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Abstract

Gluten is a cereal protein that is incompletely digested by human proteolytic enzymes that create immunogenic peptides that
accumulate in the gastrointestinal tract (GIT). Although both environmental and human bacteria have been shown to expedite
gluten hydrolysis, gluten intolerance is a growing concern. Here we hypothesize that together with food, we acquire environmental
bacteria that could impact our GIT with gluten-degrading bacteria. Using in vitro gastrointestinal simulation conditions, we
evaluated the capacity of endophytic bacteria that inhabit root vegetables, potato (Solanum tuberosum), carrot (Daucus sativus),
beet (Beta vulgaris), and topinambur (Jerusalem artichoke) (Helianthus tuberosus), to resist these conditions and degrade gluten. By
16S rDNA sequencing, we discovered that bacteria from the families Enterobacteriaceae, Bacillaceae, and Clostridiaceae most
effectively multiply in conditions similar to the human GIT (microoxic conditions, 37 °C) while utilizing vegetable material and
gluten as nutrients. Additionally, we used stomach simulation (1 h, pH 3) and intestinal simulation (1 h, bile salts 0.4%) treatments.
The bacteria that survived this treatment retained the ability to degrade gluten epitopes but at lower levels. Four bacterial strains
belonging to species Bacillus pumilus, Clostridium subterminale, and Clostridium sporogenes isolated from vegetable roots
produced proteases with postproline cleaving activity that successfully neutralized the toxic immunogenic epitopes.

Key points
* Bacteria from root vegetables can degrade gluten.

* Some of these bacteria can resist conditions mimicking gastrointestinal tract.

Keywords Prolyl endopeptidase - Celiac disease - ELISA - Food - Root vegetable

Introduction is composed of 8-15% protein, from which 85-90% is gluten
(Biesiekierski 2017). Gluten is a complex mixture of proteins,
Gluten containing grains, especially wheat, are the main car-  divided by the solubility in aqueous alcohols into two protein

bohydrate and plant protein sources in Western diets. Wheat ~ families: the gliadins and the glutenins. Gluten proteins have
a unique primary amino acid structure and contain many glu-
tamine (38%) and proline residues (20%) and repetitive PQ
peptide sequences (Wieser 2007). Due to the structure of
proline, human gastric and pancreatic enzymes do not effi-
ciently cleave the peptide bonds of proline-rich proteins and
generate pathogenic peptides, which contribute to three types
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The main therapy of gluten intolerance disorders is avoidance
of wheat. Experimental strategies include reducing the immune
response by modifying gluten in the diet of susceptible patients
(Merz et al. 2016; Scherf et al. 2018) and enzyme therapy that
supplements gluten-degrading enzymes in the GIT. Both ap-
proaches use peptidases from various sources such as fungi,
bacteria, and germinated cereal grains (Curiel et al. 2014;
Guandalini and Assiri 2014; Wolf et al. 2015; Scherf et al.
2018; Schulz et al. 2018). Postproline cutting prolyl endopepti-
dases from Sphingomonas capsulata, Flavobacterium
meningosepticum, Myxococcus xanthus, Aspergillus niger,
Flammulina velutipes, and Chryseobacterium taeanense,
among others, have been pursued as drug candidates for the
enzymatic treatment of gluten to treat celiac disease (Shan
et al. 2004; Mitea et al. 2008; Schulz et al. 2018; Amador
et al. 2019). Although many digestive enzyme supplements
are ineffective in degrading immunogenic gluten epitopes,
prolyl endopeptidase from Aspergillus niger is able to degrade
toxic gluten epitopes (Janssen et al. 2015).

An alternative approach to alleviate the symptoms of celiac
disease is to use probiotic bacteria that naturally digest gluten
and specifically the toxic epitope peptides of CD. This ap-
proach could also be used to treat wheat allergies and possibly
NCGS. Supplementation of probiotics in infancy was not as-
sociated with celiac disease (Uusitalo et al. 2019). It was
shown by Francavilla et al. in 2017 that commercially avail-
able probiotic lactobacilli with various peptidase activities,
when pooled, can hydrolase proline-rich CD epitopes of glu-
ten and decrease gluten toxicity for CD patients (Francavilla
etal. 2017).

In 2010 Helmerhorst et al. showed that gluten-degrading
bacteria naturally reside in the oral cavity (Helmerhorst et al.
2010), followed by the identification of an oral microbe
Rothia aeria that can degrade immunogenic gluten peptides
(Zamakhchari et al. 2011). Several studies have shown that the
human GIT, small intestinal, and colon microbiota are possi-
bly implicated in gluten hydrolysis (Caminero et al. 2014;
Herran et al. 2017). Most of these bacteria belong to the phy-
lum Firmicutes.

Why is gluten intolerance a growing concern if there are
bacteria in the human GIT that can degrade harmful peptides?
In contemporary Western societies, microbial diversity is de-
creasing with a redistributed balance (Rook 2013; Schnorr
et al. 2014; Moeller et al. 2014; Mills et al. 2019). The biodi-
versity hypothesis states that contact with natural environ-
ments enriches the human microbiome, promotes immune
balance, and protects us from allergies and inflammatory dis-
orders (Hanski et al. 2012; Lehtiméki et al. 2018; Haahtela
2019). However, mechanisms for how microbes from the en-
vironment can colonize various sites in the body of an indi-
vidual are poorly understood (Haahtela 2019).

Recently, we analysed the microbiomes of five common
root vegetables—potato (Solanum tuberosum), carrot
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(Daucus sativus), beet (Beta vulgaris), neep (rutabaga)
(Brassica napus spp. napobrassica), and topinambur
(Jerusalem artichoke) (Helianthus tuberosus). We found that
there is a considerable bacterial diversity in these vegetables,
notably in their peels (Koiv et al. 2019). This raises the ques-
tion: Could these bacteria have an impact on gluten degrada-
tion in the human upper digestive tract? An important aspect
of'this concerns the ability of bacteria that we eat with raw root
vegetables to resist the low pH and bile acids in the upper
gastrointestinal tract. In order to provide light on these ques-
tions, we devised an experimental system: Four common root
vegetables—potato (Solanum tuberosum), carrot (Daucus
sativus), beet (Beta vulgaris), and topinambur (Jerusalem ar-
tichoke) (Helianthus tuberosus)—were grated and incubated
in gliadin containing media at 37 °C under microoxic condi-
tions. In addition, we studied the effects of stomach simulation
(1 h, pH 3) and intestinal simulation (1 h, bile salts 0.4%).
Bacteria which withstood and multiplied in these conditions
were identified by 16S rRNA gene sequencing, and the
amount of gliadin degraded epitopes were determined by RS
ELISA. Seven bacterial strains able to degrade gluten were
isolated from vegetable samples and characterized.

Experimental procedures
Chemicals

Mixed gluten from wheat was obtained from Sigma (St.
Louis, MO). Gliadin was made as follows: 15 g of gluten in
100 ml of 60% ethanol was shaken overnight at 37 °C and
centrifuged 30 °C at 10000 rpm; the alcohol dissolved gliadin
part was sterilized by filtering through a 0.22-um syringe filter
(Millex, Millipore) and used for further experiments.
Synthetic immunogenic celiac gliadin-derived 33-mer peptide
(LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) was
obtained from Pepscan, the Netherlands.

Sampling

Root vegetables carrot (Daucus sativus), beet (Beta vulgaris),
and potato (Solanum tuberosum “Laura”) were grown by or-
ganic farming in Vonnu, Tartumaa County, Estonia (58.17 N
27.04 E). For fertilization, NPK 11-9-20, CROPCARE 11-11-
21, and Allgrow® Bioplasma were used. Jerusalem artichoke
(topinambur) (Helianthus tuberosus) was grown in virgin soil
in Uhtjdrve, Vorumaa, Estonia (57.89 N 26.59 E). After har-
vesting in October 2016, the carrots, beets, and potatoes were
kept until March 2017 in a common cellar at +5 °C.
Topinambur was harvested in March 2017 freshly before the
experiment. The scheme of experiment is shown on Fig. 1.
Five vegetables of similar size and shape were chosen for
each species. The vegetables were carefully brushed and
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Fig. 1 Schematic representation of the experimental strategy. Root
vegetables are designated as follows: “beet,” beet; “car,” carrot; “pot,”
potato; and “top,” topinambur; “C,” vegetable pulp, “P,” peel; [+]
indicates acid and bile salts treatment, [—] indicates lack of treatment.
SCFA, small chain fatty acids

washed with tap water, rinsed in sterile distilled water, and
thereafter kept in sterile distilled water until the next proce-
dure. For peel extraction, the outer part of vegetable was grat-
ed with a sterile grater; 3 g of grated peel was mixed with 3 ml
of gliadin (0.15%) containing sterile distilled water. This mix-
ture was then divided equally (3 ml) into two 15-ml tubes and
kept on ice until the next step. The inner tissues, i.e. the pulp of
the grated vegetables, were obtained by making several cuts
with a sterile scalpel to obtain an intact sample of the inner
tissues. Then the pulp was grated using the same procedure as
described for peels.

Next, one of these two equally divided 3-ml vegetable-
gliadin mixtures was applied to HCI and bile salts (treatment
[+]): pH of the sample was adjusted to 3 with 1 N HCI and
incubated 1 h at 37 °C, after which pH was neutralized with
1 M NaOH. Subsequently, bile salts (final 0.4%) and trypsin

(final 0.1%) were added, and this mixture was incubated for
1 h at 37 °C. During this step, trypsin (final 0.1%) was added
also to the other 3-ml vegetable-gliadin mixture (control [—])
and incubated for 1 h at 37 °C. The following steps were the
same for both [+] and [—] samples. A 12-ml medium contain-
ing 0.07% gliadin and MOPS medium (Neidhardt et al. 1974)
were added to a 3-ml vegetable mixture in order to dilute bile
salts in [+] samples and support the growth of bacteria in O,
limiting conditions. The upper part of the 15-ml Falcon tubes
free of medium were blown through with N, to get rid of
oxygen, after which the tubes were tightly closed with a lid
and kept at 37 °C for incubation.

After 24 h of incubation, the pH was measured and neu-
tralized with NaOH if needed. After 48 h 1.5 ml of suspension
of the samples was transferred into 1.5-ml Eppendorf tubes,
centrifuged for 10 min at 13,000 rpm; the pellet containing
bacteria was used for DNA extraction, and the supernatant
was used for both gluten content measurements and to mea-
sure the amount of small chain fatty acid (SCFA); both were
stored at —20 °C until the next procedure.

DNA extraction, PCR, and sequencing

DNA was extracted using a RTP®Bacteria DNA Mini Kit
(Stratec Biomedical Systems, Germany) according to the pro-
tocol, with one additional step: The cells were lysed by bead
beating with zirconia/silica beads (BioSpec Products, USA):
0.1 mm—0.5 g with FastPrep®-24 (MP Biomedicals, USA) at
4 m/s for 3 x 60 s. The V3—V4 region of the 16S rRNA gene
was amplified using primers F34lad (5'-CCAG
ACTCCTACGGGAGGCAG-3') (Sakai et al. 2004) and
R783ad (5'-ACCMGGGTATCTAATCCKG-3"), Phusion
High-Fidelity DNA Polymerase (Thermo Fisher Scientific,
USA) and approximately 20 ng of DNA in a 20-pl reaction
mixture. The PCR reaction was carried out at 98 °C for 30 s
followed by 20 cycles each of 98 °C for 10's, 50 °C for 30 s,
and 72 °C for 30 s, followed by 5 min at 72 °C. PCR ampli-
fications were performed in triplicate and then pooled. The
pooled PCR products were cleaned using an UltraClean
PCR Clean-Up Kit (MoBio, USA), and both the quantity
and quality of DNA were determined spectrophotometrically
(NanoDrop 2000c). DNA sequencing was carried out using
the MiSeq (Illumina PE500) (San Diego, USA).

Sequence processing and clustering of 16S rRNA
reads into operational taxonomic units (OTUs)

The total pool of sequences (2,701,997; quality filtered with
Trimmomatic v 0.32 [>Q30]) (Bolger et al. 2014) obtained
from demultiplexed MiSeq reads was clustered at 97% simi-
larity within the V3—V4 regions of 16S rRNA gene sequences
into 133 nonchimeric OTUs with USEARCH tool (Edgar
2010; Edgar et al. 2011) and affiliated by using the SILVA
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database (version 115) with SINA aligner (Quast et al. 2012).
In order to exclude sequences observed at very low frequen-
cies, OTUs representing less than 0.001% of the total number
of sequences were removed. Unclassified OTUs and OTUs
with similarity to mitochondria or chloroplasts were discarded
from the OTU table.

Statistical analyses

Statistical analyses were performed in R 3.3.2 (R Core
Team 2017). For normalization, the proportion of each
OTU in unique samples was calculated. For the alpha-
diversity measurement, Shannon’s Diversity and Chaol
richness were calculated with the vegan::diversity func-
tion (Jari Oksanen et al. 2017). Significant differences
were determined via Tukey’s post hoc test in R (Tukey
1949). For beta-diversity measurement (Bray and Curtis
1957), a principal coordinates analysis (PCoA) was calcu-
lated with the vegdist function (Cailliez 1983). Statistical
modelling for evaluating the amount of remaining gluten
epitope in different samples was done using brms
(Biirkner 2018) with the following model specifications:
brm(value elisa~condition + compartment +
(condition|veg) + (condition|individual), data=data, fami-
ly = student, prior = c(prior(normal(0, 0.2), class=b),
prior(student t(6,0.3,0.3), class = Intercept), prior(lkj(3),
class = cor)), cores =3, chains =3, iter =4000). Because
the incorporation of compartment (pulp and core) and
individual (vegetable specimen index) had a little effect
on the model fit, the estimates shown in Fig. 2b are cal-
culated from a simplified model from which those vari-
ables had been removed (loo difference 3.3 [standard er-
ror of the difference 0.9]) in favour of the simpler model:
value_elisa~condition + (condition|veg).

Gliadin quantification from growth media

The amount of gliadin in the culture media was measured with
the RIDASCREEN® Gliadin competitive kit (R-Biopharm
AG) according to the manufacturer’s protocol.

Isolation of spore forming bacteria

A 150 pl of supernatant from the 48-h inoculated vegetable-
gliadin mixture (see the “Sampling” section) was incubated in
50% ethanol (final concentration) for 1 h and plated on
Fastidious Anaerobic Agar plate (FAA) (LAB M) containing
0.05% gliadin and on FAA plate containing 5% sheep blood
(Labema Oy), which were kept under anaerobic conditions for
1 week at 37 °C. The bacteria were identified using MALDI-
TOF phenotyping (Bruker Daltonik MALDI Biotyper).
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Isolation of crude extracellular bacterial proteases

Bacillus strains were grown in Luria Bertani (LB) broth at
37 °C with agitation for 24 h; strains from genus
Clostridium were grown in Fastidious Anaerobic broth at
37 °C under anaerobic conditions up to 48 h. Samples were
taken at 4, 6, 8, 10, 12, and 24 h of incubation: 100 pl of
bacterial suspension was centrifuged at 13,000 rpm for
10 min, and the extracellular protease containing supernatant
was stored at —20 °C until later use. After collecting all sam-
ples, 10 pl of each sample was dropped on a 1.5% agar plate
containing: MOPS medium (Neidhardt et al. 1974) and 0.05%
gliadin. The plate was incubated at 37 °C for 2 h. The time
point containing the highest amount of protease was chosen
for protease production in larger amounts. For extraction of
extracellular proteins, the bacterial cells were grown in a 50-
ml medium as worked out at a smaller scale. The extracellular
protease containing supernatant was purified and concentrated
using Amicon spin columns with 10 kDa cut-off according to
manufacturer’s recommendations (Amicon, USA).

Degradation of 33-mer peptide by bacterial proteases
derived from root vegetables

The peptidolytic activity of crude bacterial extracellular pro-
teases was measured as follows: 150 ul of 50 mM MOPS
buffer (pH 7), 7.5-ul 33-mer peptide (5 mg/ml), and 7.5-pl
crude protease were mixed. The suspensions were incubated
at 37 °C. At time intervals 0, 15, 30, 60 and 120 min, 30-pl
aliquots were removed and heat inactivated for 15 min at
90 °C. Samples were centrifuged for 20 min at 13,000 rpm
and analysed by UPLC and mass spectrometric identification.

UPLC

A 15 pl of aliquots taken from 33-mer peptide incubation with
crude extracellular proteases was subjected to UPLC (Waters
Acquity H) BEH 130 C18 column (1.7 um). The elution
phases consisted of (A) MilliQ H,O containing 0.1%
trifluoroacetic acid (TFA) (v/v) and (B) acetonitrile, 0.1%
TFA (v/v). Peptides were eluted by using gradient: 0 to 10%
buffer B 3 min, 10-70% buffer B 12 min, 70-95% B 2 min,
and 95-5% B | min at a flow rate of 0.47 ml/min. The eluate
was monitored at 214 nm. Heat inactivated (90 °C for 15 min)
proteins or 33-mer peptides were used as negative controls.

Liquid chromatography tandem-mass spectrometry

All samples were purified with C18 StageTips prior to LC/
MS/MS analysis (Rappsilber et al. 2007). Samples were
injected to an UltiMate 3000 RSLCnano System (Dionex,
California, USA) using a 0.3 x5 mm trap column (5-pm
C18 particles, Dionex) and an in-house packed (3-um C18



Appl Microbiol Biotechnol (2020) 104:8871-8885

8875

particles, Dr. Maisch, Ammerbuch, Germany) analytical
50 cm X 75 um emitter column (New Objective,
Massachusetts, USA). Peptides were eluted at 250 ml/min
with an A to B 8-45% 30 min gradient (buffer A 0.1% FA,
buffer B 80% ACN + 0.1% FA) to a quadrupole-orbitrap Q
Exactive Plus (Thermo Fisher Scientific) MS/MS via a nano-
electrospray source (positive mode, spray voltage of 2.5 kV).
The MS was operated with a top 10 data-dependent acquisi-
tion strategy. Briefly, one 300—1600 m/z MS scan at a resolu-
tion setting of R = 70,000 at 200 m/z was followed by higher-
energy collisional dissociation fragmentation (normalized col-
lision energy of 26) of the 10 most intense ions (z: + 2 to + 6)
at R =17,500. MS and MS/MS ion target values were
3,000,000 and 50,000 with 50 and 100 ms injection times,
respectively. Dynamic exclusion was limited to 15 s. Due to
the potential of peptides with small length and lack of basic
amino acids, two runs were performed, one with charge state
inclusion of z: + 1 to + 6, and another one with z: + 2 to + 6.

LC/MS/MS data analysis

MS raw files were processed with the MaxQuant software
package (1.6.1.0) (Cox and Mann 2008). Methionine oxi-
dation and protein N-terminal acetylation were set as var-
iable modifications, while cysteine carbamidomethylation
was defined as a fixed modification. The search with an
unspecific cleavage rule was performed against the 33-mer
sequence and common human keratin contaminants.
Minimal and maximal peptide lengths were set to 3 and
33 amino acids, respectively. Intensity normalization with
the LFQ algorithm was enabled. False discovery rate
(FDR) was kept below 1% using a target-decoy approach.
All other parameters were default.

Detection of SCFA and free sugars in growth medium

Chromatographic analyses for SCFA detection were made as
described previously (Adamberg et al. 2020): Culture superna-
tants were filtered using AmiconR Ultra 10 K Centrifugal Filter
Devices, cut-off at 3 kDa according to the manufacturer’s in-
structions (Millipore, United States). The concentrations of or-
ganic acids (succinate, lactate, formate, acetate, propionate, bu-
tyrate) and free sugars (mono-, di-, and trisaccharides) were
determined by high performance liquid chromatography
(HPLC, Alliance 2795 system, Waters, Milford, MA, United
States), using Bio-Rad HPX-87H column (Hercules, CA,
USA) with an isocratic elution of 0.005 M H,SO, at a flow rate
of 0.5 mL/min and at 35 °C. Refractive index (RI) (model 2414;
Waters, USA) and UV (210 nm; model 2487; Waters, USA)
detectors were used for quantification of the substances. The
detection limit for the HPLC method was 0.1 mm.

Sequence accession number

The sequences generated in this article are available in the NCBI
(National Center of Biotechnology Information) Sequence Read
Archive, and the accession ID is PRINA629445.

The isolated strains are deposited in the Collection of
Environmental and Laboratory Microbial Strains (CELMS)
and financed by the Estonian Ministry of Education and
Research (RLOMRCELMY); the public catalogue of which
is available on the Estonian Electronic Microbial dataBase
(EEMB) website http://eemb.ut.ee.

Results
Sampling

In order to study how much the bacteria from root vegetables
(potato, beet, carrot, topinambur) impact gluten degradation in
human digestive tract, we set up an experiment taking into
account the fact that peels of vegetables contain a considerably
higher amount and diversity of bacteria than the inner pulp
and that gluten hydrolysis starts in the human mouth and the
majority is hydrolysed in the duodenum. Therefore, vegetable
peels and pulps were analysed separately, and all these sam-
ples were subjected to two conditions, a low pH and bile salts
treatment ([+]), and to a no-treatment control ([—]). Both [+]
and [—] samples were kept at human body temperature in
microoxic conditions (Fig. 1). All samples were treated with
trypsin in order to solubilize gliadin, which precipitates in
water-based solutions. The media in which the bacteria were
grown contained 1.5% grated vegetable under study, 0.07%
gliadin, and MOPS medium. In this medium, the main carbon
source originated from the particular vegetable, MOPS medi-
um was added to ensure neutral pH, and gliadin could be used
as nitrogen source, if degraded. The measurement points were
taken 48 h after the start of the experiment.

After incubating the samples for 24 h at 37 °C under
microoxic conditions, the pH was measured. It turned out that
pH had dropped from 7 to ~5 in all carrot samples and in
topinambur and beet [—] samples. In these samples, the low
pH was neutralized with NaOH. In all potato samples, the pH
stayed neutral. After 48 h of incubation, the change of pH was
similar to that at 24 h: the pH has dropped from 7 to ~ 5 in all
carrot samples , in topinampur and beet [—] samples, and in
some topinambur peel [+] samples. The pH stayed neutral in
all potato samples.

The growth of bacteria was assessed by visual inspection
because it was not possible to measure OD due to the back-
ground of plant debris. The [—] samples were visibly more
absorbent than [+] samples. It was also possible to observe
intensive growth of bacteria in [—] samples based on their
strong smell. One sample, beetC3[+], had no visible growth.
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A 1.5 ml of the culture was taken and divided into two parts
after centrifugation: cells for DNA isolation and supernatant
for gliadin and SCFA detection.

The concentration of isolated bacterial DNA fluctuated ac-
cordingly to the growth of bacteria in the samples: The
amount of DNA was smaller from [+] samples than from [—]
samples.

Degradation of gliadin epitope by vegetable-
originated bacteria

The immunogenic gliadin-derived peptides remaining after
the 48 h [+] and control [—] samples were quantified by
RIDASCREEN® Gliadin competitive kit. The RS monoclo-
nal antibody recognizes the gluten epitopes QQPFP, QQQFP,
LQPFP, QLPFP, and related sequences. These gluten epitopes
were at higher levels in samples that had passed through acid
and bile salts treatment [+] than in control samples [—] (Fig.
2a). In pulp and peel [—] samples of carrot and in peel []
samples of topinambur had significantly lower amount of glu-
ten epitopes left than in respective [+] samples (Tukey post
hoc test P <0.001). Our robust linear model suggests, on av-
erage, an ~ 20 percentage point reduction in gliadin hydrolysis
activity upon [+] treatment for beet and potato and an ~50
percentage point reduction for carrot and topinambur (Fig.
2a,b).

There was a slight increase of the signal in potato contain-
ing samples, suggesting that components of the vegetables
interfere with the antibody reaction. It has been shown that
starch influences the accessibility of gluten epitopes (Smith
et al. 2015).

Gluten-degrading bacteria in vegetable-based
samples

The microbial composition

There are several challenges for vegetable-derived bacteria to
survive in the human gastrointestinal system. Firstly, most of
the plant endophytes do not grow well at 37 °C under anaer-
obic conditions. Secondly, conditions in the stomach are ex-
pected to kill most bacteria. We studied the microbial compo-
sition of the bacterial communities grown in microoxic envi-
ronment at 37 °C and treated with HCI and bile salts.

All 80 samples were analysed by sequencing the V3-V4
region of 16S rRNA gene fragments. In total, 1,460,685 high
quality reads were obtained and assigned to 121 operational
taxonomic units (OTUs). The microbial diversity of OTUs
calculated by the Shannon index was higher in [-] samples,
whereas the estimated richness (Chaol) was rather uniform in
both treated [+] and control [—] samples (Fig. 2¢,d). This
shows that acid and bile salts treatment causes dominance of
specific bacterial groups, although minor OTUs remain
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detectable. We have previously shown that there are large
differences in the bacterial diversity between peel and pulp
samples (K&iv et al. 2019). Incubation under anoxic condi-
tions at 37 °C abolished this difference independent of acid
and bile salts treatment.

The similarity of the bacterial communities between differ-
ent vegetable samples was examined using the principal co-
ordinates analysis (PCoA). Clustering of the samples occurred
by vegetable species rather than by treatment (Fig. 3). Carrot
and to some extent also topinambur samples were separated
on PCoA. Potato [+] and some beet [+] samples clustered
together, but most of the beet [-] and potato [—] samples did
not form distinct clusters. There was no clear clustering be-
tween peel and pulp in the microbiota studied.

Five phyla, Actinobacteria, Firmicutes, Proteobacteria,
Bacteroidetes, and Epsilonbacteraeota, represented by classes
Actinobacteria, Acidobacteria, Bacilli, Clostridia,
Negativicutes, Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, Bacteroidia, Campylobacteria, and
Acidimicrobiia were detected in at least in one sample
(Fig. 4). The most abundant class of bacteria/OTU belong to
class Gammaproteobacteria that dominate exclusively in [+]
samples of carrot and in [+] samples of potato pulp. The other
abundant group of bacteria/OTUs belong to phylum
Firmicutes, represented by classes Bacilli and Clostridia.
These OTUs are more abundant in samples that have not
passed the acid and bile salts treatment.

In order to examine the dominant OTUs, all OTUs whose
relative abundance was more than 20% of the total abun-
dance in the sample are shown in Fig. 5. In the majority of
[+] samples, only one OTU took over more than 80% the
culture, the bacterial culture in [—] samples is more com-
plex, but still 50-75% of the population consists of two
different OTUs (Fig. 5). The emergence of several dominant
OTUs in [—] samples is in line with the increased Shannon
index. The PCoA ordination can be explained by looking at
the dominant OTUs: OTUS Yersinia discriminates carrot
from other vegetable samples. Topinambur is discriminated
from other vegetable samples by members of phylum
Firmicutes: in case of [+] samples by Bacilli (OTU1
Staphylococcus) and in case of [—] samples by Clostridia
(OTU3 Clostridium sensu stricto 1 and OTU9 Clostridium
sensu stricto 1) and Bacilli (OTU1 Staphylococcus and
OTUG6 Bacillus). The dominant OTU in both beet and potato
samples is OTU2 Pantoea, which explains the poor PCoA
clustering of the OTUs that originate from these vegetables
(Figs. 5 and 3).

Some bacterial groups in the Enterobacteriaceae fam-
ily, OTU2 Pantoea and OTUS Yersinia, survive under
acid and bile salts treatment and are predominantly found
in potato, beet, and carrot [+] samples. In topinambur,
Staphylococcus OTUI also successfully passed acid and
bile salts treatment.
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Fig. 3 Bacterial community structure in medium containing one of the
four grated root vegetables supplemented with gliadin. A principal
coordinates analysis (PCoA) plot of Bray-Curtis dissimilarity of all
OTUs defined in the samples of root vegetables was incubated for 48 h
in microoxic conditions at 37 °C. For sample names, see Fig. 1
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As mentioned above, we observed a strong smell from
control [—] samples, which indicates production of SCFA,

particularly butyrate. We analysed production of SCFA and
consumption of main mono- and disaccharides derived from
vegetables in samples. We observed that the members of order
Clostridiales have a significant correlation with butyrate pro-
duction (Supplementary Materials (Text S1, Fig. S1)).

Proteases from vegetable-originated bacteria

Because bacteria from the genera Bacillus and Clostridia that
can potentially produce extracellular protease are spore
forming, we isolated spores from samples that had the least
gliadin left after 48 h of incubation.

These spores were plated on FAA + gliadin plates and also on
an FAA + blood plate to provide a better chance for germination.
After 5 days of cultivation under strict anaerobic conditions at
37 °C, we streaked all colonies that emerged onto FAA + gliadin
plates. The gliadin-degrading bacteria were detected only on
control [—] samples. Bacteria with a hydrolytic halo surrounding
the colony were identified as Bacillus pumilus (beetP3[—]),
Bacillus cereus (beetP4[—], carP4[—], potP4[—]), Bacillus subtilis
(carC5[—], beetP5[—]), Bacillus circulans (potP4[—]), Bacillus
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Fig. 4 Relative sequence abundances of bacterial classes found in
medium containing one of the four grated root vegetables supplemented
with gliadin. All OTUs defined in the samples of root vegetables
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incubated for 48 h under microoxic conditions at 37 °C are indicated on
the bar based on a class colour code. For sample names, see Fig. 1
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Fig. 5 Dominant OTUs defined in medium containing one of the grated
four root vegetables supplemented with gliadin. The samples of grated
root vegetables were incubated for 48 h in microoxic conditions at 37 °C.

licheniformis (beetP5[—]), Bacillus psychrosaccharolyticus
(topP1[—]), Clostridium bifermentans (potP1[—]), Clostridium
sporogenes (beetP1[—], topP1[—]), and Clostridium subterminale
(potP4[—], potP5[—]). Three Bacillus strains and four
Clostridium strains that produced the largest hydrolytic halos
were cultivated in liquid medium to assess their protease produc-
tion. Two pl of concentrated crude protease solutions were pi-
petted onto a gliadin-containing agarose plate (Fig. 6a). The
halos produced by different proteases varied greatly in size.
We used the same crude protease solutions to find regions of
gliadin cleavage. We deployed human protease-resistant immu-
nogenic gliadin 33-mer peptide, which is widely used to study
the cleavage pattern of proline endopeptidases (Shan et al. 2005).
This 33-mer peptide encompasses 6 overlapping immunogenic
9-mer human T cell epitopes: PQPQLPYPQ (3 copies),
PYPQPQLPY (2 copies), and PFPQPQLPY. After incubation
of the 33-mer peptide with protease(s), the peptide fragments
generated were studied by UPLC and mass spectrophotometry

OTUs whose relative abundance was more than 20% of total abundance
of the sample are indicated. For sample names, see Fig. 1

(Figs. 6b and 7). All proteases under investigation have cutting
sites within the 33-mer peptide. B. subtilis KAR91 (originated
from beetP5[—]) and C. bifermentans KAR93 (originated from
potP1[—]) proteases have the same cleavage pattern in 33-mer,
degrading short regions (2—8 amino acids) from the N-terminus
while leaving the immunogenic peptide region intact. B. cereus
KAR90 (originated from potP4[—]) protease/proteases possess
mostly N-terminal exopeptidase activity but could also have
some other type of proteases based on the UPLC and mass
spectrophotometry results. Proteases from the other bacteria
studied, i.e. B. pumilus KAR92 (originated from beetP3[-]),
C. subterminale KAR94 (originated from potP5[—]),
C. sporogenes KAR95 (originated from beetP1[—]) and
C. sporogenes KAR96 (originated from topP1[—]), cut after pro-
line, as expected for a proline endopeptidase. In addition, the
proteases from B. pumilus KAR92, C. sporogenes KAR96,
and C. subterminale KAR94 seem to have some additional pep-
tidase activity. The highest endopeptidase activity is conveyed
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Fig. 6 Glutenase activity of extracellular proteases produced by bacteria
originated from root vegetables. a Two pl extracellular protease extracts
pipetted onto gliadin (0.05%) agarose plate and incubated for 2 h. b
UPLC chromatograms of 33-mer peptide hydrolysis products. A 33-
mer peptide (final concentration 250 pg/ml) was incubated for 120 min
at 37 °C with extracellular protease extracts. Arrows point to the original
uncleaved 33-mer peptide

by C. sporogenes KAR9S5. Although not very efficient in hydro-
lyzing larger molecules of gliadin (Fig. 6a), it completely
destroyed the 33-mer peptide during the 30 min of incubation
(Figs. 6b and 7).

In conclusion, bacteria of vegetable origin from the genera
Bacillus and Clostridium produce variable extracellular prote-
ases that can efficiently hydrolase gliadin, and some of these
proteases can destruct proline-rich peptides that are hardly
digested by human proteolytic enzymes.
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Discussion

Gluten intolerance has been an emerging problem over the last
20 years. At the same time, knowledge about the impact of
bacteria and other microorganisms on gluten degradation has
increased (Shan et al. 2004; Stepniak et al. 2006; Zamakhchari
et al. 2011). It has been shown that the human digestive tract
has bacteria that can successfully break down and eliminate
peptide fragments that are resistant to human peptidases
(Caminero et al. 2014; Herran et al. 2017). Extracellular pro-
tease genes are abundant in free-living bacteria (Nguyen et al.
2019), and the most powerful proteases that degrade gluten
are produced by microorganisms isolated from the surround-
ing environment (Mitea et al. 2008; Amador et al. 2019).
Knowing that the diversity of human microbiome is decreas-
ing as more people move away from nature (Gronroos et al.
2019), it is tempting to hypothesize that there is a direct con-
nection between gluten intolerance and a decrease in the avail-
able microorganisms capable of gluten destruction.

This study aimed to highlight the process of bacterial trans-
fer from nature to the human digestive tract and describe the
capacity of bacteria to degrade gliadin. We demonstrate that
bacteria that reside in root vegetables (beet, carrot, potato,
topinambur) possess strong gluten/gliadin hydrolysing
capabilities.

Using a model system, we show that the bacteria that can
multiply under conditions similar to the human gastrointesti-
nal tract (anaerobiosis, 37 °C) mostly belong to the family
Enterobacteriaceae and families Bacillaceae and
Clostridiaceae (Figs. 4 and 5). Another recent study of ours
indicates that Enterobacteriaceae is one of the most abundant
groups of endophytes in the pulps of vegetables (Koiv et al.
2019). The most diverse groups of plant endophytes belong-
ing to the phylum Actinobacteria, classes Alfa- and
Betaproteobacteria, and the order Pseudomonadales, appar-
ently did not resist anoxic conditions at 37 °C and/or were
outcompeted by bacteria that are more adapted to these con-
ditions. This does not exclude the possibility that these bacte-
ria stay in mouth for shorter periods and contribute to gluten
hydrolysis. In 2017, Tian et al. demonstrated that endogenous
salivary microbes produce proteases, but their activities are
incomplete and liberate peptides from larger gluten proteins
that ultimately reach the small intestine and can cause CD
(Tian et al. 2017).

Enterobacteriaceae, genera Pantoea, Lelliottia, and Yersinia
seem to resist low pH and bile acids better than members of
phylum Firmicutes, genera Bacillus and Clostridium (Figs. 4
and 5). Which is surprizing because the bacteria from the latter
genera can form spores that can more effectively resist the harsh
conditions of the GIT. One possible explanation is that in the
vegetables we studied, the bacteria were in a vegetative stage or,
alternatively, there were more Enterobacteriaceae in the starting
culture.
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Fig. 7 Peptides generated after cleavage of 33-mer peptide by extracel-
lular proteases produced by bacteria originated from root vegetables. The
33-mer peptide fragments were identified by mass spectrometry.
Fragments are shown in descending order based on LFQ (label-free

Gliadin was more efficiently digested in samples not treated
with acid and bile salts. However, we do not know which had a
higher impact on gliadin degradation, the total number of bac-
teria or the change in the species composition. In addition, a
higher diversity could facilitate cometabolism. It has been
shown that ten Lactobacillus strains in a pool, but not indepen-
dently, can completely destroy toxic gliadin epitopes
(Francavilla et al. 2017). Similar co-degradation has been
shown for immunogenic peptides produced by Pseudomonas

LOLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF 33-mer
LQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF
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A - B. cereus KAR90

B - B. subtilis KAR91

C - B. pumilus KAR92

D - C. bifermentans KAR93
E - C. subterminale KAR94
F - C. sporogenes KAR95

G - C. sporogenes KAR96

quantification) intensity value. LFQ intensity value 10" was taken as
threshold. Different colours indicate the repetitive peptide sequences of
the 33-mer peptide

aeruginosa that can be degraded to non-immunogenic peptides
by Lactobacillus spp. (Caminero et al. 2014).

In most potato, beet, and carrot samples, it is possible to
hypothesize which bacteria were responsible for gliadin deg-
radation: most prominently Bacillus and Clostridium sensu
stricto 1. Bacillus and Clostridium species/strains produce
variable extracellular proteases with different target specifici-
ty. These proteases are secreted into culture media. If there are
proteases with different specificity in the culture medium,
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gliadin could easily be degraded into shorter peptides and
amino acids that can be used by other bacteria that do not
produce any protease. Both Bacillus and Clostridium are very
versatile groups of bacteria, the species affiliation giving only
hints about possible protease production and specificity.
Therefore, we studied the degradation of a 33-mer gliadin
peptide by crude extracellular proteases more closely.
Proteases from four bacteria, two Clostridium sporogenes
strains KAR95 and KAR96, Clostridium subterminale
KAR94, and Bacillus pumilus KAR92, have similar cleavage
sites in the 33-mer peptide: They hydrolyse the peptide at the
carboxy terminus of the internal proline residues—the typical
cleavage pattern of postproline endoproteases (Fig. 7). The
most efficient degradation of the 33-mer peptide was carried
out by Clostridium sporogenes KAR95; however, the degra-
dation of whole gliadin protein was quite low (Fig. 6a,b). This
indicates that Clostridium sporogenes KAR95 produces most-
ly prolyl endopeptidase. The activity of prolyl endopeptidase
is often restricted to substrates shorter than 30 amino acids and
hydrolysis at a central position (Mika et al. 2015). In conclu-
sion, bacterial strains that originate from vegetable roots pro-
duce proteases with very different efficiency and target
specificity.

Most surprisingly, the bacterial species that display extracel-
lular proteolytic activity isolated from human faeces (Bacillus
licheniformis, B. subtilis, B. pumilus, Bifidobacterium longum,
Clostridium sordellii, C. perfringens, C. botulinum/sporogenes,
C. butyricum/beijerinckii, Enterococcus faecalis, E. faecium,
Propionibacterium acnes, Pediococcus acidilactici,
Paenibacillus jamilae, Staphylococcus epidermidis, S. hominis,
and Stenotrophomonas maltophilia) (Caminero et al. 2014) are
largely the same bacteria we found in root vegetables.
Clostridium sporogenes and Bacillus pumilus isolated from hu-
man faeces has been shown to degrade the 33-mer with high
activity (Caminero et al. 2014). The majority of bacteria in the
human GIT that can degrade gluten belong to phylum
Firmicutes: lactobacilli and bacilli in the upper part of the duo-
denum, where the degradation of proteins by human enzymes
take place (Nistal et al. 2016; Herran et al. 2017), and clostridia,
mostly in the colon (Caminero et al. 2014). Although lactobacilli
are well-known probiotics, they are less prominent in protein
degradation than bacilli and clostridia (Bergey 2005).
Lactobacilli can hydrolase shorter peptides (Francavilla et al.
2017); however, bacilli and clostridia can destruct also larger
molecules. The degradation products have to be carefully con-
sidered as it has been shown that proteases produced by some
bacteria increase the immunogenicity of gluten peptides (Nistal
et al. 2016; Caminero et al. 2019).

In addition to possible impact on gluten degradation, we ob-
served a correlation between the production of butyrate and the
presence of members of the family Clostridiaceae (Fig. S1).
Butyrate plays a key role in maintaining human gut health, is a
major source of energy to the colonic mucosa, and is also an
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important regulator of gene expression, inflammation, differen-
tiation, and apoptosis in host cells (Louis and Flint 2009).

Members of the order Clostridiales are not frequently found
in plants (Hacquard et al. 2015). Under enrichment conditions
(microoxic conditions and 37 °C) applied in our experiment, the
diversity and abundance of different OTUs assigned to the order
Clostridiales increased remarkably (Figs. 4 and 5; Fig. S1). It has
been shown that Clostridial species are protective in the devel-
opment of food allergies (Blazquez and Berin 2017; Abdel-Gadir
et al. 2019). Colonization of germ-free mice with a consortia of
commensal Clostridia species induces regulatory T cells and
protects against food allergies (Atarashi et al. 2013; Stefka
et al. 2014). In 2014, Seedorf et al. showed that clostridia from
soil can colonize and persist in mouse gut (Seedorf et al. 2014).
We do not know how well environmental clostridia can invade
and persist in the human gut, but this study demonstrates that
together with raw root vegetables, we swallow a variety of bac-
teria that could reach the colon and contribute to the function of
our immune system.

Therefore, we hypothesize that increasing the amount of
raw vegetables in the diet might increase the diversity of bac-
teria in human GIT and thereby alleviate the symptoms of
gluten related diseases. Extensive dietary studies are needed
to test this hypothesis.
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