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Abstract

Identifying cis-regulatory motifs from genomic sequencing data (e.g. ChIP-seq and CLIP-seq) is crucial in identifying
transcription factor (TF) binding sites and inferring gene regulatory mechanisms for any organism. Since 2015, deep learning
(DL) methods have been widely applied to identify TF binding sites and predict motif patterns, with the strengths of offering
a scalable, flexible and unified computational approach for highly accurate predictions. As far as we know, 20 DL methods
have been developed. However, without a clear and systematic assessment, users will struggle to choose the most
appropriate tool for their specific studies. In this manuscript, we evaluated 20 DL methods for cis-regulatory motif prediction
using 690 ENCODE ChIP-seq, 126 cancer ChIP-seq and 55 RNA CLIP-seq data. Four metrics were investigated, including the
accuracy of motif finding, the performance of DNA/RNA sequence classification, algorithm scalability and tool usability. The
assessment results demonstrated the high complementarity of the existing DL methods. It was determined that the most
suitable model should primarily depend on the data size and type and the method’s outputs.
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INTRODUCTION
It is well known that transcription factors (TFs) are closely
related to disease progression by regulating gene activities in
a specific context [1]. TFs possess unique gene expressions
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through binding to specific DNA or RNA sequences, named TF
binding sites (TFBSs). Hence, the identification of TFBSs and
experimental validations of the functions of the corresponding
TFs greatly benefit research on human health [2]. Furthermore,
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it is well known that the aligned TFBSs of the same TF tend
to be conserved at the sequence level [3], which are referred to
as a cis-regulatory motif (motif for short) with 6–12 bps long in
general [4]. Therefore, as an essential complementary strategy
to time-consuming biological experiments, de-novo motif
prediction from given genomic sequences (e.g. promoters and
enhancers) represents a fundamental problem in bioinformatics
in supporting the elucidation of gene regulatory mechanisms in
a biological system [5].

A large number of Chromatin Immunoprecipitation Sequenc-
ing (ChIP-seq) data have been generated and freely available in
the public domain, providing a tremendous opportunity to pro-
file the genome-scale binding interactions between TFs and DNA
sequences [6]. Meanwhile, crosslinking-immunoprecipitation
and high-throughput sequencing (CLIP-seq) have been devel-
oped to discover interactions between RNA sequences and their
corresponding binding TFs at the genome-scale [7]. Based on
these genomic sequencing data, substantial computational tools
have been developed for de novo motifs finding [8–12], allowing
direct identification of significant motif patterns in a genome.
These tools and the insights they derived also enabled advanced
studies in a biological system, such as TF-regulon prediction and
transcriptional regulatory network construction [13]. However,
the high noise-signal ratio and vast amounts of reads in
the genomic sequencing data still induce substantial false-
positive issues in motif prediction [5, 14], which can be partially
annotated and interpreted based on the existing TFBS databases
(e.g. JASPAR [15] and Transfac [16, 17], HOCOMOCO [18]).

Since DeepBind was released in 2015 [19], deep learning
(DL) methods have been widely applied in identifying TF-DNA
binding sites as scalable, flexible and unified computational
approaches. Motivated by DeepBind model, the DESSO tool to
predict the regulatory motifs was developed by our group [14].
As far as we know, 20 DL tools have been developed (e.g. Deep-
Bind [19], DeepSEA [20], DeepSNR [21], DESSO [14] and TFImpute
[22]), using different DL models such as convolutional neural
networks (CNNs) [23], recurrent neural networks (RNNs) [24]
and deep belief networks (DBNs) [25]. The existing 20 DL tools
were listed in Table 1, and there are a total of eight component
units deployed. (i) A convolutional layer extracts features of
given sequencing data in a CNN, and multiple convolutional
kernels are usually used in a convolutional layer to improve
the efficiency of feature extraction. (ii) A deconvolutional layer
is the inverse process of the convolution, which restores the
result of the convolution to the original dimension. (iii) A pooling
layer reduces data dimensionality and removes redundant infor-
mation, to simplify network complexity and reduce memory
consumption. (iv) An unpooling layer is an inverse process of
pooling that reconstructs the inputs back to the input data space.
(v) A dense layer is a fully connected layer that further extract
features from previous layers to a single neuron which can be
used for classification. (vi) An RNN includes an internal memory
mechanism that can process arbitrary input sequences. (vii) A
DBN is a generative graphical model based on probability theory,
which contains multiple restricted Boltzmann machines that
can not only identify features and classify data but also be used
to generate data. (viii) A gated neural network (GNN) acts as a
threshold for helping the network to distinguish when to use
normal stacked layers versus an identity connection. A GNN can
limit the information flow and control parameters of models via
forgetting and memory mechanisms.

Given the diversity of DL models in motif prediction, it is
important to assess their performances and robustness across
different benchmarked datasets quantitatively. Furthermore,

how these tools can be appropriately applied to cancer-related
data is also under-investigated. Without a clear assessment,
researchers in this field will struggle to choose the most
appropriate tool for their specific studies related to gene
regulation [26].

To address this problem, we assessed the prediction perfor-
mance of existing 20 DL tools including our DESSO [7, 14, 19–22,
27–40] (Table 1) to assist researchers in deciding the appropriate
tools for their motif analysis studies. Specifically, we evaluated
the performance for DNA/RNA sequence classification, motif
finding, method scalability and tool usability using 690 ENCODE
DNA ChIP-seq datasets (covering 91 TFs in 161 cell lines) and 55
RNA CLIP-seq datasets [14, 37]. Furthermore, we applied these
tools on 126 cancer-related ChIP-seq datasets to evaluate the
capability of these DL methods in elucidating shared and specific
motifs among nine cancer types.

MATERIALS AND METHODS
The algorithmic perspective of the existing DL methods
for motif prediction

Based on the different combinations of the above eight com-
ponent units, we classified the existing 20 DL tools into five
categories (Figure 1).

Category I: CNN-based methods maintain the simplest archi-
tecture that includes a convolutional layer, a pooling layer and
a dense layer. One typical CNN-based tool is DeepBind [19], in
which multiple convolutional kernels in the first CNN layer were
set as motif detectors to scan the input sequences. DeepBind can
be applied to both ChIP-seq and CLIP-seq data and outperformed
most of the existing tools by the date it is published. Our DESSO
[14] was then developed for motif prediction by CNN and motif
occurrence optimization by a binomial distribution model. Key
features of DESSO include: (i) it can predict not only sequence
motifs but also DNA shape motifs, which improves in the identi-
fication and structural analysis of TFBSs; and (ii) it expands motif
discovery by allowing the identification of known and new TF–
TF–DNA tethering interactions in human. DeepHistone [28] inte-
grated sequence information and chromatin accessibility data to
accurately predict modification sites specific to different histone
markers. It has been proved to effectively predict histone modifi-
cation sites and recover TF binding motifs simultaneously. Zeng
et al. [30] showcased that the useful addition of convolutional
kernels is crucial for motif prediction in a CNN. DeepSEA [20]
was developed for estimating noncoding-variant effects on chro-
matin with three tasks: integrating sequence information from a
broad sequence context, learning sequence patterns at multiple
spatial scales with a hierarchical architecture, and multi-task
joint learning of diverse chromatin factors sharing predictive
features. Other tools in this category include Basset [27], iDeepV
[37], iDeepE [7], DeFine [29], DANN_TF [31] and Deep-RBPPred [38].

Category II: This kind of tool deploys an integrative CNN and
RNN in motif prediction. For example, DeeperBind [33] was built
based on DeepBind, including a convolutional layer, a pooling
layer, two long-short-term-memory layers and a dense layer.
It can be trained with varying-length sequences to model the
sequence dependencies. DanQ [35] was developed for predicting
the function of non-coding genomic regions. The first convolu-
tional layer was used to find motifs with the same strategy as
DeepBind, and the RNN prompts DanQ to consider the orien-
tations and spatial distance between motifs. WSCNNLSTM [36]
was a weak-supervised framework that uses k-mer encoding to
transform DNA sequences from the reference in testing data. It
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Table 1. 20 DL tools for motif prediction from ChIP-seq and CLIP-seq data

DL tool Year Platform Seq Category Code

DeepBind [18] 2015 Lua DNA/RNA I http://tools.genes.toronto.edu/deepbind/
DeepSEA [20] 2015 Lua DNA I http://deepsea.princeton.edu/job/analysis/create/
Zeng [30] 2016 python DNA/RNA I http://cnn.csail.mit.edu
DeeperBind [33] 2016 Lua DNA/RNA II https://github.com/litao-csu/DeeperBind
Basset [27] 2016 Lua DNA I Supplementary file in original paper
DanQ [35] 2016 Python DNA/RNA II http://github.com/uci-cbcl/DanQ
TFImpute [22] 2017 python DNA IV https://bitbucket.org/feeldead/tfimpute (Invalid)
DeepCpG [34] 2017 python DNA II https://github.com/cangermueller/deepcpg
iDeep [40] 2017 python RNA V https://github.com/xypan1232/iDeep
DeepSNR [21] 2018 python DNA III https://github.com/sirajulsalekin/DeepSNR
iDeepE [7] 2018 python RNA I https://github.com/xypan1232/iDeepE
iDeepS [39] 2018 python RNA II https://github.com/xypan1232/iDeepS
iDeepV [37] 2018 python RNA I https://github.com/xypan1232/iDeepV
Deep-RBPPred [38] 2018 python RNA I http://www.rnabinding.com/Deep_RBPPred/Deep-RBPPred.html
DeFine [29] 2018 python DNA I http://define.cbi.pku.edu.cn/download/define-1.0.tar.gz (Invalid)
DESSO [13] 2019 python DNA I https://github.com/viyjy/DESSO
DeepHistone [28] 2019 python DNA I https://github.com/QijinYin/DeepHistone
DANN_TF [31] 2019 python DNA I http://www.hitsz-hlt.com:8080/DANNTF/index.jsp
WSCNNLSTM [36] 2019 python DNA II https://github.com/turningpoint1988/WSCNNLSTM
FactorNet [32] 2019 python DNA II http://github.com/uci-cbcl/FactorNet

Figure 1. ChIP-seq data input and five categories of DL methods. Outcomes include both predicted sequence labels and identified motif patterns.

contains three steps: segmentation process and k-mer encoding
for sequence preprocessing, a hybrid deep neural network of
CNN and RNN for sequence classification, and a noise-fusion
step. Other tools deploying a combinatory architecture of RNN
and CNN include DeepCpG [34], iDeepS [39] and FactorNet [32].

The rest of the three categories only have been deployed
on individual tools. Category III: DeepSNR [21] uses a multi-
verse training framework to predict TFBSs from DNA sequences,
containing a basic convolutional layer, a deconvolutional layer,

a pooling layer, an unpooling layer and a fully connected layer.
It was trained using TF-specific data from ChIP-exonuclease
experiments and can be used to identify TFBSs. Category IV:
TFImpute [22] deploys a gate layer after the pooling layer of CNN
and embeds cell lines and TFs into continuous vectors that serve
as part of the model input. The unique imputation ability offered
by the gate layer further extends the predictive power to TF-cell
line combinations without the use of corresponding ChIP-seq
data. Category V: iDeep [40] is a combination of DBN and CNN
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Figure 2. Schematic overview of the evaluation pipeline. AEMR score assesses the sequence classification ability based on F1_score, recall, precision, PRC, AUC, MCC,

specificity and ACC between predicted classification labels and ChIP-seq peak labels. The motif prediction score (with a P-value and a similarity) assesses how well the

predicted motifs can be, based on the documented TFBSs.

models and operation in a parallel manner and is the only one
deployed such an architecture in the public domain.

Computational evaluation design for the 20 DL tools

We benchmarked the motif prediction performance of 20
DL tools in analyzing DNA and RNA sequences, respectively
(Figure 2). To systematically compare the 20 tools, we used four
metrics to assess their performances from multiple aspects: (i)
an area of eight metrics radar (AEMR) score defines the accuracy
of sequence classification. AEMR is based on F1_score, recall,
precision, precision-recall curve (PRC), area under the curve
(AUC), Matthews correlation coefficient (MCC), specificity and
accuracy (ACC) (see detail in section ‘Evaluation criteria for
sequence classification’); (ii) a motif prediction score to assess
the significance and accuracy of identified motifs; (iii) method
scalability of running time performed on different data scales
and (iv) usability of the tool in terms of the tutorial, updates,
code quality, etc. Considering the importance of each metric,
we allocated weights of 0.3, 0.3, 0.2 and 0.2 to each of the four
metrics, respectively. The weighted four metrics were summed
up as an overall score used to assess the overall performance
of these tools, with gkmSVM and MEME-ChIP as two traditional
tools for the result comparison [41].

Dataset description

The 690 ChIP-seq datasets were obtained from ENCODE, covering
161 TFs and covered 91 human cell types. We selected the
sequences with a length of 1001 bps as the input. Meanwhile,
we collected 55 CLIP-seq datasets from references [37] and used
a fixed length of 101 bps as input, as used in iDeep [40]. The
Cistrome Data Browser was used to query the human cancer
ChIP-seq datasets and 126 cancer ChIP-seq of nine cancer types
were selected as (i) the corresponding cell line should be a
cancer cell, and (ii) the quality control standards of the peaks
must be high. All the above datasets, except the CLIP-seq data,
only contained positive samples (peak sequences). Peaks in each
dataset are ranked in the decreasing order of their signal scores.
The top 500 odd peaks in each dataset are selected to test DL
models; 80% of the rest of the peaks are selected to train the
model, and the remaining ones are used for validation. The
negative samples are selected based on: (i) having matched GC-
content as the same as positive samples and (ii) not overlapping
with any peaks in the positive samples. To avoid sample bias, the

number of negative samples is equal to the number of positive
samples. All positive samples were labeled as ‘1’, and negative
samples as ‘0’.

As DL methods require binary vector as input, each input
sequence was converted to an encoded matrix M = L × 4, i.e.
A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0], T = [0, 0, 0, 1], where L
is the length of input sequence [42]. We pruned the original peak
with a fixed length (101 or 1001 bps) by formula (1). The position
of the processed peak in the chromosome can be identified by

position =
[⌈

origin_start + origin_end
2

⌉

−50,
⌈

origin_start + origin_end
2

⌉
+ 50

]
, (1)

where origin_start is the start position of the original peak
and origin_end is the end position of the original peak position.
After pruning, redundant peaks can be generated but were
removed in the experiment, and the bedtools v2.21.0 were
employed to acquire the pruned sequences [43]. The pruned
sequences were encoded in the same way for CLIP-seq data as
ChIP-seq data.

DL model training

The first layer kernel of a model was recognized as motif detec-
tors, recognizing activated sequence fragments by scanning
across the input matrix M. The convolutional vector fi is defined
as

fi = activation
(
convi (ML×4) + biasi

)
, (2)

where activation represents activation function; convi is ith con-
volutional kernel and biasi is the threshold value. The number of
convolutional kernels for each DL model differs by application.
Each value of the vector fi represents the convolutional result,
and the maximum value of fi is considered to be the activated
score of sequence fragment. A classification layer will then clas-
sify each sequence fragment as positive or negative. A DL model
is trained by applying labeled negative and positive samples
in the training data. Motifs are represented by position weight
matrix (PWM), which is a set of aligned activated sequence frag-
ments. A PWM can be generated with rows as the four nucleic
acid types (i.e. A, T/U, C and G), columns as sequence positions
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and an element as nucleotide occurrences in the corresponding
position [44].

Evaluation criteria for sequence classification

To evaluate the performance of DL methods in sequence clas-
sification, we defined the AEMR score. The AEMR included the
precision, recall, F1_score, specificity, ACC, MCC, AUROC and
AUPRC, which assessed the model’s ability in identifying positive
and negative samples and classifying DNA/RNA sequences. The
above eight metrics are defined as follows.

Precision is the ratio of the true predicted positive samples
to all the predicted positive samples. The higher the score, the
greater the number of correct positive samples predicted by the
model.

precision = TP
TP + FP

. (3)

The recall represents the proportion of positive samples cor-
rectly predicted to the total positive samples. The higher the
score, the greater the proportion of the positive samples iden-
tified by the model to the real positive samples.

recall = TP
TP + FN

. (4)

F1_score is the harmonic mean of precision and recall.

2
F1score

= 1
precision

+ 1
recall

. (5)

Specificity is the proportion of identified negative samples
to all negative samples, which indicates the model’s ability to
identify negative samples.

specificity = TN
FP + TN

. (6)

ACC is the proportion of correct prediction to the total sam-
ple. The higher the score, the model predicts correctly.

ACC = TP + TN
TP + TN + FP + FN

. (7)

MCC is essentially the correlation coefficient between the
observed and the predicted; it is a value between −1 and +1.
The coefficient +1 means perfect prediction, 0 means no better
than a random prediction and −1 means discrepancy between
prediction and observation.

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

. (8)

AUROC is the area under the receiver operating characteristic
curve, which is a value between 0 and 1. The closer AUROC is to
1, the better the classification is. The higher the score, the better
the classification ability of the model.

AUPRC is the area under the PRC, which also is a value
between 0 and 1. The difference between AUROC and AUPRC
is that when the positive and negative samples are unbalanced,
AUPRC is more sensitive to experimental results.

We then aggregated the eight scores into the AEMR score.
Specifically, a radar chart can be generated consisting of eight
equiangular spokes, with each spoke representing one of the

scores defined above. The length of a spoke is proportional to
the magnitude of the score for the data point relative to the
maximum magnitude of the score across all data points. The
AEMR score is the total area of the octagonal radar and is scaled
to a score ranging from 0 to 1. The higher the AEMR score is, the
better performance the tool has for sequence classification.

Evaluation criteria for motif prediction

To ensure a low false-positive rate, we used both TOMTOM and
TFBSTools to evaluate the motif prediction results of the 20
DL tools. For each query motif, TOMTOM (v5.1.0) measures the
similarity significance via motif comparisons between a query
motif and the motif in the HOCOMOCO (V11) database [45, 46].
However, previous studies have reported TOMTOM might gener-
ate lots of false positives when matching the position probability
matrix against a motif database [11]. TFBSTools compares the
similarity between the PWM of the predicted motif and the
PWM of TFBS in database by computing the Euclidean distance
[47]. To this order, we use TFBSTools to calculate the similarity
between the PWMs of the predicted motif and the documented
TFBS based on the aggregation of Euclidean distance per base
pair. TFBSs with the lowest average Euclidean distances to the
predicted motif are considered as the matched TFBSs. For each
DL method, we calculate the motif prediction score as

motif prediction score = norm
(

norm
(
− log (Pvalue)

)

+ norm
(
similarity

) )
, (9)

where Pvalue is the significance of similarity significance in TOM-
TOM, and similarity is the Euclidean distance calculated in TFB-
STools. Both − log(Pvalue) and similarity are scaled to the range
of 0–1 by dividing the maximum values, respectively. Note that,
we only keep motifs that can be matched with existing motif
patterns in the database using TOMTOM and TFBSTools.

Evaluation of tool efficiency

To assess the scalability of each method, we started from four
kinds of real datasets, each of which contained 10 sub-datasets
with a fixed number of peaks as 10, 20, 30 and 40 k, respectively.
We run each tool on the four kinds of datasets for 300 min as a
maximum. To determine the training time of each model in a fair
way, we started the timer after loading data and the package and
stopped the timer after finishing the training process. Further-
more, we normalized the training time of all tools for the same
dataset by setting the slowest (i.e. 300 min) as 0, the quickest as
1 and re-scaling the others accordingly. The scalability score was
defined as the average of the normalized training time in all four
datasets.

Evaluation of tool usability

The usability of each model was quantified based on several
existing model quality and programming guidelines [48]. It cov-
ers availability, behavior, code assurance, code quality and doc-
umentation categories. Specifically, availability checks whether
the packages and dependencies can be easily installed and
whether the method is readily available and used. Code quality is
assessed both from a user perspective and a developer perspec-
tive. The code assurance category is frequently checked for code
testing, continuous integration and an active maintaining team.
Documentation checks whether the tool can provide helpful
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guidelines and clear tutorials. Finally, behavior evaluates the
ease by which the method can be run by looking for unexpected
output files, messages and prior information. We also assigned a
weight to the individual aspect being investigated [48], and each
of the five categories was weighted equally for calculating the
final score.

RESULTS
Evaluation results on ChIP-seq and CLIP-seq data

Based on the above four metrics, an overall score was calculated
to assess the performance of the 20 tools (Supplementary
Figures S1 and S2, and Supplementary Tables S1–S4 available
online at http://bib.oxfordjournals.org/). As shown in Figure 3,
the performance of these tools differed substantially in the
AEMR scores, motif prediction scores and tool usability, while
the method scalability scores moderately varied. Among all
the DL tools, our DESSO achieves the highest overall score
for DNA sequence-based analysis, and iDeep is the best-
performing tool for RNA sequence-based analysis. Interestingly,
our results showcased that CNN-based tools tend to have better
performance than tools in other categories for DNA sequence-
based analysis, while on the contrary, for RNA sequence-
based analysis. We reasoned that such results might be due
to insufficient data training and more noises in CLIP-seq data
compared with ChIP-seq data.

As shown in Figure 3A, for DNA sequence training, Deep-
Histone showed the best performance in terms of the AEMR
score. The stacked three convolutional layers in DeepHistone
as a convolutional block may contribute to extract sequence
information more effectively than a single layer convolution.
We also selected gkmSVM [49] and MEME-ChIP, two popular
traditional methods for motif prediction, as comparison tools.
For the 15 DL methods conducted on the DNA sequence analysis,
10 of them showed better sequence classification performance
than gkmSVM, while only DESSO achieved higher motif predic-
tion results than gkmSVM (i.e. the best tool among all 15 DL
methods). We reasoned that, other than convolutional kernels,
DESSO also integrates the binomial distribution to optimize the
TFBS identification based on identified motif patterns. Five out
of 15 DL tools available for DNA sequence-based analysis lack
the ability to predict motifs from ChIP-seq data (annotated as
N/A in Figure 3A), leading to lower overall scores than the others.
Running times were recorded by applying each tool for different
peak numbers from 10 to 40 k, with a range of 10 k. All CNN-based
tools showed higher scalability scores than hybrid network tools,
except for DeepCpG, which runs faster and steadily for large
dataset analysis. Tools that only perform DNA sequence classifi-
cation have an obvious advantage in achieving better scalability
scores. DESSO is considered to be the easiest accessible tool with
a user-friendly webserver and detailed documentations, while
most tools with only packages available usually need more effort
in installation and environment settings.

Showcased in Figure 3B, for RNA sequence training, iDeepV
and iDeep represent the best tool for RNA sequence classifica-
tion and RNA motif identification, respectively. iDeep uses a mul-
timodal framework that employing parallel DBN and CNN mod-
els and integrating the different sequence features captured on
both sides, which augments the representation of the sequence.
On the other hand, iDeepV uses the embedding layer to encode
the input sequences, which aids the CNN layer to effectively
learn the features of the sequence. DeepBind is under good

maintenance with detailed tutorial documentation, especially
for RNA sequence-based analysis.

Assess DL methods on nine cancer types

TFs have been proven to take part in carcinogenesis, cancer
development [50] and defining aberrant gene expression in
cancer cells [2]. We are interested in how the 15 DL tools for DNA
sequences can derive new insights from cancer-related ChIP-
seq data. An overview result showcased that the performance
of sequence classification was highly variable across tools,
and TFImpute had the highest performance among all the
tools (Figure 4A, Supplementary Figure S3 available online at
http://bib.oxfordjournals.org/). We reasoned that the reserve
and forget mechanism of gates can contribute to keeping
true signals and filter noises along with iteration processes,
which is especially suitable for cancer datasets containing more
sequence mutations than normal tissue data. DeepHistone and
DeepBind performed better than other tools on liver cancer
and lung cancer data, respectively. It is noteworthy that, the
rank of the 11 tools that can deliver motif predictions on cancer
data, in terms of classification performance, is consistent with
the performance rank on the benchmark data, indicating the
robustness of our benchmark design in the above sections. On
the other hand, consistent classification performances across
cancer types of each tool show that these tools performed
steadily on different datasets.

For all the identified motifs from the cancer datasets, we per-
formed motif clustering using similarity scores from TOMTOM,
and the most significant motif in terms of its P-value in each
cluster was defined as the representative motif. Eventually, 132
representative motifs were identified from all the 126 cancer
datasets for the following analyses. For an individual cancer
type, significant diversities and variances of motif prediction
performance were observed among different tools, in which
TFImpute had the lowest variance and most robustness, and
DeepHistone showed the highest mean performance (Figure 4B).
The average number of predicted motifs across nine cancer types
varied, and apparently, there was a lower number of predicted
motifs in prostate cancer and liver cancer than those in the
other seven cancer types (Figure 4C and Supplementary Table S5
available online at http://bib.oxfordjournals.org/). This may be
due to the less known motifs identified for these two cancer
types than other types.

To understand the overlap and uniqueness status of the
identified 132 motifs, we used colorectal cancer as an example
to discover its shared motifs with other cancer types. Of all 77
motifs identified in colorectal cancer, 38 of them were also iden-
tified in breast cancer data. For example, STAT3 [51, 52], FOXO3
[53, 54] and FOXP1 [55, 56] have been proven to play similar roles
in breast and colorectal cancer. Of all the 132 identified motifs,
only 62 motifs are unique to their corresponding cancer type,
and the other 70 motifs were identified in two or more cancer
types (Figure 4D). Those uniquely identified motifs might be the
key to determine gene signatures that play essential roles in
the occurrence and development of the specific cancer type. For
example, ETV1 uniquely identified in breast cancer was found
to have a higher expression level compared with normal tissues,
while the overexpression of COP1 led to a significant expression
level of ETV1 and suppressed cell migration and invasion [57].
Motif related to KLF4 identified in colorectal cancer is a zinc
finger TF, which has been confirmed to be a tumor suppressor
gene [58].
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Figure 3. Illustration of evaluation results for the 20 DL tools. (A) For DNA sequence-based analysis, tools were separated by DL methods. In each comparative group,

tools were ranked by their overall score (grey) from high to low. Four evaluation scores were shown: AEMR (blue), motif prediction score (green), algorithm scalability

(pink) and tool usability (yellow). The highest score for each evaluation score is highlighted in a red box. The result of the conventional method gkmSVM and MEME-ChIP

was also shown at the bottom for comparison. (B) For RNA sequence-based analysis, the same columns and labels were used as described in A.

DISCUSSIONS
In this study, we reviewed and presented a large-scale perfor-
mance evaluation of 20 DL methods for de novo motif prediction.
Our benchmarking study provided a practical model and a set
of optimal DL strategies for different datasets (ChIP-seq and

CLIP-seq) in terms of the accuracy of motif finding, the perfor-
mance of DNA/RNA sequence classification, method scalability
and tool usability. The existing methods were assessed to be
highly complementary to each other, and the most suitable
method will be context-specific, which primarily depends on the
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Figure 4. Analysis of motif analysis on nine cancer types. (A) AEMR scores of the 15 DL methods across the nine cancer types. (B) Box plot of motif enrichment P-value

(with details in the Method section) of 11 methods with respect to breast cancer. (C) For each cancer type, we calculate the average number of identified motifs for each

tool. Note that, we only keep motifs that can be matched with existing motif patterns in the database using TOMTOM and TFBSTools. The horizontal red line indicates

the highest median value on the y-axis. (D) The shared motifs between the nine different cancer types. Motifs shared between breast cancer and colorectal cancer were

highlighted as cyan, and all other shared links were light grey.

data size and type as well as the method outputs. Specifically,
we observed that CNN-based tools were better performed than
other tools for DNA sequence and motif analysis while performs
worse than others for RNA sequence and motif analysis. DESSO
and iDeep are the best tools for DNA and RNA sequence, respec-
tively, in terms of the above four metrics. The result proved that
the convolutional operation could improve the performance of
TF-DNA binding specificity prediction through optimizing the
position-weight-matrix-like motif detectors. We further applied
11 tools on 126 cancer data and found TFImpute performs as the
most robust tool for sequence classification and motif prediction
across all nine cancer types. These tools showed less sequence
classification bias among ChIP-seq data of different cancer types
while exhibiting differences in the number and type of predicted
enriched motifs. Only a few motifs are uniquely identified in
each cancer type which might be caused by the heterogeneous
nature of cancer cells. The shared motifs may shed light on the
shared regulatory mechanism and pathways in different cancer
types, leading a potential way to the study of drug repositioning.

Some practical challenges were also presented through the
above evaluation studies. First, the comparison results suggested
that the existing models presented unstable performances for

the 126 ChIP-seq datasets obtained from nine cancer types.
Hence, more efforts are needed to select a suitable tool or
an appropriate combination of tools for motif prediction and
sequence classification in different cancer types. Secondly, the
convolutional kernel was used as the detector to scan the input
sequence; however, the number of kernels and the width of a
specific kernel were quite differently set up among the reviewed
tools and affected the prediction performance. For example,
the number of kernels exceeded 100 in some DL methods,
which consumes too much computing resources and produces
redundant results in ChIP-seq data. Hence, such necessary
parameters should be well adjusted based on the tutorial of
the selected tool or automatically trained by the meta-learning
techniques [59]. Thirdly, most CNN methods outperform other
methods and usually have lower computational complexity.
There is still room for the integration of diverse neural network
structures and strategies in a unified framework or an ensemble
learning manner [60, 61].

In summary, new insights and computational infrastructures
can significantly facilitate researchers in selecting the appropri-
ate tools for their analyses related to motif finding and gene
regulation. Overall, the ‘good-yet-not-the-best’ methods can still
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provide a valuable contribution to motif finding when one takes
advantage of novel algorithms, proposes a more scalable solu-
tion or provides a unique insight in specific use cases. On the
other hand, combining different tools in one analysis is always
beneficial based on the observed complementarity of the evalu-
ated DL methods in our study.

Data availability
The 690 ChIP-seq data can be downloaded from http://bmbl.
sdstate.edu/DESSO/. The assessable links and accession number
of the 55 CLIP-seq and 126 cancer ChIP-seq datasets used in this
study can be retrieved in Supplementary Tables S6 and S7 avail-
able online at http://bib.oxfordjournals.org/. All source codes of
the 20 DL methods can be found on GitHub, with links listed on
https://github.com/OSU-BMBL/deepmotif-benchmark.

Key Points
• Identifying cis-regulatory motifs from genomic

sequencing data is crucial in identifying transcription
factor (TF) binding sites and inferring gene regulatory
mechanisms for any organism. Without a clear and
systematic assessment, users will struggle in choosing
the most appropriate DL tool for their specific studies.

• We reviewed 20 existing DL methods for cis-regulatory
motif prediction and delivered in-depth insights via
comprehensive benchmark evaluations of their per-
formances.

• The experimental results indicated the high comple-
mentarity of the existing DL methods, and the most
suitable model users select should primarily depend
on the data size and type as well as the method’s
outputs.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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