
Citation: Justa, J.; Šmídl, V.;

Hamáček, A. Deep Learning

Methods for Speed Estimation of

Bipedal Motion from Wearable IMU

Sensors. Sensors 2022, 22, 3865.

https://doi.org/10.3390/s22103865

Academic Editor: Carlo Ricciardi

Received: 7 April 2022

Accepted: 16 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning Methods for Speed Estimation of Bipedal
Motion from Wearable IMU Sensors
Josef Justa 1,* , Václav Šmídl 2 and Aleš Hamáček 1

1 Department of Measurement and Technology, Faculty of Electrical Engineering, University of West Bohemia,
30100 Pilsen, Czech Republic; hamacek@fel.zcu.cz

2 Reseach and Innovation Center, Faculty of Electrical Engineering, University of West Bohemia,
30100 Pilsen, Czech Republic; vsmidl@rice.zcu.cz

* Correspondence: justjo@ket.zcu.cz

Abstract: The estimation of the speed of human motion from wearable IMU sensors is required in
applications such as pedestrian dead reckoning. In this paper, we test deep learning methods for
the prediction of the motion speed from raw readings of a low-cost IMU sensor. Each subject was
observed using three sensors at the shoe, shin, and thigh. We show that existing general-purpose
architectures outperform classical feature-based approaches and propose a novel architecture tailored
for this task. The proposed architecture is based on a semi-supervised variational auto-encoder
structure with innovated decoder in the form of a dense layer with a sinusoidal activation function.
The proposed architecture achieved the lowest average error on the test data. Analysis of sensor
placement reveals that the best location for the sensor is the shoe. Significant accuracy gain was
observed when all three sensors were available. All data acquired in this experiment and the code of
the estimation methods are available for download.

Keywords: motion speed estimation; inertial measurement unit; deep learning; walking speed;
autoencoder architecture

1. Introduction

We are concerned with the problem of estimating the locomotion speed of an individual
for the purpose of inertial indoor navigation. Specifically, our research aims at investigating
indoor navigation in special situations where the traditional means of location such as GPS
or infrastructure-based (WiFi) signals are not available. A typical example is an emergency
situation resolution, e.g., locating a firefighter in a hostile unknown environment. Due to
unreliable infrastructure, it is impossible to use vision-aided inertial systems (VINS) and
magnetic or thermal fingerprint systems; thus, the Pedestrian Dead Reckoning (PDR) is the
most reliable source of information about the location of the tracked person.

We are concerned with analyzing data from the inertial motion unit (IMU) sensors
due to their robustness in hostile environments. The IMUs are assumed to be attached to
the human body by an elastic band to ensure close synchronization of their movement
with the body. This is not ensured in approaches using IMU in mobile phones, where
synchronization is weaker. Due to the chosen application area, we aim to estimate a wide
range of speeds for bipedal motion, i.e., walking as well as running. It is a narrower space
than the general gait speed estimation [1], but it is wider than walking speed estimation [2]
since we also include running.

Many classical PDR methods use manually designed features [1–3], often without
detailed specification, which prevents their replication. One of the most popular features is
the zero-velocity update (ZUPT) [4], which has been extensively used [5–7]. Detection of
the feature itself may be a complicated problem requiring adaptive approaches [8]. The
application of the approach to indoor navigation often requires a combination of multiple
methods [9].

Sensors 2022, 22, 3865. https://doi.org/10.3390/s22103865 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6913-7652
https://orcid.org/0000-0003-3027-6174
https://doi.org/10.3390/s22103865
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103865?type=check_update&version=1

Sensors 2022, 22, 3865 2 of 16

The limit of feature-based methods is poor generalization and difficult extension to
more demanding scenarios. For example, the significance of the ZUPT feature decreases
with the increasing speed of motion. Feature tuning or even the design of new features
would be required to improve estimation in running, stairs walking, or ladder climbing,
which are common in emergency rescue situations. Therefore, we do not aim to improve
feature-based method but to investigate techniques that can learn to predict the speed
from the raw data. The most active area of research where features are “discovered”
automatically is deep learning [10], which is typically based on neural networks with many
layers. The neural networks have been used for gait speed estimation early on [11], yet only
in its simple form, which does not have the benefits of deep learning. Deep learning has
been extensively applied to estimate human motion from videos [12], smartphones [13–15].
While the recognition of human speed from a smartphone is sufficient for low-risk applications,
it is insufficient for the considered domain of emergency situation resolution. Therefore, we
focus not only on the estimation of the speed from fixed mounted IMU sensors but also on
the evaluation of the most suitable number and position of these sensors. The application
of deep learning to locomotion speed detection from IMUs is much scarcer and is often
based on simple network architectures. For example, Qian et al. [16] uses a feed-forward
network with LSTM layers. In a parallel study, residual networks with BiLSTM architecture
have been used to classify human activity [17].

The aim of our research is to evaluate modern general-purpose deep architecture that
has been developed for modeling time-series. Specifically, we will investigate modern
state-of-the-art methods such as the InceptionTime architecture that uses convolution layers
with a bottleneck mechanism [18], the perceiver architecture [19] that uses the attention
mechanism. Another successful approach that we will investigate is the semi-supervised
variational autoencoder architecture. We test state-of-the-art architecture based on the
composition of convolutional pre-processing layers and post-processing of LSTM [20,21]
and extend it to autoencoders as suggested in [22] since it has been reported to outperform
pure convolutional and recurrent networks.

The general architectures mentioned above do not use any specific information about
the nature of the signal. Based on the character of the recorded signal, we propose a new
architecture using networks with periodic activation functions. This architecture will be
used as decoder in the semi-supervised approach. All architectures will be evaluated on
data from eight subjects that were recorded for this study.

Our contributions can be summarized as follows:

1. We measured IMU data on eight human subjects while walking and running together
with a reference speed recorded by a monowheel and provided those data as publicly.
We also provide all codes to run the proposed methods to make replication of our
results as convenient as possible.

2. We test existing architectures of deep learning for the task of predicting the motion
speed from the IMU data. We show the benefits of approaches based on auto-encoder
topology. Moreover, we propose a novel decoder architecture that achieves the best
results on our datasets. The architecture is motivated by the nature of the IMU signal.

3. We provide sensitivity studies of the methods with respect to: (i) the subjects (via
leave one out cross-validation), (ii) the number of IMU sensors on the body and
their location, and (iii) availability of additional knowledge such as the length of the
leg. We observed that these details are more important than the architecture of the
neural network.

The work is structured as follows. A literature survey highlighting the most related
approaches is provided in Section 2. Description of the data, problem formulation, and the
main computational methods, including the proposed new architecture, are described in
Section 3. All methods are evaluated on the recorded data in Section 4, where we show the
superiority of the proposed architecture. The conclusion is presented in Section 6.

Sensors 2022, 22, 3865 3 of 16

2. Related Work

We now briefly review the details of publications that we find the closest to our
approach, as summarized in Table 1. From the range of classical feature-based methods,
we select those related to neural networks.

2.1. Feature-Based Approaches

A large number of methods based on classical feature-based approaches are available;
see summary in Table 1. Since the approach is sensitive to the tuning of the feature detection,
many papers focus on improving the feature extraction, e.g., [7,23]. However, since our
primary aim is to learn from the raw data, we will consider feature-based methods as
a baseline for comparison. From a wide range of available methods, we analyze the
performance of methods mentioned in survey [24], including extensive parameter tuning.
Moreover, the default sensor placement in these approaches is almost always determined
to be the foot attachment [4], with few exception such as [25]. We will study the sensitivity
of this choice to estimation precision in the experimental section.

Table 1. Summary of existing approaches using IMU for pedestrian dead reckoning and their
key properties.

Method Year Public Data Features Neural
Architecture Run Source

Code
Placem.
Study Note

[13] 2019 Yes – CNN-LSTM No No No Smartphone
[9] 2020 No ZUPT – No No No
[1] 2017 No Custom – No No No
[7] 2019 No ZUPT – Yes No – Adaptive threshold
[6] 2017 No ZUPT – Yes No – Missing ground truth
[16] 2020 No ZUPT+NN LSTM No No No
[24] 2020 No ZUPT – No Yes – Multiple methods
[23] 2017 No ZUPT – No No – Kalman
[8] 2017 No ZUPT – Yes No – Adaptive threshold
[3] 2019 No Custom – Yes No No Wrist, Personalized

ours - Yes – CNN, RNN, VAE Yes Yes Yes

2.2. Neural Networks

Neural networks have been applied to the speed estimation problem in many forms,
either in combination with ZUPT [16], or standalone using classical architectures such as
the LSTM. However, most often the networks use shallow architectures that cannot take
advantage of the deep architectures, i.e., the ability to learn the most suitable high-level
features. The pioneering work using deep architectures in this domain is [13], where the
data are recorded using a smartphone on a large corpus of data. Therefore, it is sufficient to
train a single feed-forward architecture. We have not collected such a large corpus for data
with the mounted IMU data; hence, we use methods that are based on semi-supervised
architectures. We show experimentally that autoencoder-based architectures outperform
the feed-forward networks.

We have tested standard convolutional-recurrent architectures used in autoencoders [20,21]
and designed a novel decoder using weighted harmonic signal. Our approach can be also
seen as a generalization of weighting used in feature-based approaches [26], where the
weighting strategy is fixed. In our approach, the weights as well as the latent space (i.e.,
features) are learned from the data .

2.3. Available Datasets

Existing datasets of IMU-style recordings were often designed for particular applications,
such as patient control or daily life monitoring. Thus, they differ in the measurement
setup, see survey [27]. We can recognize two principal types of datasets for motion speed
estimation: (i) shoe-mounted IMUs, e.g., [27–30], and (ii) smartphone based data with

Sensors 2022, 22, 3865 4 of 16

varying positions (backpack or pocket) [14,31–33]. While the shoe mounted sensor is a
traditional setup for feature-based methods, the deep-learning methods are predominantly
trained on smartphone data in hand or pocket. Since the data do not contain information
from both locations, it is impossible to select the most appropriate location. The dataset
that we provide in this study is collecting data from three different locations of the
sensors—shoe, shin, and thigh—to allow direct comparison of the sensor location for
the same subjects under the same conditions, its relation to similar datasets is summarized
in Table 2.

Table 2. Summary of existing datasets for human motion speed estimation.

Dataset Year Run Sensor Location Device Reference Available

[31] 2014 No waist, shirt pocket, bag Smartphone Human label Yes
[32] 2018 No hand, pocket, bag, trolley Smartphone VICON Yes
[34] 2016 Yes ankles VICON Threadmill 1 Yes
[14] 2019 No hand, pocket, bag Smartphone Visual SLAM Yes
[33] 2018 No hand, pocket, bag, body Smartphone Visual SLAM Yes
[28] 2015 No foot IMUs Human label on demand

[29] 2 2014 No foot IMUs Human label on demand
[30] 2017 No foot IMUs Optical system Yes

ours - Yes foot, shin, thigh IMUs Monowheel Yes
1 Speed labels can be reconstructed from the available data. 2 Old patients.

An essential piece of information for speed estimation is the measurement conditions
and the speed reference. While a properly calibrated treadmill could be an excellent
method to get the speed reference for stable speed, it is unnatural during speed transitions.
Measuring the stable speed in discrete steps imposes the risk of an incomplete dataset. This
is not an issue for feature-based methods with few parameters but becomes problematic for
the deep learning methods that struggle to learn the speed between the discretization steps.
Alternatives to obtain the speed reference are (i) optical systems such as VICON [30,34]
which provides only a limited space for performing experiments which complicates
especially the running scenarios, and (ii) visual SLAM [14,33] which does not suffer from
space limitations but its accuracy of the ground-truth is low. Therefore, we used a different
approach with the monowheel to obtain speed reference.

We provide both the data and code of our methods to guarantee reproducibility, which
is still not standard in the field. Many datasets used in studies are only private, many
papers do not contain detailed method description (SVM methods often use more than
hundred features, but paper describes only a few), authors do not provide source codes,
ground-truth is often missing or contaminated with error.

3. Methods
3.1. Data Acquisition: Sensors on a Single Leg

Cheap MEMS sensors BMX055 were used to obtain the IMU data measurement. Three
locations—thigh, shin, and foot—were chosen strategically to capture good information
about bipedal movement on a single leg. This setup is a compromise between the number
of sensors and information gain. It is based on the underlying assumption that the motion
of both legs is, to some extend, symmetric (this assumption is expected to hold for healthy
subjects, such as firefighters).

The use of less accurate sensors poses another estimation challenge, and our results
may thus differ from studies that used highly accurate and thus expensive sensors. For
each location, one BMX055 was used to capture 6DOF information of an orthogonal
accelerometer and gyroscope. The sensor breakboard was attached by adhesive to a
3D printed platform with elastic bands to obtain tight body attachment for thigh and shin
placement. The foot sensor platform was attached via a hook-and-loop fastener to the shoe,
see Figure 1 right. The data from sensors were fetched to ESP32 via I2C in speed mode. The
data were redirected wirelessly from ESP32 over WiFi to an android phone which served

Sensors 2022, 22, 3865 5 of 16

as the data storage during the measurement. After some optimization, the final data rate
fluctuates around 400 Hz.

The data were collected in an open environment with the reference speed collected
using a custom modification of a monowheel. Actual measurement with the monowheel
was obtained for all subjects by the same researcher to avoid data corruption of the subject’s
natural movement; see Figure 1 left.

Figure 1. Illustration of the data acquisition procedure. (Left): collection of the IMU data and the
reference mono-wheel data. (Right): details of the positioning of the IMU sensors on the leg.

Collected Datasets

Eight subjects with various body proportions were measured, and their data are
provided in the accompanying dataset (https://github.com/Josef4Sci/DeepGait/ accessed
on 14 May 2022).

Data for each subject are stored in a single array, with each column containing data
recorded in one time instant: xt organized as follows.

Accelerometer column 1:9, in three locations: 1:3 Thigh, 4:6 Shin, 7:9 Foot (conversion to
m/s2 by multiplier 0.0024).

Gyroscope column 10:18 split into: 10:12 Thigh, 13:15 Shin, 16:18 Foot (conversion to
deg/s by multiplier 0.061).

Speed column 19 (km/h).

Time column 20 (s).

Examples of the recorded data are provided in Figure 2 for the first subject, where
two short periods of walking and running are selected for comparison. Note that while
in the walking phase, it is possible to identify the heel strike moments by a naked eye, it
is much more demanding in the running phase. Moreover, the limits of the sensor, which
are ±2000 deg/s gyroscope and ±80 m/s2, are reached during the running phase. The
saturation of the acceleration is critical for methods relying on its integration.

https://github.com/Josef4Sci/DeepGait/

Sensors 2022, 22, 3865 6 of 16

150 150.2 150.4 150.6 150.8 151 151.2 151.4 151.6 151.8 152
-100

-50

0

50

A
cc

el
er

at
io

n
(m

/s
2)

x
y
z

150 150.2 150.4 150.6 150.8 151 151.2 151.4 151.6 151.8 152

Time (s)

-1000

-500

0

500

1000

A
ng

ul
ar

 s
pe

ed
 (

de
g/

s)

x
y
z

300 300.2 300.4 300.6 300.8 301 301.2 301.4 301.6 301.8 302
-100

-50

0

50

100

A
cc

el
er

at
io

n
(m

/s
2)

x
y
z

300 300.2 300.4 300.6 300.8 301 301.2 301.4 301.6 301.8 302

Time (s)

-2000

-1000

0

1000

2000

A
ng

ul
ar

 s
pe

ed
 (

de
g/

s)

x
y
z

Figure 2. Example of the recorded IMU signals from the Foot IMU sensor for the first subject for
walking speed of 6.5 km/h (left) and running speed of 24.2 km/h (right).

3.2. Problem Formulation

We are concerned with estimating an instantaneous speed of human bi-pedal motion
using data from IMUs attached to the human body. The instantaneous speed at time index
t is denoted yt, and the instantaneous data record xt. Due to insufficient information in a
single observation, we predict the speed from a window Xt = [xt−h, . . . xt+h] where h is a
half-length of the window.

ŷt = fθ(Xt). (1)

Here, fθ() is a parametric predictor function, with parameters θ (aggregating e.g.,
parameters of all layers of the neural network). We aim to approach the problem by
supervised learning, i.e., recording dataset on multiple subjects i = 1, . . . , N of both the
speed Yi = [yi,1, . . . , yi,Ti] and the IMU data X = [xi,1, . . . , xi,Ti] where Ti is the length of
the recorded time series. These data are used to train the predictor by minimizing a loss
function between the predicted and the measured data.

θ̂ = arg min
θ
L (2)

L = ∑
i∈Itrain

Ti−h

∑
t=h+1

loss(yt,i, Xt,i). (3)

The deep learning methods vary in the architecture of the neural network, yielding
different types of parameters, and in the formulation of the loss function (3). These details
will be elaborated in Section 3.3.

Note that various classical methods also fit into this formulation, however, the
parametric space is much more restricted to contain e.g., tuning parameters of the data
processing. Thus, we may consider the conventional feature-based methods as predictors
with restricted degrees of freedom, while the deep-learning methods are free to learn the
model structure from the data. The key challenge of the deep methods is to discover
the right level of generalization, i.e., avoiding overfitting the training data with poor
performance on the unseen (testing) data.

3.3. Deep Learning Methods

Even deep learning predictors are essentially just more complicated non-linear
regression as defined in Section 3.1. Different model structures are represented by different
architectures of the used network. The challenge is to find architecture that best corresponds
with the nature of the studied problem. In this Section, we briefly review architectures that
will be tested on the collected data. Specifically, we will compare two types of network
architectures: (i) feed-forward architectures, and (ii) the semi-supervised variational
autoencoder architecture. The former is a direct prediction method [10]. The latter is
an extension of the feed-forward architecture by incorporating a generative model [35] as a
tool for improving the generalization capabilities of the model.

Sensors 2022, 22, 3865 7 of 16

Feed-Forward Networks

The feed-forward approach is a straightforward application of the neural network to
the regression problem by defining a single network fθ(Xt) and a mean square error loss.

loss(yt, Xt) = ||yt − fθ(Xt)||22. (4)

The loss function is a classical least-squares approach with well-known solution for
the linear model. A vast amount of neural architecture has been proposed and tested.
For example, simple classical LSTM architecture has been tested on the speed estimation
problem in [16]. Recent progress in deep learning indicates that much better results can be
obtained by convolutional architectures. We will test the two most recent methods of this
category:

InceptionTime is an architecture defined using convolutional layers with a bottleneck [18].

Perceiver is a complex architecture based on the attention mechanism [19].

These architectures have a number of hyper-parameters, mostly sizes, and dimensions
of the latent variables, a detailed discussion of which is beyond the scope of this paper, see
original publications for details. We have used reference implementation of these methods
provided by their authors. The tuning of their hyper-parameters was performed using a
uniform random search with ranges given in Table 3. The ranges were adjusted to ensure
that the best results were not obtained at the border of the range.

Table 3. Hyper-parameter ranges of deep feed-forward architectures.

InceptionTime Perceiver

Hyper-Parameter Range Hyper-Parameter Range

number of filters [2, 4, 8, 16, 32] Number of freq. bands [6, 12]
kernel sizes [[5, 11, 21], [11, 21, 41], [21, 41, 81]] Maximum frequency [3, 5, 10, 15]

Depth [6, 12]
bottleneck channels [2, 4, 8] Number of latents [128, 256, 512]

Dimension of latents [64, 128, 256]
Dimension of cross layer [512, 256, 128]

Dim. of att. head for cross layer [64, 32, 16]
Dim. of att. head for latents [64, 32, 16]

3.4. Semi-Supervised Variational Autoencoders

While the feed-forward approach is methodologically simple, it often suffers from
overfitting, i.e., achieving a good fit on the training data but poor on the test. While
various regularization techniques were proposed, they are often hard to tune for good
performance. An interesting approach to this problem is based on the use of autoencoders
for regularization. Informally, the autoencoder projects the input information on the latent
code—often of a much smaller dimension than the input—from which it tries to reconstruct
the input as closely as possible. Specifically, the auto-encoder architecture defines two
networks: (i) encoder generating the latent code zt = gψ(Xt), and (ii) decoder generating
the input reconstructions of the input from the code X′t = fθ(zt). The training loss is the
mean square error of the reconstruction:

lossAE(yt, Xt) = ||Xt − X′t||22 = ||Xt − fθ(gψ(Xt)))||22, (5)

where the free variables are parameters of the neural networks ψ (encoder) and θ (decoder).
The autoencoder alone is too ambiguous to train and has to be coupled with a regularization.
The most popular, and often the best performing in practice, is the Variational autoencoder [36].
The additional assumption is that the latent variable (code) is distributed as independent
Gaussian p(zt) = N (0, I). The encoder does not provide an estimate of a single z but
its distribution q(z|x) which is prescribed to have Gaussian form with mean µψ(Xt) and

Sensors 2022, 22, 3865 8 of 16

standard deviation σψ(Xt), both functions being represented by neural networks. The loss
of the autoencoder is computed as evidence lower bound, yielding the following formula.

lossVAE(yt, Xt) = ||Xt − f (µ(Xt) + σ(Xt) ◦ ε)||22 ++βKL(N (µ(Xt), σ(Xt))||N(0, I)). (6)

The parameter β > 0 governs compromise between the first (reconstruction) term
and second (regularization) term of (6), KL(p||q) denotes the Kullback-Leibler divergence
between probability distributions p and q, which is available in closed form for Gaussian
distributions see [36] for details.

The combination that we are using originates in semi-supervised learning that aims
to combine the Variational Autoencoder with feed-forward predictors [35]. The goal is to
use a simple weighted combination of the previous loss functions ((i) the prediction loss (4)
and (ii) the VAE loss (6)) to yield the following :

loss(yt, Xt) = α||yt − hθ(µ(Xt) + σ(Xt) ◦ ε)||22 + ||Xt − f (µ(Xt) + σ(Xt) ◦ ε)||22
+ βKL(N (µ(Xt), σ(Xt))||N(0, I)), (7)

where α is the weighting factor of the prediction quality. Note that by various choices of
the weighting factors α and β we can recover various architecture. For example: (i) for
β → 0, α → 0, (7) approaches pure autoencoder, and (ii) for α � β, α � 1, it approaches
the feed-forward predictor. Thus tuning optimal values of α and β allows obtaining the
best of the combined approaches. Models of this type will be denoted as semi-supervised
variational autoencoders (SVAE), and its architecture is illustrated in Figure 3. A wide range
of such methods may be designed for various choices of the architecture of the involved
neural networks.

Encoder

Latent code

Decoder

predictor
Input Reconstruction

Predicted speed

Figure 3. Schematic architecture of semi-supervised variational autoencoder. The path from the input
Xt to yt corresponds to the feed-forward path; the path from the input Xt to prediction X′t provides
regularization.

Recent studies indicate that state-of-the-art performance on time series data is obtained
by a combination of CNN layers (acting as adaptive filters) followed by LSTM layers
capturing the dynamics of the process. While this architecture was not successful in the feed-
forward setting, it worked very well as an encoder in VAE as proposed in [22]. However,
motivated by the nature of our signal (see Figure 2), we investigated the possibility that the
signal can be reconstructed using periodic functions. We, therefore, test two versions of the
SVAE, differing in the decoder:

Conventional Decoder: SVAE-LSTM-CNN

With decoder being the reverse of the encoder, i.e., the LSTM layer followed by the
deconvolution (ConvTranspose). This architecture is an extension of the classical
LSTM autoencoder [22].

Proposed Decoder: SVAE-Sine

Sensors 2022, 22, 3865 9 of 16

Motivated by the periodic nature of the generated signals, Figure 2, we propose the
decoder in the form of weighted sine-waves:

Xt = W1zt ◦ sin(W2ztτ + W3zt), τ = t− h, . . . , t + h,

with learnable parameters θ = [W1, W2, W3]. This decoder has only one layer, and
it thus much simpler than the LSTM-CNN decoder. We conjecture that this is the
reason why SVAE-Sine was experimentally found to be more reliable than that of the
LSTM-CNN version.

Remark 1. The architectures mentioned in this Section were selected from a larger pool of methods
using preliminary studies. We have tested many simple architectures—such as plain LSTM
autoencoers [16] or plain CNN networks—for a limited number of runs. However, the results of
simple architecture were significantly worse than those of the above-described ones (e.g., it was
tough to obtain a converging pure LSTM network). Since this agrees with previously reported
experiments, e.g., [37,38], we removed these simple architectures from the study and performed the
computationally expensive cross-validation study with Monte Carlo hyper-parameter search only on
the four above-mentioned methods.

Hyperparameters of the considered SVAE architectures are again sampled from ranges
summarized in Table 4.

Table 4. Hyper-parameters of the semisupervised VAE approach.

Encoder Decoder

Hyper-Parameter Range Hyper-Parameter Range

Convolution channels [1, 2, 4, 8, 16] Sine: size of hidden layer [10, 50, 100]
Size of hidden layer [128, 256, 512] LSTM-CNN: same as encoder

Depth of hidden layer [1, 2]
Length of latent z [64, 128, 256]
Predictor weight α [0.1, 0.01, 0.001, 0.0001]

KL weight β [1×10−4, 1×10−5, 1×10−6, 1×10−7]

4. Experiments
4.1. Experimental Protocol

The evaluation procedure follows the leave-one-out cross-validation protocol [39].
Specifically, the methods were trained 8 times, with data collected on one subject being
used as testing data, and the remaining data used for training and validation (85% for
training, 15% validation). The validation data were used for monitoring convergence of
the training procedure, which was stopped when the validation error did not improve
for 20 consecutive steps. The training loss is the mean square error (4) or its augmented
version (7).

If not stated otherwise, all reported accuracies are estimation errors of the testing
subject, averaged over all 8 repetitions. The mean absolute error was chosen as the main
evaluation metric:

Err =
1
8

8

∑
s=1

1
tmax

tmax

∑
t=1
|ys,t − fs(Xs,t)|, (8)

where fs() is a model trained on data from all subjects except the sth. The error will be
provided in the unit of the speed, i.e., km/h.

4.2. Conventional Feature-Based Methods

We will compare all tested deep-learning methods with state-of-the-art approaches
based on heuristic/feature-based approaches. We have used the recent survey [24] for
selecting the candidates. The methods are based on the integration of the speed from the
acceleration sensor, using different features, such as detected heel-strikes for each limb, to
calibrate the integration. Ten different variants of the features and their data processing
are compared in [24], called method 1 to method 10, with the increasing complexity of the

Sensors 2022, 22, 3865 10 of 16

processing. The best performing method for their data was method 10 that uses information
from the wrist sensor. Since we do not have sensors on the wrist, we compared only those
not using their signals, i.e., methods in Table 5. The parameters of all relevant methods
of [24]—i.e., the complementary filter cut frequency, the gyroscope scale error compensation
parameter, and the accelerometer scale error compensation parameter—were optimized
using Matlab’s fminsearch method for best accuracy (8) for each method independently.

Table 5. Tuning parameters and performance of the conventional methods from [24] using their
numbering.

ID Method Features Scale 1 Scale 2 Cut-Off
Freq.

Error
[km/h]

M2 heel-strike to heel-strike segmentation 1.0 1.2 0.82 4.9
M4 mid-stance to mid-stance segmentation 0.6 5.6 0.98 1.2
M5 M4 + gravity compensation 3.2 −3.0 0.80 3.7
M7 mid-swing to mid-swing segmentation −0.02 1.9 7× 10−18 18.2
M8 M7 + outlier elimination −0.002 1.9 5× 10−17 10.8

The parameters obtained by optimization are not very intuitive, for example, the
negative scaling for method 5. However, the error of speed estimation for more usual
parameters was higher than that for the optimized. We conjecture that this is due to the
nature of the collected signals (containing e.g., saturations, Figure 2) from a cheap and
noisy sensor.

The best performance that was obtained on our data is Method 4 of [24], which uses
the mid-stance to mid-stance segmentation to obtain the heel strike and toe-off indices. The
estimation of yaw angle was manually set to zero constant because only the forward speed
is measured.

4.3. Deep Learning Methods

For training and testing of all deep learning models, the data were resampled to
isochronal 512 Hz and split into 2 s time windows with the reference speed set to the
middle element of the window.

Since the number of the training samples is still low, the training data set for neural
network training were augmented [40]. Two techniques were used to create the augmented
samples: (i) sensor rotation, i.e., the measurements from one sensor were rotated by a small
constant angle generated from Gaussian distribution with the standard deviation of 2.5°,
and (ii) and a Gaussian white noise addition, using relative noise with standard deviation
being 1% of the observed value. The sensor rotation simulates a slightly different sensor
placement to clothes or body parts. A small portion of white noise was used to force the
models to learn long-term dependencies.

4.4. Method Comparison for a Single Foot Sensor

For all four tested deep architectures—InceptionTime, Perceiver, SVAE-LSTM-CNN,
SVAE-Sine—we have sampled 15 random draws from the ranges provided in Tables 3 and 4,
respectively. The leave-one-out cross-validation was performed for each hyper-parameter
value, and the results were sorted according to their testing error (8). Tables with the
three best hyperparameter values for the data using the single foot sensor are provided
in the Appendix A. We note that the difference between the best hyperparameter values
of individual methods is relatively small, indicating consistent performance with low
sensitivity to individual hyper-parameter. Thus, we did not perform any averaging over
the initial conditions of the network learning.

A summary of the speed estimation errors for all deep methods is displayed in Figure 4
in comparison with the best feature-based method. Note that all deep learning methods
achieved significantly better results than the conventional feature-based methods. The
difference between the approaches is even more striking when the measured and predicted

Sensors 2022, 22, 3865 11 of 16

speed on the tested subject (unseen in training) are displayed in the form of a scatterplot
in Figure 5.

SVAE-S
ine

SVAE-L
STM

-C
NN

In
ce

pt
ion

Tim
e

Per
ce

ive
r

Fea
tu

re
 b

as
ed

 -

Nuñ

ez
 M

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
ab

so
lu

te
 e

rr
or

 (
km

/h
)

Figure 4. Mean absolute error of speed prediction obtained by the four tested deep methods and
the best feature-based method [24] (M4 from Table 5). Results are averaged over 8 subjects of the
leave-one-out cross-validation. All methods were optimized for best performance.

0 2 4 6 8 10 12 14 16

Measured speed (km/h)

0

2

4

6

8

10

12

14

16

E
st

im
at

ed
 s

pe
ed

 (
km

/h
)

0 2 4 6 8 10 12 14 16

Measured speed (km/h)

0

2

4

6

8

10

12

14

16

E
st

im
at

ed
 s

pe
ed

 (
km

/h
)

(a) (b)

Figure 5. Scatter plot of measured and predicted speed of tested subject number 1 (unseen in
training) for two prediction methods: the best performing conventional methods of [24] and the
best performing deep method SVAE-Sine. (a) feature-based method 4 of [24]. (b) deep architecure
SVAE-Sine. Dotted line indicates perfect reconstruction.

Note that the prediction of the deep method does not exhibit any significant distortions
depending on the speed, which are visible in the results of the conventional method. Scatter
plots for other subjects and also for other deep methods are similar to that for SVAE-Sine.

While the proposed SVAE-Sine model yields the lowest prediction error, we note that
even feed-forward methods, such as the InceptionTime, provide comparable results. The
limiting factor for improving the estimation is thus not the architecture of the network but
more likely other issues such as (i) inter-subject variability, and (ii) informativeness of the
sensor data.

4.5. Inter-Subject Variability

An illustration of the multi-subject variability is displayed in Figure 6 via a box plot
of speed prediction errors for individual subjects in the cross-validation study, where the
difference between subjects is clearly visible. The results of two methods are compared in

Sensors 2022, 22, 3865 12 of 16

this chart: SVAE-Sine as representative of the semi-supervised methods and InceptionTime
as representative of the feed-forward networks. Both methods achieve consistent results
with low error on some subjects, such as numbers 5 and 6. However, they differ on
other subjects, such as numbers 3 and 7 where the winner is SVAE and InceptionTime,
respectively. Differences between these subjects may be caused by insufficient training or
other causes. We consider SVAE to provide better results due to a lower average error but
also lower error on the majority of the subjects.

1 2 3 4 5 6 7 8
Subject number (-)

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
ab

so
lu

te
 e

rr
or

 (
km

/h
) SVAE-Sine

InceptionTime

Figure 6. Boxplot of prediction error for all subjects in the study for the best performing SVAE-Sine
architecture and the best feed-forward method, InceptionTime.

Note, however, that even the largest error in the most outlying subject number 7 is
still significantly lower than errors of the conventional method (Figure 4).

4.6. Sensitivity to the Sensor Location

In this Section, we investigate how much accuracy can be gained by using additional
sensors. We will not investigate all architectures but focus only on the SVAE-Sine approach.
The performance of the method was evaluated on all individual sensors, all couples, and
all three sensors, see Figure 7. Hyperparameters of the architecture were those of the best
performing architecture for the Foot sensor (Appendix A).

F+S
+T F+T F+S T+S Foo

t
Shin

Thig
h

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ea

n
ab

so
lu

te
 e

rr
or

 (
km

/h
)

Figure 7. The average error of speed prediction of the SVAE-Sine method trained data from IMU
sensors at different locations and their combinations.

The foot seems to be the most valuable location for the sensor if it is used as a single
sensor, as well as in tandem with a sensor in another location. The error of speed estimation
monotonically decreases with the increasing number of sensors.

Sensors 2022, 22, 3865 13 of 16

4.7. Additional Biometric Information

Biometric information such as the length of the leg or weight of the body may be
relevant for the estimation of the motion speed from IMUs. The question for deep learning
is whether the availability of such information improves prediction error. We have trained
the SVAE-Sine model with two additional inputs: (i) the length of the leg, and (ii) the
body mass of the subject. We found that in our study such an extension did not yield any
significant improvement in the estimation error.

5. Discussion and Future Work

We have designed the dataset to measure the signal at three different positions that
allows comparison of our results with both shoe-mounted and smartphone-based data.
Previous studies indicate that since the smartphone is not coupled to the body movement
properly (e.g., held in one hand), the estimates have higher error [33]. The situation where
the smartphone is in the pocket corresponds to its placement on the thigh in our study. We
have shown that it is the least accurate position of the all possible locations tested in our
study (Figure 7), even though our error at this position is much lower than that from the
smartphone (0.4 km/h for our method, 1.08 km/h for the smartphone [15]). Moreover, we
have also shown that the error of the speed estimation is significantly reduced with an
increasing number of sensors (0.25 km/h for three sensors). Fusion of multiple sensors is
very straightforward in deep-learning methods, contrary to feature-based approaches. We
conjecture that multiple sensors will be necessary to address more complicated motions
such as knee-walking or ladder climbing. Due to the lowering prices of the sensors, we
foresee a great potential for future research in the investigation of multi-sensor data e.g.,
integrated into special-purpose suits [41].

One of the key observations of our study is the inter-subject sensitivity of the speed
estimates. We have shown in the cross-validation study that differences between subjects
are much larger than between various deep-learning architectures (Figure 6). This highlights
inherent difficulties in designing a universal speed estimation algorithm (which is the goal
of all feature-based methods). On the other hand, it opens a way for personalization of
the method. Benefit of algorithmic personalization of the estimation algorithms for each
individual were already studied in [3], and deep learning is in a great position to address
this need. We foresee a great potential for the deep learning technique of pre-training [42]
which prepares universal representation on a larger data corpus at high computational cost
and finalizes training for personalized models with a lower number of the data and lower
computational cost.

6. Conclusions

Estimation of the speed of motion from IMU attached to a human body has been
dominated by feature-based methods. We have collected a dataset of eight subjects with
ground truth speed and provide them publicly as a benchmarking dataset. We have
demonstrated that recently developed deep learning architectures are able to provide much
closer estimates than conventional methods on this dataset. Moreover, we have proposed
a modification of the existing semi-supervised variational auto-encoder using a decoder
in the form of a dense layer with sinusoidal activation functions. The proposed deep
architecture was tailored for this application and outperformed, on average, the general-
purpose state-of-the-art methods on this task. Estimation error was always evaluated on the
tested dataset (unseen during the training). The estimation error monotonically decreases
with an increasing number of sensors on the body. The primary source of variability of
the error is the human subject. However, even the subject with the largest error of the
deep-learning method has a lower error than that of the best tested conventional feature-
based method. On the other hand, the various architectures of deep networks seem to yield
comparable performance. Therefore, we recommend focusing on the data acquisition and
subject variability rather than details of network architectures for future work.

Sensors 2022, 22, 3865 14 of 16

Author Contributions: Conceptualization, J.J. and V.Š.; methodology, J.J. and V.Š.; software, J.J.;
validation, J.J.; resources, J.J. and A.H.; data curation, J.J.; writing—original draft preparation, J.J. and
V.Š.; writing—review and editing, V.Š.; visualization, J.J.; supervision, A.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Technology Agency of the Czech Republic grant number
FW01010189.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Ethics Committee of the University of
West Bohemia, protocol ZCU 001806/2022 from 24 January 2022.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: All data collected during this study and all code to reproduce our
experiments is available from: https://github.com/Josef4Sci/DeepGait/, accessed on 14 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details of Hyperparameter Selection

In this section, we provide a review of the top-performing hyperparameters selected
for each of the tested deep architectures. The hyperparameters are sorted according to
the mean testing error in decreasing order. Note that the architecture’s performance
is quite consistent, and differences between hyperparameters settings are often smaller
than differences between the methods. The tables below show the top three errors with
hyperparameter settings from 15 draws for each architecture.

Table A1. Summary of the best hyper-parameters of the Autoencoder: CONV-LSTM-CONV.

Conv_Channels Hidden_Size Hidden_Layer_Depth Latent_Length α β Error km/h

8 128 1 64 0.1 1× 10−7 0.3552
8 128 1 128 0.01 1× 10−5 0.3814
8 128 1 64 0.01 0.0001 0.3844

Table A2. Summary of the best hyper-parameters of the Autoencoder: CONV-LSTM-SineNet.

Conv_Channels Hidden_Size Hidden_Layer_Depth Latent_Length α β Sin_Depth Error km/h

16 256 1 128 0.01 1× 10−7 100 0.3238
8 256 1 128 0.01 1× 10−7 50 0.3640
8 256 1 64 0.1 1× 10−4 10 0.3693

Table A3. Summary of the best hyper-parameters of the InceptionTime.

n_Filters Kernel_Sizes Bottleneck_Channels Error km/h

16 [21, 41, 81] 8 0.3630
16 [11, 21, 41] 8 0.3662
8 [21, 41, 81] 4 0.3799

Table A4. Summary of the best hyper-parameters of the Perceiver.

Num_Freq_ Max_ Depth Num_ Latent_ Cross_ Cross_ Latent_ Error
Bands Freq Latents Dim Dim Dim_Head Dim_Head km/h

6 10.0 6 256 128 256 32 64 0.4339
6 15.0 6 256 128 512 32 16 0.4691

12 15.0 12 512 256 128 64 64 0.4956

References
1. McGinnis, R.S.; Mahadevan, N.; Moon, Y.; Seagers, K.; Sheth, N.; Wright, J.A., Jr.; DiCristofaro, S.; Silva, I.; Jortberg, E.; Ceruolo, M.;

et al. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to
individuals with multiple sclerosis. PLoS ONE 2017, 12, e0178366. [CrossRef] [PubMed]

2. Schimpl, M.; Lederer, C.; Daumer, M. Development and validation of a new method to measure walking speed in free-living
environments using the actibelt® platform. PLoS ONE 2011, 6, e23080. [CrossRef] [PubMed]

https://github.com/Josef4Sci/DeepGait/
http://doi.org/10.1371/journal.pone.0178366
http://www.ncbi.nlm.nih.gov/pubmed/28570570
http://dx.doi.org/10.1371/journal.pone.0023080
http://www.ncbi.nlm.nih.gov/pubmed/21850254

Sensors 2022, 22, 3865 15 of 16

3. Soltani, A.; Dejnabadi, H.; Savary, M.; Aminian, K. Real-world gait speed estimation using wrist sensor: A personalized approach.
IEEE J. Biomed. Health Inform. 2019, 24, 658–668. [CrossRef] [PubMed]

4. Ojeda, L.; Borenstein, J. Non-GPS navigation for security personnel and first responders. J. Navig. 2007, 60, 391. [CrossRef]
5. Yang, S.; Li, Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors 2012, 12, 6102–6116.

[CrossRef] [PubMed]
6. Zhang, R.; Yang, H.; Höflinger, F.; Reindl, L.M. Adaptive zero velocity update based on velocity classification for pedestrian

tracking. IEEE Sens. J. 2017, 17, 2137–2145. [CrossRef]
7. Wang, Y.; Shkel, A.M. Adaptive threshold for zero-velocity detector in ZUPT-aided pedestrian inertial navigation. IEEE Sens.

Lett. 2019, 3, 1–4. [CrossRef]
8. Wagstaff, B.; Peretroukhin, V.; Kelly, J. Improving foot-mounted inertial navigation through real-time motion classification. In

Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21
September 2017; pp. 1–8.

9. Bai, N.; Tian, Y.; Liu, Y.; Yuan, Z.; Xiao, Z.; Zhou, J. A high-precision and low-cost IMU-based indoor pedestrian positioning
technique. IEEE Sens. J. 2020, 20, 6716–6726. [CrossRef]

10. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
11. Aminian, K.; Robert, P.; Jequier, E.; Schutz, Y. Estimation of speed and incline of walking using neural network. IEEE Trans.

Instrum. Meas. 1995, 44, 743–746. [CrossRef]
12. Sikandar, T.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Alqahtani, M.; Almijalli, M.; Altayyar, S.; Ahamed, N.U. Using a Deep

Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification.
Sensors 2021, 21, 2836. [CrossRef]

13. Kawaguchi, N.; Nozaki, J.; Yoshida, T.; Hiroi, K.; Yonezawa, T.; Kaji, K. End-to-end walking speed estimation method for
smartphone PDR using DualCNN-LSTM. In Proceedings of the International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 463–470.

14. Yan, H.; Herath, S.; Furukawa, Y. Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, and new methods.
arXiv 2019, arXiv:1905.12853.

15. Feigl, T.; Kram, S.; Woller, P.; Siddiqui, R.H.; Philippsen, M.; Mutschler, C. RNN-aided human velocity estimation from a single
IMU. Sensors 2020, 20, 3656. [CrossRef] [PubMed]

16. Qian, Y.; Yang, K.; Zhu, Y.; Wang, W.; Wan, C. Combining deep learning and model-based method using Bayesian Inference for
walking speed estimation. Biomed. Signal Process. Control 2020, 62, 102117. [CrossRef]

17. Li, Y.; Wang, L. Human Activity Recognition Based on Residual Network and BiLSTM. Sensors 2022, 22, 635. [CrossRef]
18. Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F.

Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]
19. Jaegle, A.; Gimeno, F.; Brock, A.; Zisserman, A.; Vinyals, O.; Carreira, J. Perceiver: General Perception with Iterative Attention.

arXiv 2021, arXiv:2103.03206.
20. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

21. Yue-Hei Ng, J.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets: Deep networks
for video classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 4694–4702.

22. Lotter, W.; Kreiman, G.; Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv 2016,
arXiv:1605.08104.

23. Alam, M.N.; Munia, T.T.K.; Fazel-Rezai, R. Gait speed estimation using Kalman Filtering on inertial measurement unit data. In
Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Jeju Island, Korea, 11–15 July 2017; pp. 2406–2409.

24. Nuñez, E.H.; Parhar, S.; Iwata, I.; Setoguchi, S.; Chen, H.; Daneault, J.F. Comparing different methods of gait speed estimation
using wearable sensors in individuals with varying levels of mobility impairments. In Proceedings of the 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020;
pp. 3792–3798.

25. Arumukhom Revi, D.; De Rossi, S.M.M.; Walsh, C.J.; Awad, L.N. Estimation of Walking Speed and Its Spatiotemporal
Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Sensors 2021, 21, 6976.
[CrossRef]

26. Leng, L.; Zhang, J.; Khan, M.K.; Chen, X.; Alghathbar, K. Dynamic weighted discrimination power analysis: A novel approach
for face and palmprint recognition in DCT domain. Int. J. Phys. Sci. 2010, 5, 2543–2554.

27. Huang, C.; Zhang, F.; Xu, Z.; Wei, J. The Diverse Gait Dataset: Gait segmentation using inertial sensors for pedestrian localization
with different genders, heights and walking speeds. Sensors 2022, 22, 1678. [CrossRef]

28. Barth, J.; Oberndorfer, C.; Pasluosta, C.; Schülein, S.; Gassner, H.; Reinfelder, S.; Kugler, P.; Schuldhaus, D.; Winkler, J.; Klucken, J.;
et al. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial
sensor data. Sensors 2015, 15, 6419–6440. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JBHI.2019.2914940
http://www.ncbi.nlm.nih.gov/pubmed/31059461
http://dx.doi.org/10.1017/S0373463307004286
http://dx.doi.org/10.3390/s120506102
http://www.ncbi.nlm.nih.gov/pubmed/22778632
http://dx.doi.org/10.1109/JSEN.2017.2665678
http://dx.doi.org/10.1109/LSENS.2019.2946129
http://dx.doi.org/10.1109/JSEN.2020.2976102
http://dx.doi.org/10.1109/19.387322
http://dx.doi.org/10.3390/s21082836
http://dx.doi.org/10.3390/s20133656
http://www.ncbi.nlm.nih.gov/pubmed/32610668
http://dx.doi.org/10.1016/j.bspc.2020.102117
http://dx.doi.org/10.3390/s22020635
http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.3390/s21216976
http://dx.doi.org/10.3390/s22041678
http://dx.doi.org/10.3390/s150306419
http://www.ncbi.nlm.nih.gov/pubmed/25789489

Sensors 2022, 22, 3865 16 of 16

29. Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Inertial sensor-based stride parameter calculation
from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2014, 62, 1089–1097. [CrossRef] [PubMed]

30. Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards mobile gait analysis: Concurrent validity
and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors 2017,
17, 1522. [CrossRef]

31. Murata, Y.; Kaji, K.; Hiroi, K.; Kawaguchi, N. Pedestrian dead reckoning based on human activity sensing knowledge. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication,
Seattle, WA, USA, 13–17 September 2014; pp. 797–806.

32. Chen, C.; Zhao, P.; Lu, C.X.; Wang, W.; Markham, A.; Trigoni, N. Oxiod: The dataset for deep inertial odometry. arXiv 2018,
arXiv:1809.07491.

33. Yan, H.; Shan, Q.; Furukawa, Y. RIDI: Robust IMU double integration. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 621–636.

34. Khandelwal, S.; Wickström, N. Gait event detection in real-world environment for long-term applications: Incorporating domain
knowledge into time-frequency analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1363–1372. [CrossRef]

35. Kingma, D.P.; Mohamed, S.; Rezende, D.J.; Welling, M. Semi-supervised learning with deep generative models. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 3581–3589.

36. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
37. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach

for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 802–810.

38. Singh, S.P.; Sharma, M.K.; Lay-Ekuakille, A.; Gangwar, D.; Gupta, S. Deep ConvLSTM with self-attention for human activity
decoding using wearable sensors. IEEE Sens. J. 2020, 21, 8575–8582. [CrossRef]

39. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: Berlin/Heidelberg,
Germany, 2001; Volume 1.

40. Wang, J.; Perez, L. The effectiveness of data augmentation in image classification using deep learning. In Convolutional Neural
Networks for Visual Recognition; Stanford University: Stanford, CA, USA, 2017.

41. Blecha, T.; Soukup, R.; Kaspar, P.; Hamacek, A.; Reboun, J. Smart firefighter protective suit-functional blocks and technologies. In
Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17
August 2018; p. C4.

42. Erhan, D.; Courville, A.; Bengio, Y.; Vincent, P. Why does unsupervised pre-training help deep learning? In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 201–208.

http://dx.doi.org/10.1109/TBME.2014.2368211
http://www.ncbi.nlm.nih.gov/pubmed/25389237
http://dx.doi.org/10.3390/s17071522
http://dx.doi.org/10.1109/TNSRE.2016.2536278
http://dx.doi.org/10.1109/JSEN.2020.3045135

	Introduction
	Related Work
	Feature-Based Approaches
	Neural Networks
	Available Datasets

	Methods
	Data Acquisition: Sensors on a Single Leg
	Problem Formulation
	Deep Learning Methods
	Semi-Supervised Variational Autoencoders

	Experiments
	Experimental Protocol
	Conventional Feature-Based Methods
	Deep Learning Methods
	Method Comparison for a Single Foot Sensor
	Inter-Subject Variability
	Sensitivity to the Sensor Location
	Additional Biometric Information

	Discussion and Future Work
	Conclusions
	Details of Hyperparameter Selection
	References

