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Abstract: Hypertension (HTN) is one of the most prevalent diseases worldwide and is among the
most important risk factors for cardiovascular and cerebrovascular complications. It is currently
thought to be the result of disturbances in a number of neural, renal, hormonal, and vascular mecha-
nisms regulating blood pressure (BP), so crucial importance is given to the imbalance of a number of
vasoactive factors produced by the endothelium. Decreased nitric oxide production and increased
production of endothelin-1 (ET-1) in the vascular wall may promote oxidative stress and low-grade
inflammation, with the development of endothelial dysfunction (ED) and increased vasoconstric-
tor activity. Increased ET-1 production can contribute to arterial aging and the development of
atherosclerotic changes, which are associated with increased arterial stiffness and manifestation of
isolated systolic HTN. In addition, ET-1 is involved in the complex regulation of BP through syner-
gistic interactions with angiotensin II, regulates the production of catecholamines and sympathetic
activity, affects renal hemodynamics and water–salt balance, and regulates baroreceptor activity and
myocardial contractility. This review focuses on the relationship between ET-1 and HTN and in
particular on the key role of ET-1 in the pathogenesis of ED, arterial structural changes, and impaired
vascular regulation of BP. The information presented includes basic concepts on the role of ET-1 in
the pathogenesis of HTN without going into detailed analyses, which allows it to be used by a wide
range of specialists. Also, the main pathological processes and mechanisms are richly illustrated for
better understanding.

Keywords: endothelin-1; hypertension; oxidative stress; low-grade inflammation; endothelial dysfunction;
arterial stiffness; arterial remodeling; blood pressure regulation

1. Introduction

Hypertension (HTN) is one of the most prevalent socially significant diseases and is
among the most important preventable risk factors for other diseases [1]. The heart, brain,
kidneys, and peripheral arteries are often affected, which is a cause of early disability and
reduced life expectancy in patients [2]. This necessitates that the prevention and treatment
of HTN be among the top priorities of public health worldwide [3].

HTN is a heterogeneous disease with a complex pathogenesis. It is currently thought
to be the result of disturbances in a number of neural, renal, hormonal, and vascular mecha-
nisms regulating blood pressure (BP) [4], as crucial importance is given to the imbalance of
a number of vasoactive substances, some of which are produced from the vascular endothe-
lium [5]. The endothelium responds to humoral, neural, and especially hemodynamic
stimuli, and regulates platelet function, inflammatory responses, growth and migration
of vascular smooth muscle cells (VSMCs), and changes in the structure of the vascular
extracellular matrix [6,7]. In addition to these functions, it modulates vascular tone by syn-
thesizing and releasing a number of vasoactive factors that may have vasodilatory effects,
such as nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing
factor, and vasoconstrictor effects, such as thromboxane A2 and endothelin-1 (ET-1) [8]. In
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HTN, the delicate balance between vasodilators and vasoconstrictors is disturbed, leading
to endothelial dysfunction (ED) with excessive release of vasoconstrictor substances, such
as ET-1 [9,10].

ET-1 was first isolated in 1988 by Yanagisawa and colleagues from the culture super-
natant of porcine aortic endothelial cells (ECs). It is composed of 21 amino acids and two
intrachain disulfide linkages in the molecule [11]. Shortly after the discovery of ET-1, two
other structurally similar isopeptides, named ET-2 and ET-3, were isolated [12]. ET-1 is the
predominant isopeptide involved in regulating the cardiovascular system, and vascular
ECs are the most abundant source of ET-1. In addition to ECs, ET-1 is expressed in a wide
variety of cells including VSMCs, cardiomyocytes, fibroblasts, macrophages, epithelial cells
in the lungs and kidneys, neurons, and glial cells [13]. The endothelins (ETs) are produced
from their corresponding approximately 200-residue prepropolypeptides that are encoded
by three distinct genes. These peptides are converted into inactive 38- or 39-amino acid
intermediates called Big ETs (Big ET-1, Big ET-2, and Big ET-3) by furin-like endopeptidase.
The Big ETs are then activated via proteolytic cleavage by the ET-converting enzymes
(ECEs), ECE-1 and ECE-2 [14] (Figure 1).
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Figure 1. Schematic representation of the biosynthesis and vascular effects of ET-1 in endothelial
and smooth muscle cells. ET-1 is generated by ECs in response to different stimuli. ET-1 mediates
vasoconstriction by activating ETA and ETB2 receptors on VSMCs. Vasodilation by ET-1 is mediated
through the activation of ETB1 on ECs, which increases the production of NO and PGI2. In addition,
ET-1 is a potent mitogen that simulates the growth, proliferation, and migration of VSMCs. Abbre-
viations: ET-1, endothelin-1; AT II, angiotensin II; Adr, adrenaline; ROS, reactive oxygen species;
ADH, antidiuretic hormone; oxLDL, oxidized low-density lipoproteins; ECE, endothelin-converting
enzyme; ETA, endothelin receptor subtype A; ETB1, endothelin receptor subtype B1; ETB2 endothelin
receptor subtype B2; PLC, phospholipase C; IP3, inositol trisphosphate; DAG, diacylglycerol; Ca2+,
calcium ions; COX, cyclooxygenase; AA, arachidonic acid; PGI2, prostacyclin; eNOS, endothelial
nitric oxide synthase; L-Arg, L-arginine; NO, nitric oxide; AC, adenylate cyclase; cAMP, cyclic
adenosine monophosphate; sGC, soluble guanylate cyclase; cGMP, cyclic guanosine monophosphate;
MAPK, mitogen-activated protein kinase; ↑, increased.
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In the vasculature, ET-1 acts on ETA and ETB (ETB1 and ETB2) receptors located on
the VSMCs and ECs to induce vascular contraction or vasodilation [15]. Vasoconstrictive
action of ET-1 is mainly mediated through ETA. ET-1–ETA interaction on VSMCs increases
intracellular calcium, leading to the phosphorylation and activation of myosin light chain,
which causes vasoconstriction [16,17]. In pathophysiological conditions, the expression of
ETB2 on VSMCs is increased and ET-1–ETB2 interaction also promotes vasoconstriction [16].
ET-1 induces long-lasting vasoconstriction resulting from the slow dissociation rate from
ET receptors [18]. In 40% of adults, a genetically prohypertensive phenotype is present or
is the result of partially epigenetically mediated environmental effects. This is related to
the predominance of vasoconstrictor actions of ET-1 mediated by ETA and ETB2 in VSMC,
which is due to the hypertensive effect of increased endothelial expression of the ET-1 gene
(EDN1) [19]. However, vasodilation by ET-1 is mediated through ETB1 on ECs, which
increases the production of NO and PGI2 [17] (Figure 1).

ET-1 is continuously released from the endothelial constitutive pathway. Low levels
of ET-1 promote vasodilatation, whereas higher and pathophysiological concentrations
increase BP and total peripheral vascular resistance [13]. In healthy volunteers, low doses
of ET-1 infused into the brachial artery cause vasodilatation, consistent with ETB-mediated
release of vasodilators, but this was followed by sustained vasoconstriction of the forearm
vascular bed at higher doses because the peptide accessed the smooth muscle ETA recep-
tors [20]. Thus, ETB-mediated release of NO and other vasodilators is crucial in acting as a
counterregulatory pathway to limit ETA-mediated vasoconstriction. In pathophysiological
conditions where there is ED with a loss of vasodilators, the vasoconstrictor and other
pathophysiological effects of ET-1, such as cell proliferation, will be potentiated [13]. In pa-
tients with essential HTN, the activity of exogenous ET-1 is increased, similar, or decreased
compared to normotensive subjects, depending on which vascular district or scheme of
administration is considered [21].

2. Data on the Participation of ET-1 in the Development of HTN

Due to its ability to maintain basal vascular tone [22,23] and homeostasis of sodium
and water [24,25], it is suggested that ET-1 is involved in some forms of HTN [26], which is
supported by various experimental and clinical observations.

2.1. ET-1 in Experimental HTN

The role of ET-1 in HTN was initially observed in models of experimental HTN, and
more recently by using genetically modified mouse models in which a component of
the endothelin system was either knockdown or overexpressed in certain specific organs
or tissues [27]. It should be noted that when ET-1 is overexpressed in the endothelium
of transgenic mice, BP is significantly higher than in wild-type mice [28]. Moreover,
selective knockout of ET-1 in the collecting duct of the nephron was associated with a
higher BP and the development of salt-sensitive HTN [29]. A similar BP phenotype was
obtained with the deletion of ETB or both ETA/ETB receptors in collecting duct cells,
suggesting the important role of the renal endothelin system in the development of salt-
sensitive HTN [30,31]. In non-transgenic animals, elevated ET-1 production was found in
salt-sensitive and some other models of experimental HTN, such as deoxycorticosterone
(DOCA)-salt HTN, DOCA-salt-treated spontaneously hypertensive rats (SHR), and Dahl
salt-sensitive rats, 1-kidney 1 clip (1K1C) Goldblatt hypertensive rats, SHR 2-kidney 1 clip
(2K1C) Goldblatt hypertensive rats, angiotensin II-infused rats, and stroke-prone SHR [32].
In the models known to overexpress vascular ET-1, BP significantly decreases upon the
administration of selective ETA or mixed ETA/ETB receptor antagonists [33].

2.2. ET-1 in Human HTN

One of the first comparisons of ET-1 concentrations in people with HTN was made
between pheochromocytoma patients and healthy controls. Higher levels of ET-1 were
observed in patients with pheochromocytoma. In this report, the authors note that HTN
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in patients with pheochromocytoma is mainly catecholamine dependent, but may be
secondarily ET-1 dependent [34]. These data are supported by previously reported cases in
patients with hemangioendothelioma who have significantly elevated ET-1 levels along
with HTN [35]. Elevated ET-1 levels and high BP in patients from these studies returned
to normal after surgical removal of the tumors [34,35]. In addition, resistant HTN with
elevated ET-1 levels has been observed more frequently in patients of African-American
descent or those with obesity, in whom the risk of developing cardiovascular and renal
diseases is increased [36]. Furthermore, in individuals with normal BP, high plasma ET-1
levels are associated with the development of HTN [37]. The role of ET-1 in the development
of the hypertensive process is also supported by data in patients with essential HTN or
resistant HTN, which show that when treated with a nonselective ET-receptor antagonist
bosentan [38] or with the selective ETA receptor antagonist darusentan [39–41], BP is
significantly reduced. These data are also consistent with the meta-analyses, which show
that HTN patients have higher plasma concentrations of ET-1 than control subjects [42].
Other authors have reported that the levels of ET-1 are normal in patients with essential
HTN, but point out that the local levels of ET-1 in the vascular wall are elevated [36,43,44].
The controversial and not always consistent results regarding ET-1 concentrations in
patients with HTN are probably related to two main reasons. The first is that its elimination
from the blood is too fast (plasma half-life 1–2 min) [45]. The second is that the secretion of
ET-1 by ECs is polarized mainly to the underlying VSMCs, leading to a minimal increase in
its circulating levels [46]. Other possible causes of these disparate results are the specificity
of the antibodies used in the immunoassay, the degree of cardiovascular damage, dietary
salt intake, obesity, diabetes, and race [24]. All of the above findings support the hypothesis
that ET-1 may have an important pathogenetic role in the development of HTN (Table 1).

Table 1. Studies on the contribution of ET-1 to the hypertensive phenotype in humans.

Study Results Significance

Saito, 1990
[47]

Patients with essential HTN showed a
significant elevation in the plasma ET-1 level
compared with age-matched control subjects.

p < 0.01

Shichiri, 1990
[48]

Patients with essential HTN had significantly
higher plasma ET-1 levels than normal
subjects.

p < 0.025

Oishi, 1994
[34]

In patients with pheochromocytoma, the
hypertensive group had higher ET-1 than the
normotensive group. Elevated plasma ET-1
concentrations returned to normal levels after
surgical resection of the tumor.

Higher, but NS

Parrinello, 1996
[49]

ET-1 levels were significantly higher in obese
hypertensives and obese normotensives than
in lean normotensives. In addition, ET-1 levels
were significantly higher in obese
hypertensives than in obese normotensives.

p < 0.05

Amoroso, 1996
[50]

Patients with HTN had significantly higher
plasma ET-1 concentration than normal
subjects.

p < 0.02

Schneider, 2000
[51]

Basal ET-1 was significantly higher in
hypertensive than in normotensive subjects,
both in venous and arterial samples. There was
no significant difference between venous and
arterial ET-1 concentrations.

p < 0.01

Parissis, 2001
[52]

Patients with HTN showed significantly higher
levels of ET-1 compared with normotensive
controls.

p < 0.01
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Table 1. Cont.

Study Results Significance

Kostov, 2014
[53]

Serum levels of ET-1 are significantly higher in
patients with mild and severe HTN compared
to the control group.

p < 0.02

Gu, 2015
[54]

Plasma ET-1 levels were higher in
hypertensives than in controls. p < 0.001

Kostov, 2016
[55]

Serum ET-1 concentrations were significantly
higher in hypertensive patients with type 2
diabetes than in prehypertensive patients with
diabetes and healthy normotensive controls.

p < 0.05

Abbreviations: ET-1, endothelin-1; HTN, hypertension; NS, not significant.

3. Role of ET-1 in the Pathogenesis of HTN

Based on the accumulating data from experimental and clinical studies, it can be
assumed that there is a link between the increased biological activity of ET-1 and the
development of HTN [44,55–58]. Probably, ET-1 is causally related to high BP through
synergistic interactions of the following mechanisms: (1) participation in the development
of oxidative stress and low-grade inflammation in the vascular wall with the occurrence
of ED; (2) participation in the pathogenesis of arterial stiffness; (3) participation in the
processes of arterial remodeling; (4) participation in the mechanisms regulating BP.

3.1. Participation of ET-1 in the Development of Oxidative Stress and Low-Grade Inflammation in
the Vascular Wall with the Occurrence of ED

ET-1 is linked to the pathogenesis of HTN by means of oxidative stress in the vascular
wall [59–62] and low-grade vascular inflammation [63–65], which are the main drivers of
ED (Figure 2). The relationship between oxidative stress in the vessel wall and the develop-
ment of HTN is shown in many experimental models, including in human HTN [66–69].
Various studies support the role of ET-1 in the formation of reactive oxygen species (ROS)
and its relationship with oxidative stress and ED in humans. ET-1 stimulates the production
of ROS in human endothelial and vascular smooth muscle cell cultures [70,71], as well as in
isolated vessels [72–74]. It is assumed that the main mechanism for the increased produc-
tion of ROS in HTN is increased expression of vascular NAD(P)H oxidase [60,62,75–77].
Increased production of ROS in the vascular wall leads to the activation of nuclear factor
kappa B. This, in turn, stimulates the synthesis of pro-inflammatory cytokines, chemokines,
and adhesion molecules, which are associated with the development of vascular inflamma-
tory response. Low-grade inflammation localized in the vascular tissue is an important
factor in the pathophysiology of HTN [78–80]. Actually, oxidative stress and inflamma-
tion form a vicious cycle in the development of ED, which is implemented with active
participation of ET-1 [81–83]. ET-1 can activate macrophages that lead to the release of pro-
inflammatory and chemotactic mediators, such as tumor necrosis factor alpha, interleukin
(IL)-1, IL-6, and IL-8 [84–87]. In turn, these pro-inflammatory cytokines can stimulate the
production of ET-1 [88], and this could lead to increased BP [51,89,90]. It is assumed that
under physiological conditions, the vasodilating action of ET-1 may predominate, whereas
under pathophysiological conditions, ET-1 may behave as a vasoconstrictor and play a role
in the pathophysiology of HTN [19].

3.2. Participation of ET-1 in the Pathogenesis of Arterial Stiffness

A number of experimental and clinical studies have shown that ET-1 is responsible
for maintaining arterial stiffness [27,91,92]. In ED, where the production of NO is reduced
and that of ET-1 is increased, the balance is changed to increase arterial stiffness [57].
Arteriosclerosis [93–95] and its most common form, atherosclerosis [96–98], are the main
pathological processes associated with increased hardness of the arteries (Figure 3). They
significantly reduce the elastic properties of the arterial wall, which leads to an increase in
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the pulse wave velocity of the large conductive arteries [99,100] and to the manifestation of
isolated systolic HTN [101,102].
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Figure 2. Schematic representation of the relationship of ET-1 with oxidative stress in the vascular wall, low-grade
inflammation and ED. Increased production of ET-1 may decrease endothelial NO production by suppressing eNOS
expression. In addition, ET-1 can mediate the formation of superoxide (O2

−) by activating NAD(P)H oxidase, which may
reduce the biological activity of NO in the vascular wall due to the formation of peroxynitrite (ONOO−). In ED, the increased
production of ET-1 shifted the balance of effects toward increased vasoconstriction, oxidative stress, and inflammation.
Abbreviations: ET-1, endothelin-1; ECE, endothelin-converting enzyme; ROS, reactive oxygen species; ETA, endothelin
receptor subtype A; ETB1, endothelin receptor subtype B1; ETB2 endothelin receptor subtype B2; PLC, phospholipase C; IP3,
inositol trisphosphate; DAG, diacylglycerol; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; PKC, protein kinase
C; NAD(P)H Ox, nicotinamide adenine dinucleotide phosphate oxidase; ROS, reactive oxygen species; O2

−, superoxide
anion; ONOO−, peroxynitrite; NF-κB, nuclear factor kappa B; IL-1, interleukin-1; IL-6, interleukin-6; IL-8, interleukin-8;
TNF-α, tumor necrosis factor alpha; MCP-1, monocyte chemotactic protein-1; ICAM-1, intercellular adhesion molecule-1;
VCAM-1, vascular cell adhesion molecule 1; sGC, soluble guanylate cyclase; cGMP, cyclic guanosine monophosphate; Ca2+,
calcium ions; ↑, increased, enhanced activity; ↓, decreased.

3.2.1. Role of ET-1 in Arteriosclerosis

Arteriosclerosis is a pathological process of arterial aging that results from interactive
genetic and epigenetic events within different cell types of vascular tissue and its extracel-
lular matrix [95,103–105]. Increased ET-1 activity can contribute to vascular dysfunction
and arterial aging through multiple pathways, such as direct hemodynamic effects, vas-
cular oxidative stress, inflammatory activity, mitogenic VSMC stimulation, and fibrotic
processes [106]. It has been found that the vasoconstrictor activity of ET-1 increases in the
elderly [107,108] and that the synthesis of ET-1 is greater in cultured aortic ECs obtained
from older compared with younger donors [109,110]. In addition, ET-1 can stimulate
collagen synthesis by fibroblasts and the development of vascular fibrosis by activating
ETA and ETB receptors [111–113]. In addition, ET-1 mediates transforming growth factor
beta activation, which can further induce fibrosis [114].



Life 2021, 11, 986 7 of 16

Life 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

activating ETA and ETB receptors [111–113]. In addition, ET-1 mediates transforming 
growth factor beta activation, which can further induce fibrosis [114]. 

3.2.2. Role of ET-1 in Atherosclerosis 
Atherosclerosis is a specific type of arteriosclerosis that is characterized by the 

build-up of intimal plaques inside the arteries and narrowing of their lumen. Previous 
studies on experimental animal models and humans have shown a key role of ET-1 in the 
pathogenesis of atherosclerosis [115–121]. In one classic experiment in which mice over-
expressing human pre-proET-1 in the endothelium (eET-1 mice) have been crossed with 
atherosclerosis-prone mice (apolipoprotein E −/− mice) and fed a high-fat diet, the li-
pid-containing plaques in crossed animals (eET-1/apolipoprotein E −/−) have been in-
creased dramatically more than in E −/− mice, along with an increase in BP. These find-
ings suggest that increased endothelial expression of ET-1 accelerates the progression of 
atherosclerosis and may be the link between atherosclerosis and HTN [120]. Increased 
expression of ET-1 was also observed in human arteries at various stages of atheroscle-
rosis [122]. Plasma concentrations of ET-1 also showed a positive correlation with the 
stages of atherosclerosis [117]. In addition, the expression of Big ET-1 and ECE-1 was in-
creased in atherosclerotic arteries [123], and the ETA and ETB receptors were highly ex-
pressed in smooth muscle cells and foam macrophages at the sites of atherosclerotic le-
sions [124]. ET-1 may also be involved in the inflammatory process and migration of 
VSMCs, as well as in the phenotypic transformation of VSMCs into proliferative syn-
thetic cells that produce the extracellular matrix of the plaque [125]. 

 
Figure 3. Schematic representation of the relationship of ET-1 with arterial stiffness and arterial 
remodeling as factors for the occurrence of HTN. Increased ET-1 activity may contribute to arterial 
stiffness in arteriosclerosis and atherosclerosis. These pathological processes significantly reduce 
the elastic properties of the central conduit arteries, which leads to the manifestation of isolated 
systolic HTN. Increased systolic and central pulse pressure may lead to eutrophic or hypertrophic 
remodeling of the small arteries. In particular, hypertrophic remodeling of resistance arteries is a 
signature of involvement of ET-1 in the hypertensive process. Abbreviations: ET-1, endothelin-1; 

Figure 3. Schematic representation of the relationship of ET-1 with arterial stiffness and arterial
remodeling as factors for the occurrence of HTN. Increased ET-1 activity may contribute to arterial
stiffness in arteriosclerosis and atherosclerosis. These pathological processes significantly reduce
the elastic properties of the central conduit arteries, which leads to the manifestation of isolated
systolic HTN. Increased systolic and central pulse pressure may lead to eutrophic or hypertrophic
remodeling of the small arteries. In particular, hypertrophic remodeling of resistance arteries is a
signature of involvement of ET-1 in the hypertensive process. Abbreviations: ET-1, endothelin-1; NO,
nitric oxide; PGI2, prostacyclin; NAD(P)H Ox, nicotinamide adenine dinucleotide phosphate oxidase;
O2
−, superoxide anion; ONOO−, peroxynitrite; NF-κB, nuclear factor kappa B; IL-1, interleukin-1;

IL-6, interleukin-6; TNF-α, tumor necrosis factor alpha; MAPK, mitogen-activated protein kinase;
TxA2, thromboxane A2; ↑, increased, enhanced activity; ↓, decreased.

3.2.2. Role of ET-1 in Atherosclerosis

Atherosclerosis is a specific type of arteriosclerosis that is characterized by the build-
up of intimal plaques inside the arteries and narrowing of their lumen. Previous studies on
experimental animal models and humans have shown a key role of ET-1 in the pathogenesis
of atherosclerosis [115–121]. In one classic experiment in which mice overexpressing human
pre-proET-1 in the endothelium (eET-1 mice) have been crossed with atherosclerosis-prone
mice (apolipoprotein E −/−mice) and fed a high-fat diet, the lipid-containing plaques in
crossed animals (eET-1/apolipoprotein E −/−) have been increased dramatically more
than in E −/−mice, along with an increase in BP. These findings suggest that increased
endothelial expression of ET-1 accelerates the progression of atherosclerosis and may be
the link between atherosclerosis and HTN [120]. Increased expression of ET-1 was also
observed in human arteries at various stages of atherosclerosis [122]. Plasma concentrations
of ET-1 also showed a positive correlation with the stages of atherosclerosis [117]. In addi-
tion, the expression of Big ET-1 and ECE-1 was increased in atherosclerotic arteries [123],
and the ETA and ETB receptors were highly expressed in smooth muscle cells and foam
macrophages at the sites of atherosclerotic lesions [124]. ET-1 may also be involved in the
inflammatory process and migration of VSMCs, as well as in the phenotypic transformation
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of VSMCs into proliferative synthetic cells that produce the extracellular matrix of the
plaque [125].

3.3. Participation of ET-1 in the Processes of Arterial Remodeling

In HTN, the change in the structure of resistance arteries involves two processes:
inward eutrophic remodeling and hypertrophic remodeling [126]. In eutrophic remodel-
ing, the outer diameter and the lumen are decreased and the cross-sectional area of the
media is unaltered. This type of remodeling predominates in resistant arteries of SHR and
2K1C Goldblatt hypertensive rats in which the renin–angiotensin system plays an impor-
tant role. In humans, eutrophic remodeling is found in mild, essential HTN. In contrast,
hypertrophic remodeling involves increased medial cross-sectional area and decreased lu-
men [127]. Hypertrophic remodeling of resistance arteries has been a characteristic finding
in most rat models of severe HTN in which the endothelin system is activated [128,129],
such as deoxycorticosterone (DOCA)-salt hypertensive rats [130], 1-kidney 1 clip (1K1C)
Goldblatt hypertensive rats [131], and Dahl salt-sensitive HTN [132]. In humans, it can
be found in secondary HTN, for example, in renovascular HTN or HTN associated with
pheochromocytoma [133]. ET-1 plays an important role in abnormal vascular function and
remodeling of resistance arteries [27] (Figure 3). ET-1 has a direct hypertrophic effect on
the vasculature, in particular on the small arteries, and hypertrophic remodeling is a sign
of involvement of ET-1 in the hypertensive process [133].

3.4. Participation of ET-1 in the Mechanisms of BP Regulation

BP regulation is an integrative process that involves complex interactions between the
structures of the nervous system, cardiovascular system, hormones, and renal balance of
fluids, which are in continuous feedback with specialized receptors related to monitoring
the volume and hemodynamic parameters of blood circulation [134]. ET-1 can raise BP
by disturbing some of these regulatory mechanisms (Figure 5), and in particular, main-
taining intravascular fluid volume [24,25,135], peripheral vascular resistance [22,136,137],
and cardiac contractility [138–140]. ET-1 is involved in maintaining intravascular volume
by regulating the tubular reabsorption of water and electrolytes in the kidneys [24,25],
affecting the production of aldosterone [141,142] and the secretion of vasopressin and natri-
uretic peptides [143,144]. ET-1 affects peripheral vascular resistance through its powerful
vasoconstrictor effect, through the regulation of catecholamine secretion by the adrenal
glands [145], as well as through its synergistic interactions with AT II [146,147] (Figures 4
and 5). In a number of pathological processes, overstimulation of ET-1/ETA signaling may
upset the balance in the regulation of these mechanisms, which may subsequently lead to
the development of HTN [24].
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Figure 4. Schematic representation of synergistic interactions between ET-1 and AT II in the patho-
genesis of HTN. ET-1 increases the formation of AT II by enhancing ACE activity. In turn, AT
II increases the synthesis of ET-1 by enhancing ECE activity. ET-1 inhibits renin release, but can
directly stimulate ALD production. Abbreviations: ET-1, endothelin-1; ppET-1, prepro-ET-1; ECE,
endothelin-converting enzyme; AGT, angiotensinogen; AT I, angiotensin I; AT II, angiotensin II; ACE,
angiotensin-converting enzyme; ALD, aldosterone.
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Figure 5. Schematic representation of integrated regulatory effects of ET-1 in HTN. Excessive activation of ET-1 leads to an
increase in BP by enhancing the effects of ET-1/ETA signaling in the vasculature, adrenal gland, kidney, nervous system,
and heart, which predominate over the BP-lowering effects of ET-1/ETB signaling. The cumulative effect is increased
vasoconstriction, increased Na+ and H2O reabsorption, increased sympathetic activity, and a positive inotropic effect on the
myocardium, which may lead to the development of HTN. Abbreviations: ET-1, endothelin-1; ETA, endothelin receptor
subtype A; ETB, endothelin receptor subtype B; ETB2, endothelin receptor subtype B2; AT I, angiotensin I; AT II, angiotensin
II; ACE, angiotensin-converting enzyme; AT1, angiotensin II receptor type 1; ANP, atrial natriuretic peptide; BNP, brain
natriuretic peptide; VP, vasopressin; V1A, vasopressin 1A receptor; V2, vasopressin 2 receptor; CA, catecholamines; α1,
alpha-1 adrenergic receptor; ALD, aldosterone; MR, mineralocorticoid receptor; CVC, cardiovascular center; H2O, water;
Na+, sodium; +/−, activation/inhibition; ↑, increased.

In addition, ET-1 is involved in maintaining BP by regulating the cardiovascular
center [148] and baroreceptor activity [149]. The paraventricular nucleus (PVN) is an
important integrative center in the control of the cardiac sympathetic afferent reflex, which
is a positive-feedback, sympathoexcitatory reflex. Abundant ET-1 expression is found in
the PVN, especially in the parvocellular PVN cells [150]. The projections from the PVN
to brain stem loci lead to increases in sympathetic efferent output and BP [24]. The lesion
of the PVN prevents the intracerebroventricular administration of ET-1-induced increase
in BP [151]. Projections from the PVN and area postrema also modulate the nucleus
tractus solitarius, which, in turn, sends inputs to the PVN. Collectively, these regions
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function to regulate sympathetic and parasympathetic outflow to the heart and sympathetic
output to the vasculature, kidney, and elsewhere. Interactions between these regions are
complex, involving both excitatory and inhibitory signals. ET-1 and its receptors have been
implicated in the enhanced sympathetic excitability observed in models of salt-sensitive
HTN such as the DOCA-salt and ETB-deficient rats [24]. Endogenous ET-1 appears to
have a sympathoexcitatory effect in both normotensive and hypertensive subjects through
ETA receptors, contributing to basal sympathetic vasomotor tone. Moreover, HTN shows
an increased susceptibility to the sympathoexcitatory effect of endogenous ET-1. The
discovery of enhanced biological activity of ET-1 on autonomic cardiovascular regulation,
beyond the known effects on vascular tone, further reinforces the fundamental role of
the endothelin system in the pathophysiology of HTN. Thus, treatment options aimed at
counteracting the effects of ET-1 could have a beneficial effect on the adrenergic overactivity
observed in HTN [152].

4. ET-1 as a Potential Therapeutic Target in HTN

Considerable progress has been made during the last two decades in characteriz-
ing the pharmacology of the ET-1 signaling pathway with the development of key com-
pounds, such as selective ETA and ETB receptor antagonists (ERAs), dual endothelin
receptor/angiotensin receptor antagonists (DARAs), together with selective ETB receptor
agonists and radiolabeled analogs to accurately describe the ET system and its role in
human and animal models of HTN [13]. The development of orally active ERAs that
had become available by the mid-1990s allowed to study whether and how endogenous
ET-1 contributes to the pathophysiology of essential HTN. Treatment with bosentan, a
nonselective ERA, or darusentan, an ETA-selective ERA, decreased arterial BP in patients
with essential HTN. Antihypertensive efficacy in patients with essential hypertension has
also been reported for the DARA sparsentan [153]. Aprocitentan is a novel, oral, dual
ERA that has demonstrated a more favorable tolerability and safety profile in early clinical
trials compared with other ERAs [154]. ERAs remain an important part of pulmonary
arterial hypertension (PAH) treatment. Treatment with approved ERAs, such as bosen-
tan, ambrisentan, and macitentan, slows down PAH progression and relieves symptoms.
However, more studies are needed to assess the benefits and safety of ERA treatment in
patients with arterial HTN [155]. ERAs could play a particular role in the treatment of
high-risk patients, such as those with resistant and salt-sensitive hypertension, those with
progressive chronic kidney disease, those who develop hypertension after transplantation,
or those with hypertension as part of the metabolic syndrome or diabetes [26]. The general
side effects of ERAs are related to the vasodilator properties, including flushing, nausea,
headache, nasal congestion, and peripheral edema, as well as hypotension and palpitations.
Peripheral edema can be observed with the use of ERAs. Reduced hemoglobin levels and
anemia can also appear during ERA treatment, as well as a reversible, dose-dependent
elevation in aminotransferases [155].

5. Conclusions

ET-1 is involved in the physiological regulation of BP, thus exerting its influence on
various processes: (1) it regulates vascular homeostasis, (2) regulates renal–endocrine mech-
anisms maintaining sodium and water balance, (3) modulates systemic hemodynamics,
(4) affects the stiffness of the arteries, and (5) activates the natriuretic peptide system of the
heart in chronic volume overload. In HTN, these regulatory mechanisms are disbalanced
due to enhanced ET-1/ETA signaling in the vasculature, adrenal gland, kidney, nervous
system, and heart. Impaired regulation shifts the balance toward increased vasoconstric-
tion, increased Na+ and H2O reabsorption, increased sympathetic activity, and increased
strength of cardiac contraction, which may lead to an increase in BP. In the long term, to
these effects is added the increased systolic arterial pressure as a result of the structural
changes in central and resistance arteries potentiated by ET-1, which leads to a permanent
increase in BP and the development of HTN.
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