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Looking beyond the hippocampus: old
and new neurological targets for
understanding memory disorders

John P. Aggleton

School of Psychology, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, UK

Although anterograde amnesia can occur after damage in various brain sites,

hippocampal dysfunction is usually seen as the ultimate cause of the failure

to learn new episodic information. This assumption is supported by anatom-

ical evidence showing direct hippocampal connections with all other sites

implicated in causing anterograde amnesia. Likewise, behavioural and clini-

cal evidence would seem to strengthen the established notion of an episodic

memory system emanating from the hippocampus. There is, however,

growing evidence that key, interconnected sites may also regulate the hippo-

campus, reflecting a more balanced, integrated network that enables

learning. Recent behavioural evidence strongly suggests that medial dience-

phalic structures have some mnemonic functions independent of the

hippocampus, which can then act upon the hippocampus. Anatomical find-

ings now reveal that nucleus reuniens and the retrosplenial cortex provide

parallel, disynaptic routes for prefrontal control of hippocampal activity.

There is also growing clinical evidence that retrosplenial cortex dysfunc-

tions contribute to both anterograde amnesia and the earliest stages of

Alzheimer’s disease, revealing the potential significance of this area for clini-

cal studies. This array of findings underlines the importance of redressing

the balance and the value of looking beyond the hippocampus when seeking

to explain failures in learning new episodic information.
1. A tragic start
On 13 June 1886, the eminent psychiatrist Bernhard von Gudden walked with

Ludwig II, King of Bavaria, by the side of Lake Starnberg near Munich. Neither

was to return. Both Bernhard von Gudden and Ludwig, also known as ‘the

dream king’, were found floating in the lake. Whether it was murder, an acci-

dent or suicide remains a mystery [1]. Gudden was a brilliant anatomist who,

before his untimely death, had described in new levels of detail the pathways

linking the hippocampus to the mamillary bodies [2], a structure within the

medial diencephalon. Just 10 years after Gudden’s untimely death, the first

functional implications of these anatomical findings were uncovered by his

son, Hans Gudden [3].

In 1896, Hans Gudden described pathological changes in the brains of

alcoholics [3], some of whom suffered from Korsakoff’s syndrome [4]. In this

amnesic condition, there is both a failure to remember events from before the

onset of the amnesia (retrograde amnesia) and a failure to learn new events

after the onset of the amnesia (anterograde amnesia). Gudden reported that

the mamillary bodies were atrophied in those alcoholic cases with probable

Korsakoff’s syndrome, a discovery subsequently confirmed in numerous neuro-

pathological studies [5–7]. It has also emerged that Korsakoff’s syndrome is

almost always accompanied by other medial diencephalic pathologies, leading

to much debate over the causes of the amnesia [5–7]. Current evidence now

favours Hans Gudden’s original suspicion, with the pathway from the mamillary

bodies!mamillothalamic tract! anterior thalamic nuclei seen as a leading

cause of the anterograde amnesia [7–9].
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Despite growing numbers of studies on Korsakoff’s syn-

drome in the first half of the twentieth century, the focus

gradually turned to the hippocampus and its adjacent cortical

areas (the parahippocampal region). The Russian neurologist

Bekhterev [10] is often credited as the first person (in 1900) to

appreciate the involvement of the hippocampus in memory.

Bekhterev’s research was, however, suppressed after his

death, quite possibly on the direct orders of Stalin [11].

Indeed, there are grounds to suppose that Stalin himself

ordered Bekhterev’s death following unguarded remarks

concerning the dictator [11].

The study that truly pushed the hippocampus into the fore-

front of memory research was the description of the amnesic

patient H.M. [12,13]. The amnesic H.M., or Henry Mollaison

as we discovered after his death in 2008, is undoubtedly the

most famous single-case in neuropsychology. In 1953, the sur-

geon William Scoville bilaterally removed tissue in the medial

temporal lobes of H.M.’s brain in an attempt to treat his epi-

lepsy [12]. The descriptions of his profound and permanent

anterograde amnesia, which contrasted with his preserved

short-term memory, semantic knowledge and IQ, were

groundbreaking in the way they helped to establish divisions

across cognitive domains [12,14]. Ironically, H.M. always

remained unaware of his fame.

Studies on the patient H.M. are also often credited as pro-

viding the first convincing evidence that the hippocampus is

vital for new episodic memory. The story is in reality more

complex and even more tragic. Henry Mollaison was, in

fact, one of a group of nine patients that received bilateral

removals of medial temporal lobe tissue [12]. The procedure

in the other eight patients was intended to relieve psychiatric

problems. Subsequent group comparisons based on the

amount of bilateral hippocampal tissue thought to have

been removed led to the conclusion that the loss of this struc-

ture was especially associated with memory failure ([13], but

see [15]). Sadly, the experimental surgeries failed to resolve

the patients’ psychiatric problems. Not surprisingly, such

procedures ceased, leaving H.M. unique.

Despite Hans Gudden’s lead, which initially directed

attention to the mamillary bodies, it is the hippocampus

that dominates research into memory loss and memory

formation. Although the groundbreaking clinical study invol-

ving H.M. did not, in fact, provide definitive evidence for the

importance of the hippocampus [15], the intervening years

have repeatedly strengthened the view that this structure is

vital for learning episodic information [16,17]. As a conse-

quence, researchers have long held a hippocampal-centred

view of long-term memory. There are, for example, approxi-

mately 30 published papers linking the hippocampus with

memory for every one paper that links medial diencephalic

sites with memory (ISI, Web of Science).

In this Perspective, anatomical, behavioural and clinical

findings are integrated to highlight the importance of sites

beyond the medial temporal lobe for episodic memory. It is

argued that these extra-hippocampal sites should be carefully

considered when trying to understand how diseases, includ-

ing dementias, can have such devastating effects on memory.

It is also argued that many of these sites have important roles

for hippocampal function, rather than primarily acting as a

downstream relay from the hippocampus. Hereafter in this

review, the term hippocampus refers to the CA fields and

the dentate gyrus, whereas the term hippocampal formation

additionally includes the subicular cortices.
2. Anatomical insights
Clinical studies have shown that more than one brain region

is required for normal long-term memory. As a consequence,

a critical anatomical question is whether the hippocampal

formation is connected to these other sites repeatedly impli-

cated in anterograde amnesia [18–20]. Among these other

sites, the mamillary bodies and anterior thalamic nuclei

have already been mentioned, but additional sites linked

with anterograde amnesia include the retrosplenial cortex

within the cingulate region [21–23], the laterodorsal thalamic

nucleus [21] and nuclei in the basal forebrain, a region that

includes the septum and diagonal band [21,24].

All of these structures linked with amnesia receive direct

inputs from the hippocampal formation (figure 1), many of

which arise from the subicular cortices [18,20]. These same

structures also project directly back upon the hippocampal for-

mation, with the exception of the mamillary bodies (figure 1).

In the case of the mamillary bodies, the majority of its projec-

tions pass via the mamillothalamic tract to the anterior

thalamic nuclei. These thalamic nuclei are densely and recipro-

cally interconnected with the retrosplenial cortex. In addition,

both the anterior thalamic nuclei and the retrosplenial cortex

project to the hippocampal formation, terminating in the subi-

cular cortices [27,28]. In this way, the hippocampal formation,

mamillary bodies, anterior thalamic nuclei and retrosplenial

cortex form a serial network (figure 1a), initially referred to

as Papez’ circuit [25], but subsequently called the Delay and

Brion circuit [5] when it is more explicitly linked to memory

and amnesia. These sites are thought to form an intercon-

nected system for episodic memory under the principal

control of the hippocampal formation [5,25]. This notion is

emphasized by use of the term circuit, which implies a

return back to the start point (figure 1a).

Two additional points emerge from this brief consider-

ation of anatomy. The first concerns the strategic status of

the fornix. This tract connects the hippocampal formation

with other sites linked to amnesia, the retrosplenial cortex

being the sole exception ([19,20]; figure 1). For this reason,

the consequences of fornix damage on memory should

prove highly informative (see §4). The second point concerns

the reciprocal hippocampal connections with the basal fore-

brain, which includes the septum and diagonal band. These

latter nuclei are not closely connected with the mamillary

bodies or the anterior thalamic nuclei, suggesting that they

might represent a quite different type of hippocampal

interaction (figure 1b). One difference is that these basal fore-

brain nuclei, which are the principal sources of the extrinsic

cholinergic projections to the hippocampal formation, have

diffuse termination sites that reach across the structure

[18,29]. By contrast, the projections from the anterior thalamic

nuclei are confined to the subicular cortices [28]. The impli-

cation is that these basal forebrain inputs have broad

modulatory roles, lacking the fine resolution associated

with high information throughput. By contrast, the hippo-

campal connections with the medial diencephalon appear

to be better designed for information transfer. There is, for

example, segregation rather than convergence in the organiz-

ation of the projections from the hippocampal formation to

the anterior thalamus and mamillary bodies [30,31]. The

sources of these projections from within the subiculum are

separated by laminar, as well as by their location along the

proximal—distal axis of the subiculum [31,32]. Further
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Figure 1. Interconnections between sites implicated in anterograde amnesia. (a) Depiction of the connections (solid lines) that comprise the Papez circuit [25], upon
which the Delay and Brion memory circuit [5] was placed, with additional connections from the ‘extended hippocampal system’ [26] shown by dashed lines. (b) A
more extensive (though still incomplete) depiction of the direct connections between cores sites implicated in episodic memory. ATN, anterior thalamic nuclei; BF,
basal forebrain (including septum and diagonal band); CING, cingulate cortex (including retrosplenial cortex); HPC/SUB, hippocampal formation (including subicu-
lum); LD, laterodorsal thalamic nucleus; MB, mamillary bodies; PARAH, parahippocampal region; PFC, prefrontal cortex; RE, nucleus reuniens of the thalamus; RSC,
retrosplenial cortex; TNG, tegmental nucleus of Gudden.
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segregation is found in the projections from the mamillary

bodies to the anterior thalamic nuclei [33]. The large numbers

of fibres in the projections from the hippocampal formation

to the mamillary bodies, and from there to the anterior

thalamus [34] are again consistent with a role in information

transfer, despite the likely compaction of hippocampal inputs

within the medial diencephalon.

A further issue concerns the interactions between the hip-

pocampal formation and prefrontal cortex, assumed to be

important for the cognitive control of mnemonic processes.

While projections from the hippocampal formation (from

CA1 and the subiculum) terminate in parts of the medial

and orbital frontal prefrontal cortex [20], reciprocal connec-

tions to the hippocampal formation appear very limited

[20,35]. Consequently, there is particular interest in the dis-

covery of two, dysnaptic routes from prefrontal cortex to

the hippocampus [36]. One route is via the retrosplenial

cortex, the other route is via nucleus reuniens of the thala-

mus. Nucleus reuniens, which is located ventral to the

anterior thalamic nuclei, has very dense projections that ter-

minate in CA1, as well as the subiculum [36]. Thus, based

on their patterns of termination, it can be seen that the

three subcortical sites under consideration (the basal
forebrain, the anterior thalamic nuclei and nucleus reuniens)

have different types of interactions with the hippocampal

formation, suggesting different roles.
3. Behavioural insights
The cell loss in amnesia very rarely respects neuroanatomical

boundaries (see §4). One solution has been to examine the

impact of highly selective brain lesions in other animals. At

the same time, there are drawbacks. To test human episodic

memory, participants are typically required to recall infor-

mation such as word lists or abstract designs. This recall is

often assumed to require an active, introspective search

through past time [37]. Unfortunately, we have no way of

testing for this same introspective process in animals.

While it had been supposed that recognition memory could

be used to model amnesia, as it is often impaired in amnesia

and can readily be tested in both human and animal subjects

using comparable methods [17], this approach has been

challenged. There are, for example, amnesics who show a

disproportionate sparing of recognition when compared

with their loss of recall [38–40].
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An alternative approach is to devise behavioural tasks that

capture key aspects of episodic memory, without having to

assume the presence of active recall. Such tasks typically involve

demonstrating that the animal has simultaneously learnt the

what? where? and when? of a singular event [41–43]. Studies

using these complex problems in rodents have demonstrated

the importance of the hippocampal formation and fornix for

‘episodic-like’ memory, though cholinergic lesions of the

medial septum and diagonal band can spare performance

[43–45]. One obvious limitation is that a deficit in just one of

the three elements (what? where? and when?) may be sufficient

to impair the entire task, akin to a domino effect (but see [45]).

A different strategy is to explore tasks more specific for

spatial or temporal memory. Disconnection methods have

shown that the hippocampal formation requires the anterior

thalamic nuclei and the retrosplenial cortex to support spatial

learning [46–48]. Likewise, the anterior thalamic nuclei work

in close conjunction with the retrosplenial cortex [46]. By

combining lesions, it has also been possible to show how

the fornix and the mamillary bodies are both similarly

needed for object-in-place learning by monkeys [49], a task

thought to tax aspects of episodic memory. While these be-

havioural findings establish functional links in distributed

systems, they say nothing about the direction of importance.

The prevailing assumption has been that these other sites are

primarily controlled by the hippocampus [5,35]. This view

has been challenged.

One challenge came from comparisons between the func-

tions of structures within the medial temporal lobe, where the

dominant view had placed the hippocampal formation on the

top of a functional and anatomical hierarchy [17]. There is

now considerable evidence that the perirhinal cortex can sup-

port recognition memory, independent of the hippocampus

[20,35]. In particular, experiments show that the perirhinal

cortex can provide a familiarity signal to help differentiate

novel from repeated stimuli [35,50–52].

Initial evidence that the mamillary bodies and anterior

thalamic nuclei could also provide new memory-related infor-

mation, which would then impact upon the hippocampal

formation, was first signalled by research on head direction

cells. These cells act like a compass, providing information

about the direction an animal is facing [53]. Head direction

cells occur within brain structures strongly linked to memory

and amnesia [54], thus they are found within parts of the

mamillary bodies, anterior thalamic nuclei, laterodorsal

thalamic nucleus, retrosplenial cortex and postsubiculum (pre-

subiculum) of the hippocampal formation [53]. Furthermore,

the head direction signals in the lateral mamillary nucleus

and anterodorsal thalamic nuclei are upstream of the hippo-

campal formation, such that the loss of these diencephalic

sites can abolish the hippocampal head direction signal

[55–57]. While lesions of the mamillary bodies do not appear

to affect hippocampal place cells [57], anterior thalamic lesions

degrade the spatial coherence and information content from

hippocampal place fields [58]. Consequently, the integrity of

the anterior thalamic nuclei is required for broad aspects of

hippocampus spatial processing.

The next evidence takes us back to Bernhard von Gudden.

The medial mamillary bodies are densely interconnected with

the ventral tegmental nucleus of Gudden, but these tegmental

nuclei do not receive inputs from the hippocampal formation.

Thus, the finding by Vann [59,60] that lesions in both the ven-

tral tegmental nucleus and the mamillary bodies disrupt
the same spatial learning tasks, which are also sensitive to

hippocampal damage, suggests further upstream influences.

Stronger support for this view comes from the surprising find-

ing that selectively disconnecting the fornical projections to the

mamillary bodies has limited effects on standard spatial learn-

ing tasks [60,61]. Critically, lesions of the mamillothalamic tract

and ventral tegmental nucleus of Gudden are significantly

more disruptive to tests of spatial memory than postcom-

missural fornix lesions, which selectively disconnect the

hippocampal!mamillary body inputs [62]. These findings

by Vann [59,60] challenge the standard serial system view,

where hippocampal inputs drive mamillary body function

([26]; figure 1a). While it might be supposed that this sparing

occurs because the direct projections from the hippocampal

formation to the anterior thalamic nuclei can compensate for

the loss of the hippocampal inputs to the mamillary bodies

(figure 1), this account will not explain why the same spatial

tasks are appreciably more sensitive to lesions of the mamillary

bodies or the mamillothalamic tract [59,60]. These results are,

therefore, inconsistent with the standard hippocampal-centred

view as they reveal the significance of non-hippocampal inputs

into this system.

It is important to appreciate that these lesion findings do

not merely reflect a loss of head direction information. This

possibility can be excluded because the ventral tegmental

nucleus of Gudden is not part of the head direction system.

Furthermore, lesions of the mamillary bodies and anterior

thalamic nuclei that target the head direction areas within

these structures have relatively mild effects on spatial learn-

ing when compared with more complete lesions of these

same structures [54,60,63–65].

An additional way in which the anterior thalamic nuclei

may regulate hippocampal activity has emerged from studies

of neurogenesis. High-frequency stimulation in the anterior

thalamic nuclei can increase neurogenesis in the dentate gyrus

of the rodent hippocampus [66,67] and aid the performance of

memory tasks [68]. Furthermore, pharmacological lesions of

the anterior thalamic nuclei suppress hippocampal neurogen-

esis [69]. These findings are particularly intriguing given the

considerable evidence that hippocampal neurogenesis has an

important role in learning and memory [70].

Finally, based on its prefrontal connectivity, it would

seem that nucleus reuniens is particularly well placed to

moderate hippocampal activity [36]. Consistent with this

view, lesions of nucleus reuniens can decrease behavioural

flexibility and disrupt strategy learning [71–73]. Other

lesion effects include deficits in radial-arm maze performance

[74,75], slower water-maze location learning [74] and a dis-

ruption of long-term spatial consolidation [75]. A particular

role in processing the information from the prefrontal

cortex to the hippocampus that regulates context specificity

has also been discovered [76]. These studies reveal the emer-

ging importance of nucleus reuniens for hippocampal

processing [72], though with functions different from those

attributed to the anterior thalamic nuclei [77].
4. Clinical insights
As noted in the Introduction, the mamillary bodies were first

implicated in Korsakoff’s syndrome by Hans Gudden in

1896. However, from just studying Korsakoff’s syndrome, it

has not been possible to determine whether mamillary
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body damage is sufficient to induce amnesia. Other clinical

information has since strengthened the argument that these

diencephalic nuclei are closely involved in learning and

memory [8].

One remarkable set of findings comes from two unfortu-

nate patients who incurred traumatic injuries to the base of

the brain after an object was forced up their nose. In the

case of B.J. [78] the object was a billiard cue, in the case of

N.A. [79] the object was a miniature fencing foil. Patient B.J.

suffered selective bilateral damage to his mamillary bodies,

resulting in a relatively mild, anterograde amnesia [78,80].

His recognition memory appeared to be largely spared.

Patient N.A. suffered unilateral diencephalic damage that

included his left mamillothalamic tract, resulting in a loss

of verbal long-term memory. In both cases, the principal def-

icit was a loss of episodic memory. These findings concur

with an extensive review of thalamic strokes [9], which

found that damage to the mamillothalamic tract was the

best predictor of memory loss.

Further evidence comes from studies of patients with col-

loid cysts in the third ventricle. These cysts often adhere to

the fornix and their removal is sometimes associated with

damage to this tract. Severance of the fornix, which will dis-

connect the hippocampal formation from both the medial

diencephalon and basal forebrain, is consistently associated

with amnesia [81,82]. In one of the largest studies of colloid

cyst patients, volumetric measures were taken in a range of

medial temporal and diencephalic sites [38]. The degree of

mamillary body atrophy consistently correlated with the abil-

ity to recall episodic memory [38]. By contrast, recognition

memory seemed largely unaffected by mamillary atrophy

[38]. Further tests showed that the relatively intact recog-

nition memory performance was due to a sparing of

familiarity-based recognition, while recollective-based recog-

nition remained linked to the degree of mamillary body

atrophy [83]. The implication is that the mamillary bodies

are required for the normal recall of episodic information,

while the familiarity signal, which can support recognition

memory, is dependent on other structures. This finding is,

in turn, closely linked to parallel evidence that the hippo-

campus is particularly important for recollective-based, but

not familiarity, recognition [26,51].

It is possible to use diffusion tensor imaging (DTI) to

quantify the status of specific white matter tracts. Using

this approach, it has been shown that fornix integrity corre-

lates with episodic memory in the normal population,

though not with familiarity-based recognition [84]. This dis-

sociation reflects that found in the colloid cyst patients with

atrophied mamillary bodies [38,83]. Using a similar DTI-

based methodology, this same relationship between fornix

status and memory is found in the elderly, though this corre-

lation breaks down in matched elderly patients with mild

cognitive impairment [85,86]. These imaging studies not

only show how vulnerable the fornix is in this disorder but

also provide intriguing evidence that there is a redistribution

of cognitive function away from the fornix to less compro-

mised pathways [86]. Mild cognitive impairment, which is

often a prodromal stage of Alzheimer’s disease, is of particu-

lar interest as the loss of episodic memory is typically the

most evident symptom. Patients with behavioural variant

frontotemporal dementia can also show severe deficits in epi-

sodic memory, which in this condition has been linked with

the degree of atrophy in both the fornix and anterior thalamic
nuclei [80], further underlining the significance of structures

in the Papez circuit beyond the hippocampus (figure 1).

Studies of Alzheimer’s disease also increasingly point to

the significance of pathology beyond the temporal lobes.

Two classic, diagnostic pathological features are amyloid pla-

ques and neurofibrillary tangles. Descriptions of the time

course of Alzheimer’s disease, based on the accumulation

of tangles, reveal that the first abnormalities (Stage I) are typi-

cally seen in the parahippocampal region [87,88]. By Stage III,

when cognitive symptoms first become evident, tangles

appear in the hippocampal formation [87,88]. Not surpris-

ingly, such information has reinforced the focus on the

hippocampal formation when trying to understand memory

loss in Alzheimer’s disease. Although tangles and plaques

also appear in the anterior thalamic nuclei at similar stages

to the hippocampus [87,89], these thalamic pathologies

have often been interpreted as a part of a cascade of

downstream events that follow the projections from the hip-

pocampal formation [89]. This interpretation is challenged

by imaging studies of plaque deposition [90] and metabolic

activity [91,92]. The earliest, consistent decreases in metabolic

activity during the progression of Alzheimer’s disease are

found not in the hippocampus, but in the retrosplenial

cortex and adjacent parts of the posterior cingulate cortex

[91,92]. Subsequent studies of mild cognitive impairment

have demonstrated that the retrosplenial cortex is the earliest

brain site to show consistent activity loss [93]. These findings

prompted neuropathologists to look again at the retrosplenial

cortex in the post-mortem brains of Alzheimer’s disease

patients. These studies found cell loss consistent with a

much earlier involvement in the disease than previously

assumed [94–96], including in those patients who convert

from mild cognitive impairment to Alzheimer’s disease

[97]. Indeed, thinning in the posterior cingulate cortex

could be identified in cases of familial Alzheimer’s disease

up to 1.8 years prior to diagnosis, with even earlier changes

in the adjacent precuneus cortex ([98]; see also [90]).

Such findings suggest that studies on the retrosplenial

cortex, as well as the hippocampus, may prove highly informa-

tive when tracing the early progression of this dementia.

By association, the anterior thalamic nuclei are also implica-

ted; given their dense, reciprocal connections with both

structures [23,77]. It is, therefore, of note that pre-symptomatic

familial cases of Alzheimer’s disease show increased amyloid

load in the thalamus [99] as well as evidence of thalamic

atrophy, which was detected on average 5.6 years prior to

expected symptom onset [100]. These results complement the

reports of thalamic atrophy in mild cognitive impairment

[97]. The emergence of this more distributed view of early

Alzheimer pathology accompanies the current notion that

this disease has a long incubation period, with a prodromal

phase that may stretch back many decades [101]. This

conceptual approach has led to the search for possible

biomarkers of the earliest stages of the disorder, i.e. at those

stages when an intervention may be most beneficial.

Functional magnetic resonance imaging (fMRI) studies of

people at high risk for Alzheimer’s disease [101] have found

abnormalities in resting state connectivity in the posterior cin-

gulate area, including the retrosplenial cortex, along with the

hippocampal formation [101,102]. These abnormalities include

changes in the ‘default mode network’ [23,101]. These findings

underline the need to understand the pathology of Alzheimer’s

disease in its broadest anatomical sense.
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5. Conclusion
The idea that multiple brain sites support episodic memory is

far from new. Indeed, up until the last 15 years, it was pop-

ular to assume that medial temporal lobe amnesia and

medial diencephalic amnesia were distinct syndromes with

independent causes. More recent research has consistently

shown how the similarities between these conditions far

outweigh the differences, leading to a more unified view

[21,103]. These neuropsychological findings further encour-

aged the idea that the hippocampus should be at the centre

of memory-related research. In many instances, this focus is

entirely appropriate, yet it may also be misleading.

One issue, initially highlighted by studies of hypoxia, is that

of hidden, or covert, pathology. The lack of oxygen to the brain is

a cause of anterograde amnesia, which is consistently associated

with hippocampal cell loss. A debate emerged, however, over

whether hippocampal atrophy could fully explain the pattern

of cognitive loss in those clinical and experimental hypoxic

cases with seemingly selective pathology [104,105]. In many

instances, it appeared that the cognitive deficits were greater

than those that could be atributed to the overt pathology

[104,106], a view supported by volumetric imaging studies of

hypoxia, which reported diffuse changes that would be hard

to detect using stardard post-mortem techniques.

In a second form of covert pathology, damage to structure A

brings about subtle changes to structure B that render structure

B highly dysfunctional, even though its appearance as judged

by standard histological measures seems intact. One source of

evidence comes from functional imaging studies, which have

shown how both medial temporal lobe amnesias and medial

diencephalic amnesias are associated with hypoactivity in the

posterior cingulate region, centred in the retrosplenial cortex

[107,108]. The retrosplenial cortex has dense reciprocal connec-

tions with both regions [23], suggesting that this hypoactivity is

a secondary consequence of the primary pathologies. Exper-

imental studies in rodents, which have sought to test this

possibility more directly, have found that lesions in the mamil-

lothalamic tract, anterior thalamic nuclei and hippocampal

formation all bring about striking molecular changes in the ret-

rosplenial cortex, indicating that this cortical area is especially
vulnerable to distal damage. The nature of these secondary

lesion effects strongly suggests a disruption of retrosplenial

plasticity [103,109–112], along with a reduction in metabolic

activity [113,114]. Obvious implications can be seen for the ret-

rosplenial cortex hypoactivity found in the earliest stages of

Alzheimer’s disease [91–93]. Despite these activity changes,

the structural appearance of the retrosplenial cortex after

anterior thalamic lesions in rodents is almost unaffected. Fur-

thermore, such distal lesion effects are not confined to the

retrosplenial cortex as anterior thalamic lesions also disrupt

plasticity-related mechanisms in the hippocampal formation

[115–117]. This array of covert limbic changes could exacerbate

the impact of the primary pathology on memory, whether it was

in the medial diencephalon or the medial temporal lobe.

The purpose of this Perspective is not to argue that the

hippocampus should be ignored as a target for research

into memory and memory disorders. Clearly, it is crucial

that this structure is studied intensively. At the same time,

researchers need to appreciate that it is just one of a

number of potential target sites. There is the genuine possi-

bility of error when, for example, animal researchers

assume that a behavioural phenotype involving deficits in

spatial learning must stem from hippocampal pathology.

This need not be the case. Furthermore, even if hippocampal

abnormalities are found, they may be secondary to the site

that is principally responsible for the spatial deficits.

It might be supposed that fMRI studies of memory would

ensure that such anatomical attribution errors would stop.

While fMRI studies have revealed numerous sites, e.g.

within prefrontal cortex, that are activated during memory

encoding and retrieval, these same sites do not appear to be

vital for memory when analysed using classic neuropsycholo-

gical methods [35,51,118]. The problem, therefore, remains in

deciding where to focus research efforts, with the hippo-

campus seemingly the default option. Just as Bernhard von

Gudden did 135 years ago, we should remember to look

beyond the hippocampus.
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