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Abstract. Lung cancer and asthma are both global health 
problems with significant economic consequences. Recent 
studies have demonstrated that asthma may be a risk factor 
for lung cancer. The present study aimed to explore the patho‑
genesis between these two diseases through a comprehensive 
analysis. Differentially expressed genes (DEGs) screened in 
the asthma‑related GSE165934 dataset were analyzed to find 
relevant inflammatory pathways. Overlapping genes regulated 
by inflammatory pathways and lung cancer‑DEGs from The 
Cancer Genome Atlas (TCGA) were obtained and subjected 
to survival and gene‑wide mutation analyses, and nomogram 
construction to determine the hub gene. The hub gene was 
further analyzed through expression validation, immunoassays 
and functional experiments to investigate its role and mecha‑
nism in lung cancer. Functional enrichment analysis showed 
that 1,275 DEGs from GSE165934 were closely associated with 
the Toll‑like receptor signaling pathway, and 8 overlapping 
genes were identified from 12 genes regulated by the Toll‑like 
receptor signaling pathway and 3,134 TCGA‑DEGs. After a 
series of bioinformatics analyses, it was found that triggering 
receptor expressed on myeloid cells 1 (TREM1) was the hub 
gene involved in the mechanism of asthma and lung cancer. 
TREM1 was also found to be a suppressor gene in lung cancer 
correlated with immune cells, immune checkpoint‑related 
genes and tumor mutational burden score. Additionally, the 
results of Cell Counting Kit‑8 and Transwell experiments 
demonstrated that overexpression of TREM1 could signifi‑
cantly inhibit the invasion, proliferation and migration of 
lung cancer cells. Reverse transcription‑quantitative PCR 
and western blotting demonstrated that the overexpression of 
TREM1 could also significantly reduce the level of Toll‑like 

receptor signaling pathway proteins. The present findings 
suggest that TREM1 is associated with the mechanism of 
asthma and lung cancer through its regulation of the Toll‑like 
receptor signaling pathway. Furthermore, TREM1 may serve 
as a potential treatment target and prognostic indicator for 
patients with lung cancer. 

Introduction

Lung cancer, including small cell lung cancer (SCLC) and 
non‑SCLC (NSCLC), is the leading cause of cancer‑related 
deaths worldwide (1,2). Among the risk factors associated 
with lung cancer, the role of asthma, a chronic inflammatory 
disease affecting the airways, has become a topic of marked 
interest in recent years. Certain evidence points to a positive 
correlation between an asthma diagnosis and an elevated 
risk of lung cancer (3,4). The chronic inflammation induced 
by asthma could potentially promote carcinogenic processes 
within lung tissues, which lead to malignant transforma‑
tion and subsequent cancer development (5). This emerging 
perspective offers novel insights into the role of chronic 
inflammatory respiratory diseases in lung cancer etiology. 
Nevertheless, some studies provide a contrasting viewpoint. In 
a study on contemporaneous chronic obstructive pulmonary 
disease, Rosenberger et al (6) discovered a negative correlation 
between asthma and lung cancer. Additionally, studies that 
account for co‑occurring allergic diseases found a weakened 
positive connection between asthma and lung cancer (7,8). 

Asthma is a chronic inflammatory disorder impacting the 
respiratory airways, driven by a complex interplay between 
inflammatory and structural airway cells, and cytokines (9,10). 
Asthma is primarily triggered by allergic reactions, often 
caused by environmental and dietary factors, which culminate 
in bronchial asthma  (11). Although there are various treat‑
ments, such as nebulized therapy and topical corticosteroids, 
to treat asthma (12), its molecular mechanism is still unclear 
due to its complexity. A previous study reported that asthma 
is a risk factor for lung cancer (4), shedding light on a possible 
intersection between these respiratory conditions. However, 
exploring the underlying mechanisms of lung cancer and 
asthma remains a challenge. 

To explore the specific mechanisms underlying the patho‑
genesis of asthma and lung cancer, the present study conducted 
a comprehensive bioinformatics analysis and identified trig‑
gering receptor expressed on myeloid cells 1 (TREM1) as a key 
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gene associated with both diseases. The results of expression 
validation, immunoassays and in vitro cell assays suggest that 
TREM1 may serve as a novel and effective biomarker for lung 
cancer. This finding could potentially inform more targeted 
strategies for the prevention and treatment of asthma in 
patients who are at a heightened risk of developing lung cancer.

Materials and methods

Gene expression files. The Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) is the world's 
biggest and most comprehensive repository of gene expression 
data (13). The keyword was set as ‘asthma’, the organism as 
‘Homo sapiens’, the experiment type as ‘expression analysis 
by array’, and the data set GSE165934 (14) was selected, which 
included 10 patients with asthma and 9 healthy controls. 
Differentially expressed genes (DEGs) were screened for 
using the ‘limma’ software package, with P<0.05, log2(fold 
change)>1 for upregulation and log2(fold change)<‑1 for down‑
regulation. The STRING database (https://string‑db.org/) was 
used to build a protein‑protein interaction (PPI) network of 
aggregated DEGs (15), and Cytoscape software (v3.8.2) was 
used for visualization (16). Gene Ontology (GO) analysis 
(http://geneontology.org/) was performed, and terms with 
P<0.01 were selected. Pathway analysis of node genes was 
also performed in WebGestalt (http://www.webgestalt.org/) 
using the WikiPathway functional database (https://www.
wikipathways.org/). 

Immune Cell Abundance Identif ier (ImmuCellAI). 
ImmuCellAI was used to predict the abundance of 24 immune 
cell types in a sample. Differences in immune cell infiltration 
in different groups were analyzed by examining immune 
cell abundance in the groups. The abundance of 24 immune 
cells in 19 samples from the GSE165934 database was first 
analyzed. Next, the abundance of 24 immune cells in asthma 
and normal groups were investigated. 

The Cancer Genome Atlas (TCGA) dataset. RNAseq and 
relevant clinical data of NSCLC were obtained from the TCGA 
dataset (https://portal.gdc.com) to screen TCGA‑DEGs. The 
common genes of regulation of Toll‑like receptor signaling 
pathway genes and TCGA‑DEGs were targeted using the online 
Venn tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). 
Kaplan‑Meier (KM) curves were generated by Kaplan‑Meier 
Plotter (https://kmplot.com/analysis/). Cut‑off values and 
other parameters were chosen as default to assess differences 
in overall survival (OS) across overlapping genes in NSCLC. 
Survival results were visualized using KM plots and statistically 
significance was assessed using the log‑rank test. 

Gene Set Cancer Analysis (GSCA) database. The tran‑
scriptomic data, gene mutation data and clinical data of the 
TCGA‑Lung Adenocarcinoma (LUAD) and TCGA‑Lung 
Squamous Cell Carcinoma (LUSC) datasets were obtained 
from the TCGA database. The GSCA database (http://bioinfo.
life.hust.edu.cn/GSCA/#/expression) was used to assess 
the copy number variation (CNV) and single nucleotide 
variation (SNV) of the survival‑associated mutant genes (17). 
Furthermore, to comprehensively study somatic mutations in 

patients with LUAD and LUSC, mutation data were acquired 
and processed by the ‘Maftools’ R package (version 4.10) (18). 

Prognostic nomogram construction using independent 
parameters. Univariate Cox analysis was used to evaluate 
the prognostic power of 6 survival‑associated mutant genes 
and a number of clinical parameters, including patient age, 
tumor grade, and pT, pN and pTNM stages (19). Subsequently, 
multivariate Cox analysis was used to determine whether these 
genes and clinical parameters could serve as independent indi‑
cators for patients. According to the results of multivariate Cox 
analysis, a composite nomogram was designed by the ‘rms’ 
R software package (version 4.3.1; https://www.r‑project.org/) 
to evaluate the impact of independent indicators on the prob‑
ability of 1‑, 3‑ and 5‑year OS. The 45˚ line represents a perfect 
match between predictions and observations, and the closer 
the nomogram model to the calibration curve, the better the 
prediction result of the model. 

University of Alabama at Birmingham cancer data analysis 
portal (UALCAN). UALCAN is a smart web application for the 
deep analysis of TCGA and the retrieval of cancer data (20); 
it allows users to find potential genes of interest between 
biomarker or computer approvals and assess gene expression 
across different clinical factors such as sex, ethnicity and 
tumor grade (21). In the present study, TREM1 expression in 
patients with LUSC and LUAD with different sample types, 
tumor grades, smoking and lymph node metastasis statuses 
were assessed. 

Tumor Immune Estimation Resource (TIMER). TIMER 
(https://cistrome.shinyapps.io/timer/) enables systematic 
analysis of immune infiltrate abundance in different cancer 
types (22). Correlations between the hub gene (TREM1) and 
immune cells (CD4+ T cells, B cells, CD8+ T cells, macro‑
phages, neutrophils, and dendritic cells) in the TCGA‑LUAD 
dataset and the TCGA‑LUSC dataset were analyzed by 
Spearman correlation analysis. P<0.05 was selected as the 
cut‑off value. For reliable immune score evaluation, the 
‘immunedeconv’ TIMER algorithm in the R software package 
was adopted to evaluate the immune scores. The samples were 
divided into TREM1 high‑expression and low‑expression 
groups based on the median expression value of TREM1. 
Those with TREM1 expression above the median were classi‑
fied as the high‑expression group, while those with expression 
below the median were classified as the low‑expression group. 
Subsequently, the expression of 8 immune checkpoints in the 
TREM1 high‑expression group and low‑expression group was 
analyzed by the R software package. The relationship between 
TREM1 expression and the tumor mutational burden (TMB) 
was examined. P<0.05 was regarded as statistically significant 
when using Spearman's correlation analysis. 

Cell culture. Human bronchial epithelioid cells (16HBE) 
and lung cancer cell lines (H292, A549 and H1299) were 
purchased from the American Type Culture Collection . Cells 
were cultured in DMEM (Thermo Fisher Scientific, Inc.) at 
37˚C in a humidified atmosphere with 5% CO2, supplemented 
with 10% FBS (Thermo Fisher Scientific, Inc.) and 1% 
penicillin/streptomycin. 
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Reverse transcription‑quantitative PCR (RT‑qPCR). TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) was used 
to extract RNA from lysed cells of the lung cancer cell lines, 
and Prime script RT Master mix (Takara Biotechnology Co., 
Ltd.) used to reverse transcribe the extracted RNA into cDNA 
according to the manufacturer's instructions. Reactions were 
performed in duplicate using an ABI 7500 Fast Real‑Time 
PCR system (Applied Biosystems). The reaction conditions 
were 95˚C for 10 min, followed by 40 cycles at 95˚C for 
15 sec and 60˚C for 35 sec. Subsequently, qPCR detection was 
performed using the SYBR‑Green I (cat. no. S7563; Thermo 
Fisher Scientific, Inc.) fluorescence technique computed using 
the 2‑ΔΔCq method (23). The primer sequences were as follows: 
β‑actin forward, 5'‑TGG ATC AGC AAG CAG GAG TAT G‑3' 
and reverse, 5'‑GCA TTT GCG GTG GAC GAT‑3'; TREM1 
forward, 5'‑TCC GAA TGG TCA ACC TTC AAG TGG‑3' and 
reverse, 5'‑GAA CAG CAT GTG AGG CTC CTT GG‑3'; MyD88 
forward, 5'‑GGC TGC TCT CAA CAT GCG A‑3' and reverse, 
5'‑CTG TGT CCG CAC GTT CAA GA‑3'; TLR2 forward, 
5'‑CTT CAC TCA GGA GCA GCA AGC A‑3' and reverse, 
5'‑ACA CCA GTG CTG TCC TGT GAC A‑3'; and TLR4 forward, 
5'‑CCA GCC TCC TCA GAA ACA‑3'and reverse, 5'‑TCC AGC 
AGT GAA GAA GGG‑3'.

Cell transfection. The lung cancer cells were cultured in 6‑well 
plates at 37˚C overnight to reach 70% confluence, and the 
overexpression plasmid (pcDNA3.1‑TREM1; cat. no. V79020; 
Invitrogen; Thermo Fisher Scientific, Inc.) and negative 
control (pcDNA3.1 empty vector; cat. no. V79020; Invitrogen; 
Thermo Fisher Scientific, Inc.) were constructed. When the 
cells were at ~90% confluency, 1 µg plasmid was transfected 
into the cells using Lipofectamine® 3000 (Invitrogen; Thermo 
Fisher Scientific, Inc.) at 37˚C in 5% CO2 for 4‑6 h, according 
to the manufacturer's instructions. After 48 h, subsequent 
experiments were performed. 

Cell Counting Kit‑8 (CCK‑8). A total of 2x103 lung cancer 
cells were added to a 96‑well plate, and then treated with 10 µl 
CCK‑8 solution (Dojindo Molecular Technologies, Inc.), and 
incubated at 37˚C for 2 h. The optical density (OD) value at 
450 nm was recorded at 1, 2, 3 and 4 days using a microplate 
reader to generate a proliferation curve. The analysis was 
performed in triplicate.

Cell invasion and migration assay. In the migration experi‑
ment, 4x104 lung cancer cells, in serum‑free DMEM, were 
seeded into the upper chamber of a Transwell insert and a 
medium with 20% FBS was added to the lower chamber as a 
chemoattractant. For the invasion experiment, Matrigel (BD 
Biosciences) was coated on the upper chamber at 37˚C for 2 h 
prior to being seeded with 9x104 cells, and the lower chamber 
contained medium with 20% FBS. After incubation at 37˚C, 
in 5% CO2, for 48 h, the Transwell chamber was removed 
and the medium in the well was discarded and washed with 
calcium‑free PBS. The cells were fixed with methanol for 
15 min at room temperature and then stained with DAPI for 
10 min at room temperature. The upper unmigrated cells were 
gently removed with a cotton swab, and cells in the lower 
chamber were counted under a fluorescence microscope (x200 
magnification).

Western blotting assay. The lung cancer cells were lysed by 
RIPA lysis buffer (Thermo Fisher Scientific, Inc.) with 1% 
PMSF. The cell lysates were then centrifuged at 14,000 x g 
for 15 min at 4˚C to separate the soluble proteins. Proteins 
were extracted from the cell's lysates and supernatants. The 
concentration of proteins was determined using a Pierce® 
BCA Protein Assay Kit (Thermo Fisher Scientific, Inc.). The 
quantified proteins (50 µg/lane) were separated by SDS‑PAGE 
on 10% gels and then transferred onto a PVDF membrane. 
The membrane was blocked with 5% non‑fat dry milk at 
room temperature for 3 h. Membranes were probed at 4˚C 
overnight with primary antibodies against TREM1 (1:5,000; 
cat. no. ab90808; Abcam), MyD88 (1:5,000; cat. no. ab133739; 
Abcam), TLR2 (1:5,000; cat. no. ab9100; Abcam), TLR4 
(1:5,000; cat. no. ab13556; Abcam) and GAPDH (1:5,000; 
cat. no. ab9485; Abcam). The following day, the blot was 
probed using an HRP‑conjugated secondary antibody (1:5,000; 
cat. no. ab205718; Abcam) and a Goat Anti‑Mouse IgG H&L 
(HRP) secondary antibody (1:5,000; cat. no. ab97023; Abcam) 
for 1 h at room temperature. Finally, protein bands were visu‑
alized using an ECL Plus kit (Cytiva) and the band density was 
semi‑quantified using ImageJ software (version 1.52; National 
Institutes of Health).

Statistical analysis. All study data were processed by 
SPSS 22.0 software (IBM Corp), and each experiment was 
performed in triplicate. All quantitative data are expressed as 
the mean ± SD. Comparison between groups was performed 
using one‑way ANOVA followed by Tukey's post hoc test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Identification and analysis of GSE165934‑DEGs. Through 
analysis of the dataset and comparison between asthmatic and 
control groups, 235 upregulated DEGs and 1,040 downregu‑
lated DEGs from GSE165934 were acquired and presented on 
a volcano plot and heat map (Fig. 1A and B). Subsequently, the 
PPI network of all DEGs was constructed, and the intercon‑
nectedness between genes was shown (Fig. 1C), with 460 nodes 
and 1,590 edges. The 460 node genes were used for functional 
enrichment analysis. Node genes were enriched in ‘neutrophil 
mediated immunity’, ‘intracellular membrane‑bounded organ‑
elle’, ‘RNA binding’ and others in the GO analysis (Fig. 1D). 
WikiPathway analysis showed that node genes were mainly 
associated with Toll‑like receptor signaling related to MyD88, 
regulation of the Toll‑like receptor signaling pathway and the 
glucocorticoid receptor pathway (Fig. 1E). 

Genes in GSE165934 are associated with immune cells in 
asthma. The present study explored immune cells in 19 samples 
of GSE165934 by ImmuCellAI. Fig. 2A shows the proportion of 
immune cells in control samples (GSM5058526‑GSM5058534) 
and asthma samples (GSM5058535‑GSM5058544) marked 
with different colors, and the length of the bars in the bar graph 
represent the level of immune cell populations. The percent‑
ages of NK cells and Tc cells in the samples were significantly 
reduced. As shown in Fig. 2B, only nTreg, Th17, CD8 naive, 
NKT and Tex expression was significantly reduced in the 
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asthma group. While other cells, such as B cells, macrophages 
and neutrophils, increased significantly.

Survival analysis of gene overlap in the Toll‑like receptor 
signaling pathway and TCGA‑DEG. Fig. 3A shows a Venn 
diagram of 8 overlapping genes from genes regulated by 
‘regulation of Toll‑like receptor signaling pathway’ and 
TCGA‑DEGs. Using batch survival analysis, 6 genes with 
significant P‑values for OS analysis were retained (Fig. 3B‑G; 
P<0.05). High expression of IL1B resulted in poor OS prob‑
ability, while low expression of JUN, TLR4, TREM1, TLR2 
and TLR8 indicated poor OS. 

Mutational landscape analysis of CNVs, SNVs and cellular 
mutations for 6 identified genes. A genetic variation analysis 
for 6 genes with significant P‑values in survival analysis, 
including CNVs and SNVs, was performed using the GSCA 
database in LUAD and LUSC. In LUAD, TLR4 had the highest 
percentage of CNVs whereas in LUSC, TLR2 had the highest 

percentage of CNVs (Fig. 4A). The percentage of SNVs for the 
6 genes in LUAD and LUSC were also explored, and it was 
found that in LUAD, TLR4 exhibited the most SNVs, followed 
by TLR8, TLR2, TREM1, IL1B and JUN. In LUSC, TLR4 
exhibited the most SNVs, followed by TLR8, TREM1, IL1B, 
TLR2 and JUN (Fig. 4B). The most common type of mutation 
in patients with LUAD and LUSC was a missense mutation. 
Single nucleotide polymorphisms (SNPs) were the main type 
of mutational variation, with C>A being dominant over other 
SNV categories. As shown in Fig. 4C, the median mutation 
variation per sample was 1, and each color box represented 
a mutation. Fig. 4C displays the six most frequently mutated 
genes in the present study, including TLR4 (68%), TLR8 
(19%), TLR2 (9%), TREM1 (6%), JUN (4%) and IL1B (4%). 
Histograms in Fig. 4D show the mutation frequencies of the 6 
genes in the patients with LUAD and LUSC (n=145). 

TREM1 is a potential prognostic indicator of lung cancer. After 
univariate and multivariate Cox analyses were performed, it 

Figure 1. Identification and bioinformatics analysis of DEGs. (A) Volcano plot of 235 upregulated DEGs and 1,040 downregulated DEGs, with the gray area 
in the middle representing unchanged genes. (B) Cluster heatmap of DEGs in GSE165934. In the heatmap, the color gradient from green to orange represents 
the expression levels of DEGs, with green indicating lower expression levels and orange indicating higher expression levels. Blue denotes the control group and 
red denotes the asthmatic group. (C) Protein‑protein interaction network of DEGs, where nodes represent genes (pink diamonds represent upregulated DEGs, 
gray arrowheads represent downregulated DEGs) and edges represent interconnectedness between genes. (D) Bar graph of GO analysis. BP enrichment result 
(pink), CC enrichment result (blue), and MF enrichment result (green). (E) WikiPathway analysis on 460 node genes. The larger the node, the more genes are 
enriched on this pathway. DEGs, differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.



ONCOLOGY LETTERS  27:  16,  2024 5

Figure 2. ImmuCellAI analysis of 19 samples from GSE165934. (A) The proportions of 24 immune cells in control samples (GSM5058526‑GSM5058534) and 
asthma samples (GSM5058535‑GSM5058544), with colored squares representing different types of immune cells. (B) Immune cell abundance was analyzed 
and examined between asthma (red) and normal (blue) tissues by ImmuCellAI. The black dots represent outliers. DC, dendritic cells; NK, natural killer cells; 
NKT, natural killer T cells; Tr1, Type 1 regulatory T cells; nTreg, natural regulatory T cells; iTreg, induced regulatory T cells; Th1, T helper 1 cells; Tfh, T 
follicular helper cell; Tc, cytotoxic T cells; Tex, exhausted T cells; MAIT, mucosal‑associated invariant T cells; Tcm, central memory T cells; Tem, effector 
memory T cells.

Figure 3. Screening and survival analysis of the overlapping genes. (A) Venn diagram of genes regulated by regulation of Toll‑like receptor signaling pathway 
and TCGA‑DEGs, with 8 intersection genes in the middle. (B‑G) OS analysis on (B) IL1B, (C) JUN, (D) TLR2, (E) TLR4, (F) TLR8 and (G) TREM1 in lung 
cancer. The black line indicates low expression and the gold line indicates high expression. TCGA, The Cancer Genome Atlas; DEGs, differentially expressed 
genes; OS, overall survival; TREM1, triggering receptor expressed on myeloid cells 1.
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was apparent that TREM1, pT‑stage and pTNM‑stage were 
independent prognostic variables to construct the predictive 
nomogram, and that TREM1 was considered as the hub gene 
(Fig. 5A and B). A composite nomogram was designed with 
TREM1, pT‑stage and pTNM‑stage to predict 1‑, 3‑ and 5‑year 
OS rates in patients with NSCLC (Fig. 5C). The presentation 
of the calibration plot for patient survival prediction demon‑
strated the predicted results of the prognostic nomogram 
matched with the observed results, suggesting that the model 
had good prognostic prediction for patients (Fig. 5D). 

Association between TREM1 expression and clinical factors 
in LUSC and LUAD. Comparing different patient samples, 
including both LUAD and LUSC tissue samples, TREM1 
expression levels were found to be lower in primary tumor 
compared with those in normal tissues (Fig. 6A and E). 
However, among different clinical factors of LUAD and 
LUSC, TREM1 expression had no significant association with 
individual cancer stages, patient's smoking habits or nodal 
metastasis status (Fig. 6B‑D and F‑H). 

Immunoassay on TREM1 in lung cancer. Fig. 7A shows the 
association between TREM1 and 6 immune cell types in LUSC 
and LUAD. A positive correlation was denoted by Cor>0, and 
a negative correlation by Cor<0. In LUAD, TREM1 expres‑
sion was negatively correlated with tumor purity, B cells, 
CD8+ T cells and CD4+ T cells. The expression of TREM1 
was positively correlated with the expression of macrophages, 
neutrophils and dendritic cells. In LUSC, TREM1 expression 
was inversely correlated with tumor purity. The expression of 
TREM1 was positively correlated with the expression of B 
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils 
and dendritic cells. Fig. 7B shows the fraction of immune cells 
that infiltrated tumors in samples with high and low TREM1 
expression. Myeloid dendritic cells had higher TIMER scores 
in TREM1‑expressing samples. In addition, the TIMER score 
was higher in the high TREM1 expression group. The differ‑
ences in expression of the 8 immune checkpoint molecules 
between the two groups were not obvious. However, it was 
observed that the level of immune checkpoint molecules was 
higher in samples with high TREM1 expression (Fig. 7C). 

Figure 4. CNV and SNV analyses on 6 mutated genes. (A) Percentage of CNVs for the 6 mutated genes in LUSC and LUAD. (B) Percentage of SNVs for the 
6 mutant genes in LUSC and LUAD. (C) The categories of mutation types based on various classes and tumor mutational burden in the sample. (D) The 6 
mutated genes are depicted in a waterfall plot arranged by cancer type, with their mutational patterns arranged by mutation frequency. Different colors denote 
distinct mutation types. CNV, copy number variation; SNV, single nucleotide variation; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; 
TREM1, triggering receptor expressed on myeloid cells 1.
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Over the past few years, TMB has been a significant prog‑
nostic biomarker; however, its prognostic value in NSCLC has 
remained unclear. Through TCGA, the correlation between 
TMB and the levels of TREM1 in NSCLC was comprehen‑
sively analyzed to determine the impact of TREM1 in the 
development of NSCLC. The present results suggested that 
TREM1 had a negative association with the TMB score in 
NSCLC (Fig. 7D). 

TREM1 inhibits cell proliferation, invasion and migration 
via the Toll‑like receptor pathway in lung cancer. Results of 
RT‑qPCR and western blotting experiments showed down‑
regulation of TREM1 in lung cancer cells (H292, A549 and 
H1299) compared with human bronchial epithelial‑like cells 
(16HBE), especially in A549 and H1299 cells (Fig. 8A and B). 
Subsequently, TREM1 was overexpressed in A549 and 
H1299 cells, and the overexpression efficiency was examined 
by RT‑qPCR and western blotting. The findings indicated a 
marked increase in TREM1 expression within A549 and 
H1299 cells (Fig. 8C and D). CCK‑8 experiments were 
performed in H1299 and A549 cell lines, and it was observed 

that overexpressed TREM1 significantly inhibited the 
proliferation of A549 and H1299 cells (Fig. 8E and F). Since 
TREM1 was most significantly expressed in H1299 cells and 
A549 cells, a Transwell assay using these two cell lines was 
performed, which showed that overexpression of TREM1 
significantly inhibited the invasion and migration of H1299 
as well as A549 cells (Fig. 8G‑J). Furthermore, the effect of 
overexpressed TREM1 on the related proteins of the Toll‑like 
receptor pathway, including TLR2, TLR4 and MyD88, was 
explored. RT‑qPCR results suggested that the mRNA levels 
of MyD88, TLR2 and TLR4 were reduced in lung cancer cells 
after overexpression of TREM1 (Fig. 8K and L). Western blot‑
ting results suggest the protein levels of MyD88, TLR2 and 
TLR4 were also reduced (P<0.05) in lung cancer cells after 
overexpression of TREM1, indicating that TREM1 negatively 
regulated MyD88, TLR2 and TLR4 (Fig. 8M). 

Discussion

Asthma can cause a series of reactions such as wheezing 
and chest tightness, which usually occur at night or in the 

Figure 5. TREM1 could be a prognostic biomarker in lung cancer. (A) Univariate Cox regression analysis showed that TREM1, pT‑stage, pN‑stage and 
pTNM‑stage were significant prognostic variables. (B) Multivariate Cox regression analysis showed that the significant prognostic variables were TLR4, 
TREM1, pT‑stage, and pTNM‑stage. (C) Nomogram with independent indicators, with a scale marked on the corresponding line segment of each variable, 
representing the range of possible values of the variable. The longer the line segment, the greater its contribution to the prognosis. (D) Calibration curve of the 
nomogram model, and the diagonal gray line is the ideal nomogram. TREM1, triggering receptor expressed on myeloid cells 1. Pro, prognosis. 
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early morning and can seriously affect the quality of life of 
patients (24). According to the number of exacerbations during 
oral systemic corticosteroid therapy, asthma can be classified 
into four categories: Intermittent, mild, moderate and severe 
persistent asthma (25). The chronic inflammatory state in the 
lungs of asthmatics is considered to cause oxidative damage 
that may contribute to the development of lung cancer (26). 
Jiang et al (7) suggested that proper control of asthma symp‑
toms not only reduces asthma attacks but also helps reduce 
the incidence of lung cancer. Therefore, identifying the key 
genes related to both lung cancer and asthma could reveal the 
molecular mechanism behind their connection. 

In the present study, 1,275 DEGs were extracted from the 
GSE165934 database, and the PPI network of DEGs yielded 
460 nodes. The enriched pathways of node genes included the 
‘glucocorticoid receptor pathway’ and the ‘Toll‑like receptor 
signaling pathway’. Glucocorticoids are a common therapy 
for controlling airway inflammation in asthma and work by 
their attachment to intracellular glucocorticoid receptors, 
thereby promoting enhanced production of anti‑inflammatory 

genes and blocking the activation of pro‑inflammatory genes 
in asthmatic airways (27). Inhaled corticosteroids have been 
successful in treating the majority of asthmatic patients, 
improving lung function and reducing exacerbations (28,29). 
Toll‑like receptors are essential for identifying invading patho‑
gens and activating the immune system (30,31). Wu et al (32) 
showed that a combination of Toll‑like receptor‑related genes 
could be a promising indicator for asthma prognosis. In 
addition, a study by Pandey et al (33) found genetic variants in 
the Toll‑like receptor signaling pathway related to childhood 
asthma. Further research on the molecular mechanisms of these 
pathways could be crucial for developing asthma therapies.

Combining genes regulated by the regulation of Toll‑like 
receptor signaling pathway, TCGA‑DEGs and OS analysis, 6 
genes (IL1B, JUN, TLR2, TLR4, TLR8 and TREM1) were 
identified for further analysis. Mutation profiling showed 
that patients with LUAD and LUSC exhibited different types 
of mutations. TLR4 had the highest mutation frequency in 
patients with LUAD and LUSC (68%), followed by TLR8 
(19%), TLR2 (9%), TREM1 (6%), JUN (4%), and IL1B (4%). 

Figure 6. Relative expression of TREM1 in subgroups of patients with LUAD and LUSC. Expression of TREM1 based on sample types, cancer stages, smoking 
habits and nodal metastasis status in (A‑D) LUAD and (E‑H) LUSC. Data retrieved from the University of Alabama at Birmingham Cancer Data Analysis 
Portal. LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; TREM1, triggering receptor expressed on 
myeloid cells 1.
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Poltorak et al (34) reported that disruptive mutations in 
TLR4 are associated with the emergence of gram‑negative 
sepsis while maintaining the majority of immune system 
components. Additionally, it was discovered that the majority 
of the missense mutations of these altered genes were found 
in patients with LUAD and LUSC, and missense mutations 
with a high frequency might alter the structure and function 
of proteins (35), which suggested a possible role in the patho‑
genesis of LUAD and LUSC. In the present study, in patients 
with LUAD and LUSC, SNPs were the primary mutation 
variant type, and C>T was the most common DNA nucleotide 
substitution compared with other SNV classes. 

Through a series of bioinformatics analyses, TREM1 
was discovered as the hub gene related to both asthma and 
lung cancer, suggesting it could serve as a prognostic indi‑
cator of lung cancer. Five members of the immunoglobulin 

superfamily make up the TREM family, including TREM1, 
TREM2, TREM3, and TREM‑like transcripts‑1 (TLT1) and 
‑2 (TLT2) (36). TREM1 and TREM2 are immunoglobulin 
superfamily receptors that typically regulate innate immunity 
through inflammatory responses (37). Liu et al (38) showed 
that peripheral TREM1 induction amplified pro‑inflammatory 
responses to the brain‑ and gut‑derived immunogenic compo‑
nents after a stroke. Bernal‑Martínez et al (39) suggested that 
TREM1 performed a significant role in the pathophysiology of 
acute inflammatory disorders with various etiologies, including 
acute myocardial infarction, atherosclerosis and viral illnesses. 
Chen et al (40) showed that TREM1/Dap12‑based chimeric 
antigen receptor‑T cells exhibited powerful anticancer activity 
both in vitro and in vivo by designing a chimeric immune 
receptor. Furthermore, TREM1 was differentially related to 
the clinical features of patients with LUSC and LUAD. In the 

Figure 7. Immunoassay of TREM1 expression. (A) Correlation of TREM1 expression with immune cell infiltration. Correlation coefficients and P‑values are 
indicated in the upper right corner. (B) TIMER scores of immune cells. Samples with high and low TREM1 expression are represented in purple and green, 
respectively. (C) Expression distribution of immune checkpoint genes. (D) Correlation of TREM1 expression level with TMB score. *P<0.05 vs TREM1‑Low; 
***P<0.001 vs TREM1‑Low. TMB, tumor mutational burden; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; TREM1, triggering receptor 
expressed on myeloid cells 1; TIMER, Tumor Immune Estimation Resource.
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present study, it was found that overexpression of TREM1 
could block cell migration, invasion and proliferation in lung 
cancer, and reduce the expression of proteins related to the 
Toll‑like receptor signaling pathway, suggesting that TREM1 
is a lung cancer suppressor gene involved in the Toll‑like 
receptor signaling pathway. 

As immune cells are crucial for the development, 
metastasis, prognosis and treatment of tumors (41), immune 
infiltration assays should be performed to investigate how 
immune cells and tumors interact. Immune checkpoint 
molecules expressed on immune cells can inhibit immune 

cell activity and prevent the body from mounting successful 
antitumor immune responses, leading to the development of 
tumor immune escape (42). The present study found that the 
expression levels of immune checkpoint genes were higher 
in the high TREM1 expression group. TMB, which includes 
the total amount of base substitution, insertion and deletion 
mutations in somatic proteins, is also a critical prognostic 
biomarker for immune checkpoint inhibitors in a number of 
cancer types, such as lung cancer, melanoma and colorectal 
cancer (43). Increased somatic mutation can lead to neoantigen 
expression and tumorigenesis, which activates CD8+ cytotoxic 

Figure 8. TREM1 could inhibit lung cancer progression via the Toll‑like receptor pathway in lung cancer cells. (A) TREM1 expression in lung cancer cell lines. 
(B) The protein expression of TREM1 in lung cancer cell lines was detected by western blot. (C) The overexpression efficiency of TREM1 in lung cancer cell 
lines. (D) Overexpression efficiency of the TREM1 gene in A549 and H1299 cells was detected by western blotting. (E and F) The effect of overexpressed 
TREM1 on cell proliferation. The effect of overexpressed TREM1 on cell invasion and migration in (G and H) H1299 and (I and J) A549 cell lines. The 
expression levels of MyD88, TLR2 and TLR4 were downregulated by overexpression of TREM1 in (K) A549 and (L) H1299 cells. (M) The protein bands show 
the regulation of MyD88, TLR2 and TLR4 by overexpressed TREM1. Scale, 10 µm. *P<0.05; **P<0.01; ***P<0.001. TREM1, triggering receptor expressed on 
myeloid cells 1; NC, negative control; OD, optical density.
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T cells and triggers the antitumor effect of the T cell‑ dependent 
immune response (44). TMB has been recognized as a novel 
biomarker of immunotherapy response and a candidate for the 
prediction of response to immune checkpoint inhibitors (45). 
Cheng et al (46) reported that the degree of TREM1 expres‑
sion was significantly inversely linked with TMB in NSCLC 
. A high TMB score is considered to increase the number of 
neoantigens that are present on the surface of tumor cells, 
enhancing immunogenicity and improving the response 
of malignancies to immune checkpoint inhibitor therapy. 
Therefore, the suppressor gene, TREM1, may be used in a 
treatment for lung cancer. 

The present bioinformatics‑based approach identified a 
hub gene, TREM1, involved in the molecular mechanism 
underlying asthma and lung cancer. Further analysis showed 
that TREM1 was downregulated in lung cancer cells as a 
tumor suppressor gene, however, its overexpression could 
significantly reduce the proliferation of lung cancer cells by 
regulating the Toll‑like receptor pathway. The present study 
reveals the pathogenesis between asthma and lung cancer, 
and provides a new potential biomarker for the treatment 
and prognosis of lung cancer. However, the present study has 
certain limitations, as the results of the current study have 
not been validated in samples from patients with asthma and 
lung cancer. Additionally, the mechanism of action of TREM1 
downstream genes targeting the Toll‑like receptor pathway in 
lung cancer remains unclear and requires further analysis. 
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