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Abstract

The production of hydrogen peroxide (H2O2) drives tumourigenesis in ulcerative colitis (UC). Recently, we showed that H2O2 activates DNA
damage checkpoints in human colonic epithelial cells (HCEC) through c-Jun N-terminal Kinases (JNK) that induces p21WAF1. Moreover, caspas-
es circumvented the G1/S and intra-S checkpoints, and cells accumulated in G2/M. The latter observation raised the question of whether
repeated H2O2 exposures alter JNK activation, thereby promoting a direct passage of cells from G2/M arrest to driven cell cycle progression.
Here, we report that increased proliferation of repeatedly H2O2-exposed HCEC cells (C-cell cultures) was associated with (i) increased phospho-
p46 JNK, (ii) decreased total JNK and phospho-p54 JNK and (iii) p21WAF1 down-regulation. Altered JNK activation and p21WAF1 down-regulation
were accompanied by defects in maintaining G2/M and mitotic spindle checkpoints through adaptation, as well as by apoptosis resistance fol-
lowing H2O2 exposure. This may cause increased proliferation of C-cell cultures, a defining initiating feature in the inflammation-carcinoma
pathway in UC. We further suggest that dysregulated JNK activation is attributed to a non-apoptotic function of caspases, causing checkpoint
adaptation in C-cell cultures. Additionally, loss of cell-contact inhibition and the overcoming of senescence, hallmarks of cancer, contributed to
increased proliferation. Furthermore, there was evidence that p54 JNK inactivation is responsible for loss of cell-contact inhibition. We present
a cellular model of UC and suggest a sinusoidal pattern of proliferation, which is triggered by H2O2-induced reactive oxygen species generation,
involving an interplay between JNK activation/inactivation, p21WAF1, c-Fos, c-Jun/phospho-c-Jun, ATF2/phospho-ATF2, b-catenin/TCF4-signal-
ling, c-Myc, CDK6 and Cyclin D2, leading to driven cell cycle progression.
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Introduction

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD)
characterized by periods of inflammatory recurrence and remis-
sion, events accompanied by cell death and regeneration of the

colonic mucosa. These repeated periods of damage and repair
enhance the risk of neoplastic transformation within the cells of
the intestinal epithelium [1]. Accordingly, the pathogenesis of coli-
tis-associated colorectal cancer (CAC) is attributed to oxidative
stress [2], and the generation of reactive oxygen species (ROS) is
considered a consequence of inflammation, a hallmark of cancer
as proposed by Hanahan and Weinberg [3]. Superoxide, hydrogen
peroxide and the hydroxyl radical were recognized to play a cru-
cial role in the progression to CAC [4]. It is unclear whether
inflammation alone is able to induce tumour initiation, although it
is generally accepted that chronic inflammation increases cancer
risk, and that inflammation is a tumour promoter [5]. Novel
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studies support the first scenario by assuming oxidatively dam-
aged DNA as an initial event [6–8].

In a recent study, we simulated inflammation-associated oxidative
stress of the epithelium in UC by exposing non-tumour human colo-
nic epithelial cells (HCEC) to periods of three H2O2 exposures, each
followed by periods of cellular recovery (Fig. 1A) [9], generating
HCEC cycles (C)1 to C3 (C-cell cultures). Both undetected DNA dam-
age and increased proliferation were found in C1–C3 cells, features
that are associated with neoplastic transformation [3]. Survival was
explained by JNK-dependent cell cycle arrests with caspases,
p21WAF1 and c-H2AX identified as the key JNK-regulated proteins.
Overexpression of upstream phospho-JNK has been observed in
active UC, which further indicates the importance of this pathway in
vivo. Up-regulation of caspases 3, 8 and 9 was linked to survival and
not, as might be expected, to apoptosis [9]: caspases guided cells
through the G1 and S phase by overriding the G1/S and intra-S check-
points despite the presence of DNA damage. This non-apoptotic func-
tion of the caspases led to the accumulation of cells in the G2/M

phase and decreased apoptosis. Survival of oxidatively damaged
HCEC cells occurred via caspase-mediated c-H2AX suppression
through proteolytic degradation of the DNA damage checkpoint pro-
tein ATM, which is upstream of c-H2AX [9].

Proteins controlling the cell cycle ultimately determine cell fate,
such as cell cycle arrest, following DNA damage. Currently, little is
known about cell cycle arrest and its precise mechanism and func-
tion in the development of UC and UC-associated neoplasia [10].
Furthermore, it is not clear whether arrest links reparative with
uncontrolled proliferative response. Driven cell cycle progression in
the dextran sulphate sodium (DSS)-induced colitis mouse model and
in UC patients might be a consequence of a previous cell cycle arrest
[11, 12]. Normally, when DNA damage occurs, DNA damage check-
points halt the passage of cells through the cell cycle [13–15]. In
contrast, cells with impaired cell cycle control have selective growth
advantages. Thereby, defective maintenance of cell cycle arrest
through checkpoint adaptation may cause increased proliferation
[16].
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Fig. 1 An in vitro model of ulcerative colitis showing loss of cell-contact inhibition, increased proliferation, and overcoming of senescence. (A) Study
designed to mimic acute and chronic inflammation via ROS using H2O2. The ROS exposure in acute inflammation was mimicked by single H2O2

treatment. As chronic UC is characterized by damage-regeneration periods, chronic inflammation was simulated by repetitive injury, exposing human

colonic epithelial cells (HCEC) to repeated H2O2 treatment cycles (C)1-C10 with recovery phases in between. In this way, 10 H2O2-exposed cell cul-
tures were generated and named C-cell cultures C1-C10. C1-C3 cells were generated in the first study [9] and C4-C10 cells in this study. (B) Loss
of cell-contact inhibition occurred in C3 cells and continued until C10 cells. Phase contrast micrographs are shown after 5 days of recovery, and

arrows indicate loss of cell-contact inhibition, piling up, and thus foci formation. (C) Increased proliferation of C-cell cultures. C1-C10 cells and

HCEC cells were cultivated, and cell numbers were counted after 7 days. Data indicate mean � SD and were obtained from four individual measure-
ments. (D) Cells were grown for 48 hrs, fixed and subsequently stained for ß-galactosidase activity (blue areas).
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JNK is involved in both the acute inflammatory response [17] and
the activation of DNA damage checkpoints leading to cell cycle arrest
[9]. The JNK family consists of two isoforms, JNK1 and JNK2, which
are ubiquitously expressed, and of tissue-specific JNK3, all of which
have two splicing variants (p54 and p46) [18–20]. In many cases, the
Jnk1 gene encodes the p46 protein product, and the Jnk2 gene
encodes the p54 protein product [21]. JNK mediates cellular survival
and apoptosis, while the cell fate is dependent on the stimuli and the
cell type involved [22]. However, JNK may only exert a prosurvival
function in p53-inactivated cells [23]. In the development of UC, the
inactivation of the p53 protein is an important early step [24]. Thus,
the functional disruption of the p53 protein in HCEC cells by its inacti-
vation with the large T-antigen of the SV40 virus [25] enables the cor-
relation of JNK with cellular survival following oxidative stress.

Here, we hypothesize that cells surviving multiple H2O2 exposures
directly pass over from cell cycle arrest to driven cell cycle progres-
sion, and that JNK plays a pivotal role in this process. Thereby, dysre-
gulation of JNK seems to switch the signalling pathways from arrest
to increased proliferation. In support of our first study [9], the non-
apoptotic function of caspases appears to initiate the neoplastic fea-
tures as they suppress JNK activation and thus JNK-dependent DNA
damage checkpoints. The cellular model presented here provides a
unique in vitro system to investigate the molecular mechanisms that
may underlie the early tumourigenic events in CAC, such as driven
cell cycle progression. Summing up, this model further supports that
chronic inflammation-associated oxidative stress is likely to trigger
tumourigenesis.

Material and methods

Cell culture

Human colonic epithelial cells, generated by Nestec Ltd (Nestl�e

Research Center Lausanne, Switzerland [25]), were obtained from Pro-
fessor Pablo Steinberg (Institute of Food Toxicology and Analytical

Chemistry, University of Veterinary Medicine Hanover, Germany [26])

and were cultured as described previously [9].

Generation of C-cell cultures C4 to C10

The generation of H2O2-exposed HCEC cycles (C)1 to C3 has recently been
reported by us [9]. For the generation of C4-C10 cells, 1 9 106 cells of C3

were seeded into a Petri dish and treated with 200 lM H2O2 [9]. After

24 hrs, the medium was removed, cells were washed twice with PBS, and

surviving cells were cultivated until recovery (C4 cells). Then, 1 9 106 cells
were seeded into a Petri dish for the next treatment to generate the next C-

cell culture. In this way, 10 C-cell cultures (C1-C10 cells) were generated.

Untreated HCEC cells were passaged in the same way to serve as controls.

Inhibition studies

JNK kinase and caspase activities were inhibited by using the JNK
inhibitor SP600125 (Enzo, L€orrach, Germany) at a concentration of

50 lM and the pan-caspase-inhibitor Z-VAD-FMK (50 lM, R&D Sys-
tems, Minneapolis, MN, USA) as reported earlier [9].

Immunoblot analysis

One million cells of the respective cell culture were seeded into Petri

dishes. Cells were harvested after 48 hrs, and proteins were prepared

as described previously [27]. The following antibodies were used: JNK,
phospho-JNK(Thr183/Tyr185), c-Jun, phospho-c-Jun(Ser63), phospho-

c-Jun(Ser73), Cyclin D2, CDK1, CDK2, CDK4, Cyclin B1, c-Fos,

phospho-p38(Thr180/Tyr182), phospho-ERK1/2(Thr202/Tyr204), pho-

spo-ATF2(Thr69/71), phospo-ATF2(Thr69), STAT3, phospho-STAT3
(Tyr705) (Cell Signaling Technology, Danvers, MA, USA); p21WAF1 (Cal-

biochem, Darmstadt, Germany); b-actin, b–catenin (Sigma-Aldrich,

Steinheim, Germany); c-Myc (Abcam, Cambridge, UK); CDK6 (Acris,

Antibodies, Herford, Germany); ATF2, TCF4 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA); and Sp1 (Novus Biologicals Inc., Littleton, CO,

USA). Densitometric analysis of the data was performed by using the

GeneTools Software from Syngene (Cambridge, United Kingdom). Fold
induction (ratio protein/b-actin) was calculated by using the loading

control b-actin.

ROS assays

Estimation of intracellular ROS: Cells suspended in PBS supplemented

with 20 mM glucose were loaded with 2 lM dihydrodichlorofluorescein

diacetate (DCFH-DA) for 15 min. at 37°C. Inside the cells, DCFH-DA
becomes hydrolysed to DCFH, a probe being oxidized to the fluorescent

DCF (excitation at 475 nm and emission at 525 nm) by cellularly

formed ROS. Cellular ROS generation was monitored with 2 lg cell pro-
tein per well at 25°C by using a microplate fluorimeter (Tecan Austria

GmbH, Salzburg, Austria). ROS levels were normalized to cellular pro-

tein, determined by the BCA Protein assay kit (Pierce, Rockford, IL,

USA).
Estimation of extracellular H2O2: the Amplex red (AR) assay was

applied for assessing the H2O2 concentration in PBS. The nonfluores-

cent AR becomes oxidized by H2O2 to the fluorescent resorufin, which

was estimated either fluorimetrically (excitation at 560 nm, emission at
590 nm) or photometrically (560 nm) at 37°C. Decomposition of added

H2O2 in HCEC-containing PBS medium was measured photometrically

(Fig. 4B). Briefly, aliquots of the PBS medium (with or without H2O2, or
cells or either) were withdrawn at distinct time intervals, and the decline

of concentration of added H2O2 (200 lM) was measured. The assay

medium contained 5 lM Amplex red plus horseradish peroxidase

(2 units/ml). In addition, as HCEC cells release low amounts of H2O2

into the surrounding medium, the released H2O2 was followed fluorimet-

rically (Fig. 4D). For this purpose, wells of a microplate were supplied

with PBS medium supplemented with 5 lM Amplex red plus horserad-

ish peroxidase (2 units/ml) and 2 lg cell protein.

Proliferation assay, cytokine assay and
b-galactosidase staining

Proliferation of HCEC and C4-C10 cells, Il-6 release and the b-galactosi-
dase assay for cellular senescence were performed as described previ-
ously [9, 28].
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Real-time PCR

cDNA synthesis and PCR were performed as described by us [27].

Immunohistochemistry

The Department of Pathology, Otto-von-Guericke University, Magde-
burg, Germany, provided us with biopsies of intestinal mucosa taken

from UC patients. The specimens used were collected from the ter-

minal ileum, caecum, colon ascendens, colon transversum, colon de-
scendens, colon sigmoideum and rectum. The mucosal biopsy

specimens were formalin-fixed, paraffin-embedded and cut into 2 lm
thick sections. The sections were incubated with affinity-purified rab-

bit monoclonal antibody against p21WAF1 (Clone EP147, Epitomics,
Burlingame, CA, USA) diluted 1:20 for 32 min at room temperature.

The reactions were visualized by DAB detection (iVIEW DAB Detection

Kit, VENTANA, Oro Valley, AZ, USA). The slides were counterstained

with haematoxylin and cover-slipped in mounting medium.

Results

Increased proliferation of C1-C10 cells

Recently, we reported a cellular model of H2O2-associated colitis
(Fig. 1A, [9]), showing increased proliferation of C1-C3 cells. To
study driven cell cycle progression in more detail and to investi-
gate the underlying molecular mechanisms, we extended the

exposure of cells to H2O2, followed by a period of recovery up
to a 10th treatment cycle (C10 cells; Fig. 1A). The newly
generated H2O2-exposed HCEC cell cultures were denoted as
C4-C10 cells.

First, we considered the morphological phenotype of C-cell cul-
tures. After application of only three H2O2 treatments, the cells
lost cell-contact inhibition and piled up to form foci (Fig. 1B), a
characteristic feature of transformed cells [29, 30]. As loss of
cell-contact inhibition has been attributed to cell expansion, we
then determined the proliferation capacity of C4-C10 cells. C4-C10
cells showed increased proliferation after 7 days except for C7
cells (Fig. 1C). To examine whether increased proliferation results
from overcoming senescence, the b-galactosidase activity
assay was applied to C10 and HCEC cells. A decreased b-galacto-
sidase-dependent activity staining of C10 cells was found
(Fig. 1D), which clearly indicates an overcoming of senescence.
Hence, loss of cell-contact inhibition and overcoming of senes-
cence may contribute to the increased proliferation observed in C-
cell cultures.

Repeated H2O2 exposure selectively decreases
JNK activation and down-regulates p21WAF1

We have recently shown that H2O2 activates DNA damage checkpoints
through JNK [9]. Consequently, the expression of activated, phos-
phorylated JNK (phospho-JNK) was analysed in C-cell cultures and
compared with that of HCEC cells. Densitometric analysis revealed the
down-regulation of phospho-p54 JNK starting from C3 cells (Fig. 2A,
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Fig. S1). Importantly, the phospho-p46 JNK was increased relative to
HCEC except for C5 cells (Fig. 2A, Fig. S1). These results, taken
together, demonstrated an increased activation of p46 JNK, but a
decreased activation of p54 JNK. In addition, the down-regulation of
total JNK (p46 and p54) was observed along all C-cell cultures
(Fig. 2A).

In line with an increased proliferation of C-cell cultures and with
altered JNK activation, repeated H2O2 exposures initiated down-regu-
lation of p21WAF1, except for C5 cells (Fig. 2A). Similarly, we recently
reported down-regulation of p21WAF1 for C1-C3 cells [9], and this
down-regulation can now be confirmed until C10 cells. Both altered
JNK activation and p21WAF1 down-regulation might drive cell cycle
progression, while both changes follow a previous JNK-dependent
cell cycle arrest via p21WAF1 [9]. This indicates an important function
of cell cycle arrest and especially of p21WAF1 in UC. In support, we
were able to detect only marginal or no expression of p21WAF1 in pro-
liferative cells in samples from UC patients in complete remission as
compared with basal expression in normal colonic mucosa and
p21WAF1 overexpression in biopsies from patients with acute UC
(Fig. 2B).

JNK inactivation and p21WAF1 down-regulation
act as pathogenetic factors

To examine a possible relationship between decreased JNK activation
and the down-regulation of p21WAF1, we used C3 cells in which
selectively decreased JNK activation appears to have established, as

well as HCEC cells for JNK inhibition studies. First, we treated both
cell cultures with SP600125, a reversible ATP-competitive JNK inhibi-
tor, and analysed cell morphology. Inhibition of overall JNK activity
attenuated cell-contact inhibition in C3 cells and, most notably,
induced loss of cell-contact inhibition in HCEC cells (Fig. 3A). This
finding supports the hypothesis that JNK inactivation induces loss of
cell-contact inhibition, triggering HCEC cell transformation. As JNK
inactivation was restricted to the p54 splicing variants in C-cell cul-
tures, we hypothesize that selective p54 JNK inactivation triggers
HCEC cell transformation as shown by the loss of cell-contact inhibi-
tion (Fig. 1B). Second, we proved a direct linkage between JNK inacti-
vation and p21WAF1 down-regulation. Indeed, we found p21WAF1

down-regulation in HCEC and C3 cells following inhibition of JNK
activity (Fig. 3B). Hence, p21WAF1 is a JNK-regulated protein in HCEC
and C3 cells. Accordingly, we suggest a relationship between
decreased JNK activation and down-regulation of p21WAF1 as a gen-
eral mechanism for C-cell cultures. In support of the observed perma-
nent JNK inactivation starting from C3 cells (Fig. 2A), transient
inhibition of activity of both JNK splicing variants by using SP600125
in HCEC cells was not sufficient to induce increased proliferation
(Fig. 3C). Thus, we suggest that selective JNK inactivation is
required, which has to be established permanently and not tran-
siently. Moreover, we cannot exclude that selective JNK activation
may be needed for oncogene activation, or that an interplay between
JNK activation and inactivation is important for driven cell cycle pro-
gression. In summary, there is good reason to postulate that JNK
inactivation accompanied by p21WAF1 down-regulation acts as patho-
genetic factor that induces loss of cell-contact inhibition.
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Caspases suppress JNK activation in C3 cells

In our previous study, it was shown that caspases 3, 8 and 9 drive
progression through the cell cycle in C1-C3 cells as a consequence of
oxidative stress [9]. This is facilitated by progression of cells through
the G1 and S phase following circumvention of DNA damage check-
point control. In addition, we have demonstrated a caspase-dependent
activation of JNK following oxidative stress and its suppression follow-
ing recovery from oxidative stress [9]. We now show that caspase
inhibition induced the up-regulation of phospho-p46 JNK and, most
notably, of phospho-p54 JNK in C3 cells (Fig. 3D). Thus, the down-
regulation of phospho-p54 JNK was mediated through caspase activity.
This impairment appears to switch the cellular signalling pathways
from cell cycle arrest to an increased proliferation, which could be a
general feature of C-cell cultures. Also, the inhibition of caspase activity
in C3 cells led to up-regulation of p21WAF1 [9], which further supports
our hypothesized link between p21WAF1 down-regulation and decreased
JNK activation. These data also suggest that caspases pushed cells
over the checkpoints via suppression of JNK activation. However, the
functions of caspases observed in our cellular model seem to be
restricted to their activities rather than to their expression levels as
down-regulation of caspase 3, 8 and 9 was detected (Fig. S2).

Exogenous H2O2 induces intracellular ROS
generation in C5 and C10 cell cultures

Intracellular elevated ROS levels are known to play a crucial role in cell
proliferation [31] and tumourigenesis [32]. Hence, we investigated
intracellular ROS generation in C-cell cultures. First, the intracellular
ROS generation was estimated in HCEC cells and in HCEC cells sub-
jected to a single H2O2 exposure (Fig. 4A). We found that (i) HCEC
cells generate intracellular ROS even without exposure to exogenous
H2O2 (Fig. 4A, trace a); and that (ii) H2O2-treated HCEC cells have a
higher ROS generation (Fig. 4A, trace b). This higher ROS generation
may be partly contributed to the diffusion of added H2O2 across the
plasma membrane of HCEC cells. As H2O2 added to the HCEC cell sus-
pension decomposed completely within 2 hrs (Fig. 4B), there is good
reason to speculate that after this incubation period, the increased
ROS generation (Fig. 4A, trace b) results from the treated HCEC-cell
culture. ROS generation in the C5 and C10 cells was then measured in
comparison with HCEC cells (Fig. 4C). An increase in ROS levels was
found in the C5 and C10 cells compared with HCEC cells. These data
support the hypothesis that exogenous H2O2 further stimulated intra-
cellular ROS generation. However, the question arises if cells release
H2O2 into the media. Untreated HCEC cells rapidly release H2O2 into
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the media (Fig. 4D). In contrast, C5 and C10 cells release H2O2 into
the media, but to a much lesser extent. This process might be associ-
ated with increased intracellular ROS production, promoting prolifera-
tion of these and probably proliferation of other C-cell cultures as well.

Expression of oncogenic transcription factors is
associated with driven cell cycle progression in
C-cell cultures

Next, we analysed the expression of oncogenic transcription factors
that possibly drive cell cycle progression. First, we focused on the
transcription factors that constitute AP-1 components, such as c-Fos,
c-Jun and ATF2 (Fig. 5A). Second, we analysed transcription factors
that are non-AP-1 components, such as c-Myc, Sp1, b-catenin/TCF4
and STAT3 (Fig. 5B).

c-Fos was overexpressed in C1-C10 cells, with the highest expres-
sion levels detected in C5 and C8 cells (Fig. 5A). Importantly, the
expression of c-Jun was prolonged, being highest in the C1, C2, C8
and C10 cells, and that of phospho-c-Jun(Ser63) was highest in the
C1, C2, C6 and C8 cells (Fig. 5A). However, Ser63 was phosphory-
lated to a higher extent than Ser73, but the expression of phospho-c-
Jun(Ser73) was prolonged apart from C5 cells (Fig. 5A). ATF2 was
mostly expressed in C3 cells and phospho-ATF2(Thr69/71) in C2
cells, such as phospho-c-Jun (Fig. 5A). It is worth noticing that up-
regulation of phospho-ATF2(Thr71) was less, suggesting that ATF2

phosphorylation may be mainly ascribed to Thr69. Taken together,
up-regulation of the phosphorylated AP-1 components c-Jun and
ATF2 occurred in C-cell cultures and presumably serves as an initial
molecular proliferation-driving event. As phospho-p54 JNK is down-
regulated in C-cell cultures, phosphorylation of the AP-1 components
seems to be mediated by phospho-p46 JNK. We also observed up-
regulation of activated p38 in C2, C3, C6 and C10 cells, and also of
activated ERK1/2 in C1, C2, C3, C5 and C6 cells (Fig. 5B), assuming
their potential involvement in AP-1 phosphorylation [33].

In the case of non-AP-1 transcription factors, slight up-regulation
of c-Myc with peaks in C2 and C4 cells was found (Fig. 5B). Immuno-
blotting of C-cell cultures further revealed that TCF4 expression was
increased along all C-cell cultures, and b-catenin levels were elevated
in C2-C10 cells (Fig. 5B). The aforementioned increased b-catenin/
TCF4 may induce c-Myc and c-Jun gene expression [34, 35]. In addi-
tion, down-regulation of Sp1 and STAT3 was detected (Fig. 5B), sug-
gesting that low levels of both proteins drive cell cycle progression of
C-cell cultures. Importantly, we observed elevated levels of prolifera-
tion-stimulating Il-6 in C3 and C10 cells (Fig. S3).

Cyclin D2 and CDK6 overexpression drives cell
cycle progression

Next, we analysed the expression of cell cycle regulators involved in
different phases of the cell cycle (Fig. 6A). We observed up-regulation
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Fig. 5 Involvement of oncogenic transcription factors in the H2O2-associated colitis model. (A) Lysates from C1-C10 cells and human colonic epithe-
lial cells (HCEC) were immunoblotted with anti-c-Fos, -c-Jun, -phospho-c-Jun, -ATF2, -phospho-ATF2 and -b-actin antibodies. b-actin served as

loading control, and fold expression relative to HCEC cells is given below the blots. c-Fos immunoblotting of HCEC and C1-C3 cells is published in

[9]. (B) Lysates from C1-C10 cells and HCEC cells were immunoblotted with anti-phospho-p38, -phospho-ERK1/2, -c-Myc, -b-catenin, -TCF4, -Sp1,
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of the early G1-specific cell cycle regulators, CDK6 and Cyclin D2,
required for G1 progression in C-cell cultures. In contrast, S and G2/
M markers, CDK2, Cyclin E, and CDK1 and Cyclin B1, respectively,
were down-regulated as well as the G1 marker CDK4. The highest
expression of CDK6 was detected in the C1, C2, C4, C9 and C10 cells.
Cyclin D2 expression was prolonged, highest in the C1, C2, C4, C5
and C10 cells. Importantly, CDK6 and Cyclin D2 overexpression
might facilitate the passage of cells through the G1/S checkpoint and,
therefore, might drive cell cycle progression with consequences for
tumourigenesis should this occur in vivo. We also linked p21WAF1

down-regulation to decreased mRNA expression with the exception of
C1, C3 and C5 cells (Fig. 6B), which will further reduce the effective-
ness of the G1/S, intra-S and G2/M checkpoints.

Repeated H2O2 exposure caused checkpoint
adaptation

Treatment of C10 cells with H2O2 resulted in S and G2/M arrest, but
led to apoptosis resistance after 24 hrs (Fig. 6C) while apoptosis
induction was observed in HCEC cells [9]. Instead, arrested C10 cells
subsequently re-entered the cell cycle as an increased G1 cell popula-
tion was observed 48 and 72 hrs after treatment. Thus, C10 cells

show a defect in the maintenance of the G2/M cell cycle arrest, and
damaged cells enter mitosis because of adaptation of the G2/M and
mitotic spindle checkpoints, which led to accumulation of cells in G1,
resistant to H2O2. These molecular events may cause increased prolif-
eration of C-cell cultures. We further suggest that checkpoint-adapted
C10 cells were selected by their enhanced viability, and this may con-
sequently contribute to increased proliferation.

Discussion

In this study, we investigated the question of whether sole inflamma-
tion-associated ROS generation drives cell cycle progression of HCEC
cells, and whether dysregulated DNA damage checkpoints display the
link to unrestricted proliferation, a hallmark of cancer [3]. Inflamma-
tion-associated ROS generation was mimicked by the exposure of
HCEC cells to exogenous H2O2. We reported previously that an activa-
tion of DNA damage checkpoints occurs via JNK activation after H2O2

exposure [9]. In the present study, we detected dysregulated JNK
activation following repeated H2O2 exposures, suggesting an ineffec-
tive checkpoint control and, therefore, cell cycle progression. Subse-
quent down-regulation of p21WAF1, which is down-stream of JNK,
appeared to be the driving force for cell cycle progression. Thus, the
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decrease in JNK expression, altered JNK activation and p21WAF1

down-regulation might cause increased cellular proliferation. Further-
more, with altered JNK activation, activated p38 and ERK1/2 were
detected, supporting the observation that these MAPKs, which are
known to be involved in survival [36, 37], also play a role in our cellu-
lar model of UC. Inhibition of total JNK activity impaired cell-contact
inhibition in HCEC cells. Thus, loss of cell-contact inhibition observed
in C-cell cultures seems to be the result of p54 JNK inactivation, serv-
ing as a potential pathogenetic factor.

Altered JNK activation and p21WAF1 down-
regulation drive cell cycle progression

A detailed understanding of the role of JNK in tumourigenesis and in
the control of the cell cycle is currently not available. However, as
already mentioned above, we recently reported the induction of DNA
damage checkpoints via JNK [9], which supported the discovered link
between JNK and intestinal damage in UC [38, 39]. In the present
study, we found driven cell cycle progression in association with the
down-regulation of phospho-p54 JNK in C-cell cultures. Moreover,
loss of cell contact inhibition in C-cell cultures was attributed to p54
JNK inactivation. In support, JNK suppresses Ras-stimulated trans-
formation of fibroblasts [40]. Summing up these observations, we
are encouraged to hypothesize that p54 JNK has a tumour suppressor
function in our in vitro model of UC. In contrast, JNK1, mostly p46
JNK, is known to act as a tumour suppressor in the intestine, but,
importantly, tumourigenesis was linked to p21WAF1 down-regulation
[41], and this down-regulation was also observed in our in vitro
model. In addition, JNK is activated in most hepatocellular carcino-
mas [42], and cell proliferation required JNK1-dependent p21WAF1

down-regulation [43], presumably because c-Jun is able to negatively
regulate p53 transcription, and thus, p21WAF1 expression [44]. Our
investigations showed that JNK mediates p21WAF1 expression [9], a
process that is probably independent of p53 because of its inactiva-
tion through the SV40 virus [25]. Thus, p21WAF1 down-regulation
seems to be the result of a negative regulation of JNK phosphoryla-
tion via caspase activity. Interestingly, caspases suppress both phos-
pho-p46 JNK and phospho-p54 JNK in C3 cells. However, as total
phospho-p46 JNK is up-regulated in C-cell cultures, another molecu-
lar mechanism seems to counteract caspase-mediated suppression.
Down-regulation of p21WAF1 occurred early and was as efficient as
p53 mutation, which is in line with the proposed role of p21WAF1 as a
potential tumour suppressor in the colon [45–49]. Here, we show
decreased mRNA and protein levels of the JNK-regulated protein
p21WAF1 in C4 and C6-C10 cells, indicating less transcriptional
p21WAF1 induction. We presume that p21WAF1 down-regulation follow-
ing altered JNK activation leads to driven progression of cells through
cell cycle phases in our cellular model of UC.

Overall, JNK can act as a tumour promoter or suppressor,
depending on the cell type. Importantly, in our study, the selective
phosphorylation of JNK splicing variants p46 and p54 appeared to
play an important role in driven cell cycle progression. Blonska and
Lin found selective phosphorylation of p54, but not that of p46 JNK,
in lymphocytes activation and proliferation [50]. In line with our data,

levels of the JNK target c-Jun and of phospho-c-Jun were increased
in Jnk2�/� fibroblasts, with p54 JNK nearly lost [51]. Also, they
showed that JNK2 with predominant p54 protein seems to inhibit
JNK1 with predominant p46 protein. This could explain phospho-p54
JNK down-regulation with up-regulation of phospho-p46 JNK in our
model. Taken together, our study sheds light on how the different
activated JNK splicing variants operate. Obviously, these splicing vari-
ants appear to be more important than the detection of overall JNK
activation.

Overexpression of oncogenic transcription factors
and G1 cell cycle regulators

Expression of immediate early response genes, such as AP-1 compo-
nents c-Fos, c-Jun and ATF2, has been linked to cellular transforma-
tion [52]. In line with this, we observed prolonged up-regulation of c-
Fos in C-cell cultures. Strong up-regulation of phospho-c-Jun and
phospho-ATF2, both JNK-regulated proteins, was found in C1-C3 and
C6 cells, and in C2 and C6 cells, respectively. As we observed overall
up-regulation of phospho-p46 JNK in C-cell cultures, we propose that
it activates c-Jun and ATF2. However, they can also be phosphory-
lated through ERK and p38 [33, 53]. We detected activation of these
MAPKs in the respective C-cell cultures. In addition, Wisdom et al.
found prolonged expression of unphosphorylated c-Jun, which may
stimulate G1 progression as reported for fibroblasts [54]. They also
found that phosphorylated c-Jun protects cells from UV-induced
apoptosis. Both stimulated G1 progression, and apoptosis resistance
may also be mediated through c-Jun in our model. In this context,
positive regulation of c-Jun expression is probably induced by phos-
phorylated c-Jun/ATF-2 and c-Fos in C-cell cultures as reported by
Angel et al. [55]. Furthermore, cellular transformation induced by Ras
requires c-Jun [56], and c-Jun protects early stages of hepatocellular
carcinomas in mice against apoptosis [57]. C-Jun mediates its prolif-
erative effects through suppression of tumour suppressors, such as
p53 and p21WAF1, while triggering positive cell cycle regulators, such
as CDK’s and Cyclins [58, 59]. We propose an important role for the
AP-1 components that drive HCEC cell cycle progression. Thus, tar-
geting AP-1 components, such as ATF2, seems to be an efficient ther-
apeutic strategy [60].

In UC, increased expression of the c-Myc proto-oncogene has
been linked to cellular proliferative response of inflamed colonic
mucosa [49, 61]. In this study, c-Myc was overexpressed already
after the earliest H2O2 exposures (C1-C6 cells). Interestingly, negative
regulation of STAT3 plays a role in balancing the inflammatory milieu
[62]. In support of this, we detected down-regulation of STAT3 in C-
cell cultures. Sp1 is involved in the expression of genes that regulate
cell proliferation and tumourigenesis [63], but in our model, we could
not detect Sp1 overexpression. Importantly, we noticed increased b-
catenin and TCF4 levels in C-cell cultures, suggesting an involvement
of the Wnt-pathway [64].

In the context of G1 cell cycle regulators, we observed CDK6
and Cyclin D2 overexpression, suggesting that both enhance G1
phase progression in C-cell cultures. Recently, Cole and colleagues
also demonstrated the importance of Cyclin D2 and CDK6 for
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efficient proliferation and colorectal tumourigenesis following APC
loss [65].

Increased proliferation in the extended cellular
model of H2O2-associated colitis

The present study shows an impaired cell-contact inhibition, the over-
coming of senescence and increased proliferation of HCEC cells after
repetitive H2O2 exposure. Moreover, we found evidence of H2O2-
induced intrinsic ROS generation in C-cell cultures. Otherwise, C-cell
cultures exhibited reduced H2O2 release into the media, when com-
pared with HCEC cells. Hence, we speculate that added H2O2 under-
lies intracellular conversion to other ROS, further stimulating ROS
generation and signal transduction, which might be responsible for
HCEC cell cycle progression. In addition, mitochondria are able to
consume H2O2 [66], and this consumption increases with higher pH,
which is a proliferative trigger [67]. In summary, internal ROS genera-
tion within C-cell cultures as a consequence of H2O2 exposure is likely
to drive cell cycle progression by operating as an internal carcino-
genic trigger, which was also reported by Terzic et al. [68]. Therefore,
the cells are driven through the cell cycle without additional external
growth stimulation.

Treatment of JNK-dysregulated C10 cells with H2O2 revealed a
survival mechanism based on a defect in maintaining S and G2/M cell
cycle arrests, followed by progression to the next phase, accumula-
tion of cells in G1 and apoptosis resistance. Importantly, although the
initiation of G2/M cell cycle arrest occurred earlier, it was shortened
and, most notably, could not be maintained, such as the S arrest. As
H2O2-exposed HCEC cells regulate DNA damage via JNK-dependent
checkpoints [9], we further suggest that adaptation of the G2/M and
also of the mitotic spindle checkpoint is caused by altered JNK activa-
tion. However, the detailed molecular mechanisms, which might also
be important in UC tumourigenesis, should be further investigated.

Extending the model enabled the investigation of
permanent and transient molecular mechanisms

In our first study, we showed increased proliferation of C1-C3 cells
[9], while we could confirm increased proliferation also for the pres-
ent extended model involving C4-C10 cells. We found a trend of
molecular events in C1-C3 cells, which were permanently manifested
along C4-C10 cells. Additionally, extending the model enabled us to
observe transient molecular events that occur after the third H2O2

exposure and that appear to be important. In this context, the C5 cells
appear to show an extraordinary behaviour along all C-cell cultures,
namely they display sole exceptions with regard to the expression of
DNA damage checkpoint proteins. In detail, we found (i ) down-regu-
lation of p21WAF1 along all C-cell cultures except for C5 cells and (ii )
up-regulation of phospho-p46-JNK and phospho-c-Jun(Ser73) along
all C-cell cultures except for C5 cells. This was paralleled by strongest
expression of c-Fos and b-catenin. As the levels of p21WAF1, c-Jun,
phospho-c-Jun(Ser73), ATF2 and phospho-ATF2(Thr71)/(Thr69/71)

in C5 cells approximate to the levels of HCEC cells, we suggest that
C5 cells might display countermeasure against the ROS-induced
changes. Taken together, the second study gave more detailed
insights into the underlying mechanisms for driven cell cycle progres-
sion, enabling the creation of the following model.

Proposed model

On the basis of data presented here, we observed a dominant prolifer-
ation maxima consisting of C1-C7 cells with a peak in C3 cells (max-
ima 1) and a beginning second maxima consisting of C8-C10 cells
(maxima 2), suggesting a model of sinusoidal proliferation (Fig. 7).
(A) We found permanent molecular events along the C-cell cultures,
as well as those that appear to be only transient. The following per-
manent molecular changes were observed in C-cell cultures: (i ) total
JNK down-regulation, (ii ) selective JNK activation (p46), (iii ) selec-
tive JNK inactivation (p54) starting from C3 cells, (iv) p21WAF1 down-
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regulation and (v) increased levels of c-Fos, c-Jun, phospho-c-Jun
(Ser73), TCF4 and Cyclin D2. b-catenin was up-regulated in C2-C10
cells. Interestingly, c-Myc was up-regulated in C1-C6 cells. In con-
trast, we noticed transient up-regulation of phospho-c-Jun(Ser63),
ATF2, phospho-ATF2(Thr69/71), CDK6, as well as activation of p38
and ERK1/2 in maxima 1. In maxima 2, CDK6, p38 and c-Jun were
transiently activated. (B) Taken together, we propose an interplay of
selective JNK inactivation, p21WAF1 down-regulation, selective JNK
activation, p38/ERK1/2 activation, involvement of AP-1 components
and b-catenin/TCF4-signalling. Thereby, two molecular pathways may
account for p21WAF1 down-regulation: (i ) selective JNK inactivation
(p54) and (ii ) c-myc induction. C-myc, in turn, can be activated
through (i ) b-catenin/TCF4 or (ii ) selective JNK activation (p46) and/
or p38/ERK1/2 activation, inducing AP-1 components c-Jun and
ATF2. We propose that early p21WAF1 suppression (C1 and C2) is
caused by selective JNK activation and/or p38/ERK activation via AP-
1-dependent c-Myc induction that suppresses p21WAF1. Later
p21WAF1 down-regulation starting from C3 cells appears to be mainly
attributed to the interplay of altered JNK activation and b-catenin/
TCF4. This also suggests a relationship between the Wnt and JNK
pathway. This model is in line with the results of Saadeddin et al.,
who reported such a coordination of both pathways through creation
of a transcriptional complex consisting of b-catenin/TCF4 and c-Jun
(AP-1), which then activates common target genes, such as c-Myc
[34]. To the best of our knowledge, we are the first to demonstrate
that selective JNK inactivation might provide a link to p21WAF1 down-
regulation and, therefore, the switch from cell cycle arrest to
increased cell cycle progression. Finally, we speculate that all of the
molecular events presented in this study might operate in UC tumo-
urigenesis. Moreover, it is conceivable that selected genetic events
are responsible for the proliferation bottleneck seen around cycle 7.
Future studies will include deep-sequencing of C7- and C10-cell cul-
tures to identify genetic mutations that can then be related to the
mutation profiles of cancer arising in the colitic bowel.
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Figure S1 Down-regulation of p54 splicing variants of phospho-JNK
(▼) and up-regulation of p46 splicing variants of phospho-JNK (●)
in C-cell cultures. Lysates from C1�C10 cells and from HCEC cells
were immunoblotted with anti-phospho-JNK and -b-actin antibodies.
x-fold expression is relative to HCEC cells and relative to b-actin,
which was estimated through densitometric analysis.

Figure S2 Expression of caspase 9, 8 and 3 in C-cell cultures. Lysates
from C1�C10 cells and HCEC cells were immunoblotted with anti-
caspase 9, -caspase 8, -caspase 3 and -b-actin antibodies. b-actin
served as loading control, and fold expression relative to HCEC is
given below the blots. Data of HCEC and of C1�C3 cells are published
in [9].

Figure S3 C3 and C10 cells show increased Il-6 release compared
with HCEC cells.
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