limited

substantially by delays from testing of index cases to the tracing of

their contacts, because secondary cases might have been transmit-

ting for a number of days in the community during the time that

contact tracing is taking place. In addition, the delays in isolating

confirmed cases from the infected date to the symptom onset or

hospitalization is another issue, not to mention the sensitivity of the

screening test. Moreover, asymptomatic cases do not know they are

carriers and will not attend hospitals to conduct self‐screening. Thus,

with the higher asymptomatic rate of SARS‐CoV‐2, it is not surprising

that this NPI alone could not contain the SARS‐CoV‐2 pandemic.62

Since the transmission routes, including droplet and contact

transmission, of SARS‐CoV‐2, have been identified, several personal

health behaviors, such as social distancing, mask‐wearing, and hand

washing, have been encouraged by WHO to avoid transmission. These

NPIs have been proven effective against SARS‐CoV‐2 in our modeling,

as shown in other previous research.63 By changing their personal

behaviors, such as reducing social distancing, mask‐wearing, and

handwashing, people can lower the risk of potential SARS‐CoV‐2

infections or reduce the probability of spread to susceptible

individuals.64 However, the effectiveness of these NPIs can be limited

by low adherence. For example, due to the government policy, people

who are living in China have a higher NPIs adherence rate and it

achieves a lower total infection even with a larger population.65–67 For

those countries with moderate or lower adherence rates, the

governments should advocate the importance of these protective

measures in preventing the SARS‐CoV‐2 transmission. In addition,

maintaining a high level of mask utilization is also necessary and masks

should be replaced frequently for a permanent protective effect.64

Proper use and disposal of masks is also essential to avoid increasing

risk of transmission.68,69

Our study also has several limitations. First, in this modeling, we

did not consider the time‐varied antibody responses and viral load

dynamics.70 Due to its RNA virus structure, SARS‐CoV‐2 is continu-

ously mutating. A much clear genomics‐informed response and

serology data should be further adopted for simulation. After adding

the distribution of virus load and the immune waning into the model,

we can much better predict the future epidemic trend and make a

response early. Second, the risk compensation after vaccination should

be considered.71 In another ongoing study, we have found that among

the people who have been vaccinated, they have begun neither to use

protections nor adhere to NPIs. In other words, we know that vaccines

can protect against death after infection, but whether they can reduce

the spread of SARS‐CoV‐2 seems to be an interesting research

direction. Finally, the seasonal dependent transmission patterns should

be introduced into the model. Based on little published data, the

impact of unknown factors such as temperature or humidity changes

could not be assessed in our model.72–74 However, two similar human

coronaviruses, HCoV‐OC43, and HCoV‐HKU1, cause annual winter-

time outbreaks of respiratory illness in temperate regions, suggesting

that climate and host behaviors may facilitate transmission as is true

for influenza.75–80

In conclusion, although the world has taken many different NPIs

and vaccines to control and prevent the SARS‐CoV‐2 epidemic, the

epidemic of SARS‐CoV‐2 has led to the current global large‐scale

spread and there is no sign of complete control.81–83 This study

investigates the effectiveness of vaccination and NPI strategies in

various situations. It is crucial to encourage people to vaccinate in

order to improve vaccination coverage and establish immune barriers.

Particularly, when the vaccine supply is limited, an optimal strategy to

prevent SARS‐CoV‐2 transmission is equally distributing doses to the

same number of individuals. Besides vaccination, NPIs are equally

critical to the prevention of widespread of SARS‐CoV‐2.
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