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Abstract. 	In mouse ovaries, the first wave of folliculogenesis perinatally starts near the medullary region, which directs the 
initial round of follicular growth soon after birth. At the same time, cortical primordial follicles start forming in the ovarian 
surface region, and then some are cyclically recruited for the second and subsequent rounds of follicular growth. Recent 
studies suggest different dynamics between the first and subsequent waves of follicular growth in postnatal ovaries. However, 
the phenotypic differences between these phases remain unclear. Here, we show direct evidence that XO female mice, a 
murine model for Turner Syndrome, lack the first wave of folliculogenesis. Our histopathological analyses of XX and XO 
littermates revealed a lack of anti-Müllerian hormone (AMH)-positive primary follicles in the XO ovaries by 4 days post 
partum (dpp). This loss of first follicles was also confirmed by histological bioassay for SRY-dependent SOX9 inducibility, a 
specific marker for the first follicular granulosa cells. In contrast, cortical primordial follicles formed properly in XO ovaries, 
and some of them formed primary and secondary follicles in the subcortical region by 7 dpp. They rapidly developed into late 
antral follicles, showing similarities to XX littermate ovaries by 21 dpp. These results suggest distinct X-monosomy effects 
between the first and subsequent waves of follicular growth, highlighting the high susceptibility to elimination of XO oocytes 
in the first wave of mammalian folliculogenesis.
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In mammals, the ovarian follicle consists of the oocyte and granulosa cells, which are surrounded by interstitial steroidogenic cells such 
as theca cells and ovarian interstitial gland cells [1, 2]. Forkhead box 
L2 (FOXL2) is known to play a central role in the differentiation 
and maintenance of granulosa cells in developing ovaries [3–6]. In 
XX gonads, FOXL2 is activated primarily in pre-granulosa cells 
at 12.0 days post coitum (dpc) in a female-specific manner, ap-
proximately one day later than the onset of two major testis factors, 
sex-determining region of chromosome Y (SRY) and SRY-box 9 
(SOX9), in XY gonads (11.0−11.25 dpc) [1, 7]. In a heat-inducible 
SRY transgenic line, pre-granulosa cells are shown to maintain 
SRY-dependent SOX9 inducibility (SDSI) by 11.5 dpc [8, 9], but 
most of them undergo a rapid loss of SDSI between 11.5−12.0 dpc, 
suggesting that the loss of SDSI is the earliest sign of pre-granulosa 
cell differentiation in XX gonads [9]. Most importantly, a certain 
population of FOXL2-positive pre-granulosa cells near the ovarian 
medullary region continuously maintain SDSI throughout the fetal 
stages, and then contribute to the initial round of folliculogenesis 
soon after birth. Such loss or maintenance of SDSI in pre-granulosa 

cells appears to be regulated in a manner independent from other 
ovarian factors, including FOXL2, wingless-type MMTV integration 
site family, member 4 (WNT4), or retinoic acids [9], suggesting the 
heterogeneity of pre-granulosa cells in developing mouse ovaries. 
In mammalian folliculogenesis, ovarian follicles can be categorized 

into two different granulosa cell populations: i) the first wave of 
folliculogenesis, which occurs in the medullary region soon after 
birth [10, 11], and ii) the subsequent waves of folliculogenesis near 
the surface cortical region, which contribute to the primordial follicle 
pool in the ovarian cortex [10, 12, 13]. In the first follicles, the 
pre-granulosa cells contribute to the first wave of follicular growth 
near the ovarian medullary region [10]. In contrast, the granulosa 
cells of the resting primordial follicles in the surface cortical region 
are newly recruited from the ovarian epithelia soon after birth.
A recent in vivo tracing experiment using a Foxl2-CreERT2 line 

revealed that the minimum developmental time from primordial to 
antral follicles is faster in the first follicles than in the subsequent 
waves of cortical follicles at later stages [11, 14]. As described 
above, the first follicles contain SDSI-positive granulosa cells [9], 
indicating the presence of sexually bipotential granulosa cells in 
the first folliculogenesis. This is consistent with the sex reversal 
phenotypes in the first folliculogenesis located in the centromedullary 
region of female pups with Foxl2-null or estrogen receptor (Esr) 
1/2-double null mutations [15–19]. Because the first follicles grow 
before individual sexual maturation, most of them undergo atresia 
prior to ovulation [11, 12]. In contrast, fertility drug treatment and in 
vitro fertilization make it possible to produce the next generation from 
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first wave follicles [20]. At present, the biological significance of the 
first wave of folliculogenesis remains unknown, partly because there 
are few models in which first wave follicles can be studied [11, 21].
XO mice (a murine model for Turner Syndrome) have only a 

single X chromosome and no second sex chromosome [22]. Gonadal 
dysgenesis is seen in the vast majority of human Turner Syndrome 
cases, and almost all affected individuals are infertile [23]. Unlike 
their human counterparts, XO mice are typically fertile, albeit with 
shortened reproductive life spans [24]. These differences are partially 
due to fewer genes’ escaping X chromosome inactivation and the 
expression of both X chromosome alleles in mice as opposed to 
humans [25]. Previous histological analyses showed that XO mice 
have normal ovarian development during fetal stages (14.5−18.5 
dpc), but only approximately half as many oocytes as XX mice 
postnatally due to excess atresia of oocytes around birth [26, 27]. 
In contrast to the extensive qualitative and quantitative analyses that 
have been conducted on the aberrant development of XO oocytes 
throughout the fetal to adult stages [26–30], little is known about 
the defects and susceptibilities at the somatic levels of the first and 
subsequent waves of folliculogenesis in XO ovaries.
In the present study, we conducted comparative histopathological 

analyses on postnatal ovaries in XX and XO female littermates. We 
also examined SDSI activity in the first follicles of the XO and XX 
females using a heat-inducible Sry transgenic line. We observed 
a complete lack of oocytes in the SDSI-positive first follicles in 
developing XO ovaries. The cortical follicle pool, in contrast, formed 
properly, and their subsequent waves of follicular growth lead to 
the recovery of the defective first folliculogenesis in XO ovaries 
by 21 dpp.

Materials and Methods

Animals
All animal experiments in this study were carried out in strict 

accordance with the Guidelines for Animal Use and Experimentation 
as set out by the University of Tokyo. The procedures were approved 
by the Institutional Animal Care and Use Committee of the Graduate 
School of Agricultural and Life Sciences of the University of Tokyo 
(approval ID: P13-764).
The XO mouse strain and the heat-inducible Sry transgenic line #44 

(with the HSP-Sry [Hsp70.3 promoter-driven murine Sry] transgene) 
[8] were used in this study (ICR/C57BL6-mixed background). The XO 
mouse strain (RBRC00872) was provided by the RIKEN BioResource 
Center through the National BioResource Project of the Ministry 
of Education, Culture, Sports, Science and Technology (MEXT) 
of Japan. Karyotyping of the XO line was conducted based on a 
previous report [31]. In the Sry-inducible transgenic (Hsp-Sry Tg) 
system, it is possible to induce XX testis sex reversal [8]. In this 
Hsp-Sry Tg system (referred to as “Tg” hereafter), heat shock (HS) 
treatment induces ectopic SRY expression (as described below), 
leading to transient SOX9 induction in XX Tg-supporting cells. The 
newborn stage, 0 day post partum (dpp), corresponds to 19.5 dpc. The 
phenotypes of XO and XX littermates were compared at each stage.

Organ culture and heat shock (HS) treatment
For in vitro HS treatment, neonatal ovaries were isolated from 2 

dpp pups in cold Dulbecco’s Modified Eagle’s Medium (DMEM; 
Sigma). Ovaries were subjected to HS treatment (43°C for 10 min) 
in a 0.2-ml thin-walled PCR tube, as described previously [9]. After 
HS treatment, all samples were cultured on Nuclepore Track-Etched 
Membranes (Whatman) in DMEM containing 10% fetal bovine serum 
at 37°C for 9 h before fixation in 4% paraformaldehyde (PFA) in 
phosphate buffered saline (PBS).

Histology and immunohistochemistry
The samples were fixed in 4% PFA-PBS at 4°C for 12 h, dehydrated, 

and embedded in paraffin. Serial sections (approximately 4 μm in 
thickness) were used for immunostaining for markers, as described 
previously [21, 32]. The sections were incubated with anti-AMH 
(1:800 dilution; sc-6886; Santa Cruz), anti-FOXL2 (1:600 dilution; 
ab5096; Abcam), anti-mouse Vasa homologue (MVH; formally 
DEAD box polypeptide 4 [Ddx4]; 1:2,000 dilution; ab13840; Abcam), 
anti-SOX9 (1:10,000 dilution; AB5535; Merck Millipore), or anti-3β-
hydroxy-delta-5-steroid dehydrogenase (3β-HSD; 1:200; sc-30821; 
Santa Cruz) antibody at 4°C for 12 h. The reaction was visualized 
with a biotin-conjugated secondary antibody in combination with 
the Elite ABC kit (Vector Laboratories) or by Alexa-Fluor-488/594-
conjugated secondary antibodies (Invitrogen).
For morphometric analyses, anti-AMH-stained sectioning samples 

with maximum ovarian area were photographed, and the numbers of 
AMH-positive follicles were estimated in each image. The ovarian 
area was also measured histologically using ImageJ 1.48V software 
(National Institutes of Health, Bethesda, MD, USA), and the relative 
numbers of AMH-positive follicles per 100 μm2 of ovarian area 
were estimated.

Statistical analysis
Quantitative data are represented as the means ± SEM. Student’s 

unpaired t-test was performed for single comparison between XO 
and XX groups. Statistical significance was assessed at a threshold 
P-value of 0.05 or less.

Results

XO ovaries lack the first wave of folliculogenesis
To examine the first folliculogenesis in XO mice, we conducted 

immunohistochemical staining of ovaries at 4 dpp from XO and XX 
mice of the same litters by using anti-MVH (oocyte marker), anti-AMH 
(activated primary follicle marker), anti-FOXL2 (granulosa/theca cell 
marker), or anti-3β-HSD (steroidogenic cell marker) antibody (Fig. 
1). In XX ovaries, MVH-positive oocytes were detected throughout 
the whole ovarian region, including the medullary region. During 
the first wave of folliculogenesis, AMH-positive follicles were 
located only in the medullary region (“XX” in Fig. 1A, B), which 
is consistent with previous reports [21, 33, 34]. However, in XO 
ovaries, AMH-positive follicles were almost not detected throughout 
the entire ovarian region (numbers of AMH-positive follicles per 
100 μm2 = 0.09 ± 0.09 in XO ovaries [n = 3] versus 1.08 ± 0.14 
in XX ones [n = 7], P < 0.01; also see “XO” in Fig. 1A, B). In XO 
ovaries, MVH-positive oocytes were observed in the cortical regions, 
similar to XX ovaries, but there were no MVH-positive oocytes in 
the medullary region (Fig. 1B). In XX ovaries, FOXL2-positive 
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and 3β-HSD-positive follicles were detected in the centromedullary 
region (Fig. 1C). In the centromedullary region of XO ovaries, 
despite the lack of MVH-positive oocytes, FOXL2-positive and 
3β-HSD-positive ovarian somatic cells were observed (Fig. 1C), 
suggesting presumptive pre-granulosa cells lacking oocytes. These 
data suggest a severe defect in the first folliculogenesis in XO ovaries, 
but no appreciable defects in the formation of a cortical primordial 
follicle pool in the surface cortical region.

FOXL2/SDSI double-positive granulosa cells completely lack 
oocytes in the medullary region of XO ovaries
Our previous study demonstrated that, during the fetal stages, 

SDSI-positive granulosa cells are located near the medullary region, 
and they contribute to the first wave of folliculogenesis in the medul-
lary region of postnatal ovaries [1, 9]. To examine the distribution 
of SDSI-positive follicles in neonatal XO ovaries, XO and XX Tg 
were subjected to HS treatment (43°C, 10 min) at 2 dpp to induce 
ectopic SRY expression (n = 4 for each karyotype). After the 9-h 
organ culture, SRY-dependent SOX9-inducible patterns were examined 
via anti-SOX9 immunohistochemistry.
In the 2-dpp XX Tg ovaries, SDSI-positive (i.e., SOX9-positive) 

granulosa cells were predominantly observed in the AMH-positive 
primary follicles during the first wave of folliculogenesis in the 
medullary region (“XX Tg” in Fig. 2), in agreement with previous 
data [9]. In XO ovaries, SDSI/FOXL2 double-positive granulosa 
cells were detected in the medullary region (“XO Tg” in Fig. 2), 
but they completely lacked oocytes, leading to AMH-negative/
FOXL2-positive cell clusters located within the medullary region 
(Figs. 1B, 1C, 2B, 2C). These results suggest that the pre-granulosa 
cells in the medullary region of XO ovaries lose most of their oocytes 
in the first wave of folliculogenesis.

Defective phenotypes of the first folliculogenesis in XO ovaries 
are rescued by the second and subsequent waves of follicular 
growth
In 7-dpp XO ovaries, AMH-positive primary follicles were first 

detected in the sub-cortical region, although their number in XO 
ovaries appeared to be smaller than in XX ovaries (Fig. 3A, B). At 
14 and 21 dpp, AMH-positive follicles were detected in almost the 
entire medullary region in XO ovaries, similar to what was observed 
in their XX littermates (Fig. 3C, D). In both XO and XX ovaries, 
the early and late antral follicles had the fastest-growing oocytes 
at 14 and 21 dpp, respectively, and by 21 dpp, XX and XO ovaries 
showed no apparent histological differences in the developmental 
stages of the fastest-growing follicles. Moreover, anti-3β-HSD 
staining showed proper formation of the presumptive theca cells 
and ovarian interstitial gland cells around the early antral follicles in 
XO ovaries (Fig. 3E). These results suggest that subsequent waves 
of follicular growth are recruited and activated at 7 dpp, leading to 
recovery from defects in the first follicles of XO ovaries by 21 dpp.

Discussion

Our comparative analyses of XX and XO female littermates 
revealed that XO ovaries have neither AMH-positive primordial 
follicles nor MVH-positive oocytes in the medullary region by 4 dpp 

(Fig. 1A, B; see also Fig. 4). Because the first wave of folliculogenesis, 
with AMH-positive granulosa cells, initiates preferentially in the 
ovarian medullary region at 2−4 dpp [21, 33, 34], our findings 
suggest defects and/or delay in the first wave of folliculogenesis in 
XO ovaries. In our previous study, SDSI-positive granulosa cells were 
maintained near the mesonephros throughout the fetal stages, and 
then contributed specifically to the initial wave of folliculogenesis 
soon after birth [9]. The present study, using an Hsp-Sry Tg line, 
showed that SDSI-positive granulosa cells lose oocytes, leading to 
clusters of AMH-negative and FOXL2/SDSI-double-positive cells in 
the medullary region by 4 dpp. These findings suggest selective loss 
of XO oocytes rather than a delay in the first wave of folliculogenesis 
in neonatal XO ovaries.
Previous extensive morphological studies showed no appreciable 

differences in cell death of XO oocytes before 18.5 dpc, followed by 
a rapid reduction in the number of oocytes throughout the ovarian 
parenchyma at birth [24, 27]. During female germ cell development, 
X chromosome reactivation for the erasure of genomic imprinting 
occurs at 10.5 dpc [35–37], suggesting that XO germ cells express 
approximately half the dose of X-chromosome genes of XX wild-type 
germ cells at 10.5 dpc. Moreover, an asynapsed single X-chromosome 
occurs in some of the XO oocytes at prophase I [28, 29, 38, 39]. A 
recent study suggested that asynapsed chromosomes trigger oocyte 
elimination at diplonema through γH2AFX-dependent transcriptional 
silencing [30], in which a deletion or point mutation of H2afx restores 
oocyte numbers in XO females to wild-type XX levels. These findings 
suggest that such oocyte elimination may be caused mainly by a 
synaptic failure, rather than the half-dosage of X-chromosome genes, 
in XO oocytes of neonatal ovaries.
Several previous studies showed no appreciable regional differences 

in oocyte death in XO ovaries, in which XO oocytes appear to be lost 
in the surface region rather than the medullary region [27, Fig. S7 in 
30]. Taken together, these findings suggest that the oocyte elimination 
of the first follicles appear not to be directly associated with the 
intrinsic differences between XO oocytes near the medullary and the 
cortex region of the developing ovaries. In the first folliculogenesis, 
the oocytes near the medullary region directly contribute to activated 
follicles without a resting state, in contrast to the entry of cortical 
follicle into the dormant state [10, 11]. Such continuous processes 
of follicular formation/activation in the medullary region shortly 
after birth, together with the presence of SDSI-positive granulosa 
cells, may be associated with the complete lack of XO oocytes in 
the first folliculogenesis. Further studies on the distinct molecular 
bases of the first and subsequent waves of the follicles are required 
to resolve this question.
Our study also showed aberrations in the first wave of folliculo-

genesis in the medullary region, but the second and subsequent waves 
of follicular growth occurred in the subcortical region of XO ovaries 
by 7 dpp. Subsequently, there were no appreciable differences in the 
fastest-growing antral oocytes between XO and XX ovaries by 21 dpp 
(Fig. 3). A previous report using a toxin receptor-mediated conditional 
cell knockout (TRECK) system suggested that new follicles are 
recruited from the subcortical region of the ovaries, with depletion 
of the first AMH-positive follicles in the centromedullary region 
[21]. As Amh-/- ovaries showed increased recruitment of primordial 
follicles [40, 41], it is likely that the loss of AMH in first follicles 
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induces rapid recruitment from the subcortical region, leading to the 
recovery of first follicle defects in XO ovaries by 21 dpp.
In the interstitial region of XO ovaries, 3β-HSD-positive theca 

cells appeared to be properly formed at 14 dpp (Fig. 3E). A recent 
study revealed that in response to oocyte-derived GDF9 signals, 

granulosa cells express Desert and Indian Hedgehog signaling factors 
to induce theca cell differentiation around each growing follicle 
[42], suggesting proper granulosa-theca cell interactions in the 
early antral follicles of XO ovaries. Moreover, despite the loss of 
the first folliculogenesis, 3β-HSD-positive presumptive ovarian 
interstitial gland cells were also formed in XO ovaries (Fig. 3E), in 
sharp contrast to the drastic reduction in 3β-HSD-positive ovarian 

Fig. 1.	 XO ovaries lack the first wave of folliculogenesis. Anti-MVH 
(oocyte marker), AMH (activated primary follicle marker), 
FOXL2 (granulosa/theca cell marker) or 3β-HSD (steroidogenic 
cell marker) immunostaining of XO and XX littermate ovaries at 
4 days post partum (dpp). (A, B) In XO ovaries, MVH-positive 
oocytes are restricted to the surface cortical region, and there 
are no AMH-positive follicles. In XX ovaries, MVH-positive 
oocytes are scattered throughout the whole region, and AMH-
positive follicles are enriched in the centromedullary region. (C) 
The centromedullary region, as well as surface cortical region, 
of XO ovaries is occupied by FOXL2-positive and 3β-HSD-
positive ovarian somatic cells corresponding to pre-granulosa 
and steroidogenic theca/interstitial gland cells. In the normal 
XX ovaries, FOXL2-positive and 3β-HSD-positive follicles are 
mainly found in the centromedullary region. Note the increased 
size of the presumptive newly recruited follicles in the surface 
cortex region of the XO ovaries even at 4 dpp. Broken rectangles 
in (A) show the position of (B). Dotted lines in (B) and (C) 
indicate the border of AMH-negative follicles in the ovarian 
surface region. Scale bars = 100 μm in (A); 50 μm in (B, C).

Fig. 2.	 Distribution patterns of SRY-dependent SOX9-inducibility 
(SDSI)-positive granulosa cells in the ovarian medullary region 
of XO and XX Hsp-Sry Tg neonates. XO and XX Hsp-Sry Tg 
ovaries (2 dpp) were subjected to HS treatment (43°C, 10 min) to 
induce ectopic transient SRY expression, and then cultured for 9 h. 
(A, B) Anti-SOX9 (red)/FOXL2 (green) double immunostaining 
of XO and XX ovarian samples, showing the presence of SDSI 
(SOX9)-positive granulosa cells in the centromedullary region 
of both XO and XX ovaries. (C, D) Anti-SOX9 (red or brown)/
AMH (green) immunostaining of XO and XX ovarian samples, 
showing SDSI-positive granulosa cells in the centromedullary 
region of both XO and XX ovaries. SDSI (SOX9)-positive 
granulosa cells are enriched in the first wave of AMH-positive/
FOXL2-positive medullary follicles in XX ovaries at 2 dpp 
(arrowheads in right plates). In XO ovaries of the same litter, 
the SDSI-positive granulosa cells show AMH-negative/FOXL2-
positive cell clusters in the medullary region (arrowheads in left 
plates), and they lack follicular structures due to a lack of oocytes. 
Broken rectangles in (A) show the position of (B). Dotted lines 
indicate the border between the cortical and medullary regions. 
Asterisk, mesonephric region. OE, ovarian epithelium. Scale bars 
=100 μm in (A); 20 μm in (B–D).
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interstitial glands in the ablation of the AMH-positive granulosa 
cells of the first folliculogenesis by the TRECK system [21]. The 
differences between the phenotypes of these models may be explained 
by the contribution of the pre-granulosa cells in the first follicles to 

the proper formation of ovarian interstitial glands in the interstitial 
region of the XO ovaries, in contrast to the ablation of almost all 
of the AMH-positive granulosa cells in the first follicles by the 
TRECK system.
In conclusion, the present data provide direct evidence of severe 

defects in the first folliculogenesis in XO ovaries, while, in sharp 
contrast, the cortical follicle pool still forms properly, leading to an 
escape from female sterility through subsequent waves of follicular 
growth. Such distinct susceptibilities to X-monosomy effects on 
the first vs. subsequent folliculogenesis highlight the importance of 
studying the molecular mechanisms of both the first and subsequent 
waves of follicular formation/activation in mammalian postnatal 
ovaries.
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Fig. 3.	 Recovery of follicular growth in XO ovaries at 7 dpp. (A–D) 
Anti-AMH immunostaining of XO and XX ovaries at 7, 14, and 
21 dpp. At 7 dpp, AMH-positive follicles are first detectable in 
the medullary side of the sub-cortical region in XO ovaries (A, 
B). In XO and XX ovaries, the early and late antral follicles are 
observed at 14 and 21 dpp (C, D), respectively. (E) Anti-3β-HSD 
immunostaining of XO and XX ovaries at 14 dpp, showing the 
proper formation of presumptive ovarian interstitial gland cells 
(arrows) and internal theca cells (arrowheads) in both ovaries by 
14 dpp. In (C–E), the low-magnification images of each ovary 
are shown in the insets at the upper right corner, while the small 
arrows in the insets indicate early and late antral follicles that are 
magnified as the fastest-growing oocytes in each plate. Scale bars 
= 100 μm in (A); 50 μm in (B–E).

Fig. 4.	 Schematic representation of the defective first folliculogenesis 
in XO ovaries. In XX ovaries (right), the SDSI/FOXL2 double-
positive cells (green cells with solid outline) contribute to the 
first wave of AMH-positive follicle formation in the medullary 
region (yellow). In the cortical region, a primordial follicle pool 
(red) is formed by 7 dpp. In XO ovaries (left), the oocytes are 
eliminated near the SDSI/FOXL2 double-positive pre-granulosa 
cells, leading to a loss of the first follicles in the medullary region 
by 4 dpp. In the subcortical region, AMH-positive follicles are 
recruited at 7 dpp, which results in recovery from the defects in 
follicular growth of XO ovaries by 21 dpp. The green cells show 
FOXL2-positive somatic cells, while red and yellow cells show 
oocytes. OE, ovarian epithelium; SDSI, SRY-dependent SOX9 
inducibility. Figure adapted from Suzuki et al. (2015) [1].
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