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Inflammation is an important hallmark of cancer and plays a role in both neogenesis and
tumor development. Despite this, inflammatory-related genes (IRGs) remain to be poorly
studied in lung adenocarcinoma (LUAD). We aim to explore the prognostic value of IRGs
for LUAD and construct an IRG-based prognosis signature. The transcriptomic profiles
and clinicopathological information of patients with LUAD were obtained from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Least absolute
shrinkage and selection operator (LASSO) analysis and multivariate Cox regression
were applied in the TCGA set to generate an IRG risk signature. LUAD cases with
from the GSE31210 and GSE30219 datasets were used to validate the predictive
ability of the signature. Analysis of the TCGA cohort revealed a five-IRG risk signature
consisting of EREG, GPC3, IL7R, LAMP3, and NMUR1. This signature was used to divide
patients into two risk groups with different survival rates. Multivariate Cox regression
analysis verified that the risk score from the five-IRG signature negatively correlated with
patient outcome. A nomogramwas developed using the IRG risk signature and stage, with
C-index values of 0.687 (95% CI: 0.644–0.730) in the TCGA training cohort, 0.678 (95%
CI: 0.586–0.771) in GSE30219 cohort, and 0.656 (95% CI: 0.571–0.740) in GSE30219
cohort. Calibration curves were consistent between the actual and the predicted overall
survival. The immune infiltration analysis in the TCGA training cohort and two GEO
validation cohorts showed a distinctly differentiated immune cell infiltration landscape
between the two risk groups. The IRG risk signature for LUAD can be used to predict
patient prognosis and guide individual treatment. This risk signature is also a potential
biomarker of immunotherapy.
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INTRODUCTION

Lung cancer is the second most common malignancy and has the
highest mortality rate (Sung et al., 2021). Lung adenocarcinoma
(LUAD) is its major histological type, accounting for more than
40% of all lung cancer cases (Lortet-Tieulent et al., 2014; Abe and
Tanaka, 2016). Advancements in diagnostic and therapeutic
strategies, especially those in molecular targeted therapy and
immunotherapy, have done much to improve the outcomes of
LUAD (Steven et al., 2016; Vargas and Harris, 2016); however,
patient survival rates remain low (Zhao et al., 2018). The existing
tumor-node-metastasis (TNM) system accounts for only a few
factors and neglects heterogeneity in molecular characteristics
(Balachandran et al., 2015). Thus, it is necessary to develop new
prognostic biomarkers for LUAD to identify heterogeneous
patients who are candidates for individual antineoplastic therapy.

Inflammation is the immune system’s response to infection,
trauma, and other stresses (Gomes et al., 2014). It is also
important in cancer, where it plays multiple roles (Hanahan
and Weinberg, 2011). On the one hand, the local inflammatory
response promotes the occurrence and development of tumors by
releasing important molecules and carcinogens to the tumor
microenvironment. These can include survival factors that
limit apoptosis, growth factors that sustain the proliferative
signaling, and pro-angiogenic factors (Ben-Baruch, 2006;
Hanahan and Weinberg, 2011). On the other hand, the
lymphocyte-to-monocyte ratio and the neutrophil-to-
lymphocyte ratio, which are indicators of the systemic
inflammatory response, and have been found to be prognostic
factors in patients with LUAD (Takahashi et al., 2016; Minami
et al., 2018).

Several studies have reported the prognostic value of different
inflammatory-related genes (IRGs). For example, He Z et al.
found that BTG Anti-Proliferation Factor 2 (BTG2) expression
can suppress the proliferation and metastasis of NSCLC cells (He
et al., 2015). Recently, the potential prognostic value of IRGs has
also been explored in colorectal cancer, low-grade glioma, and
oral cavity squamous cell carcinoma (Bai et al., 2019; Liang et al.,
2021; Xiang et al., 2021).

The predictive ability of a multi-gene model is superior to that
of a single-gene model (Srivastava and Gopal-Srivastava, 2002).
In this study, we used data from The Cancer Genome Atlas
(TCGA) to isolate an IRG-based signature associated with the
survival rates of LUAD patients. Data from the Gene Expression
Omnibus (GEO) was then used to validate the predictive ability of
this signature. Finally, a nomogram was developed using the
aforementioned IRG-based signature to more precisely predict
the outcome of LUAD patients.

MATERIALS AND METHODS

Data Collection and Preparation
RNA-seq data and clinical information of patients with LUAD
were downloaded from the TCGA (https://tcga-data.nci.nih.gov/
tcga/) and GEO databases (https://www.ncbi.nlm.nih.gov/geo/).
Cases with incomplete clinical information and follow-ups of less

than 5 days were excluded. Finally, 488 cases from the TCGA
database were used as the training cohort while 226 cases from the
GSE31210, and 85 cases in GSE30219 datasets were used as the
validation cohort. The different gene expression datasets were
normalized using the “limma” and “SVA” R packages. The
Masked Somatic Mutation data (varscan. Somatic. Maf) was
analyzed using the “maftools” R package (Mayakonda and
Koeffler, 2016). Finally, IRGs were selected and downloaded
from hallmark gene sets in the Molecular Signatures Database
(http://www.gseamsigdb.org/gsea/msigdb/cards/HALLMARK_
INFLAMMATORY_RESPONSE.html). These are shown in
Supplementary Table S1.

Construction and Validation of the
Prognostic IRG Signature
Differentially expressed genes (DEGs) were defined as having
false discovery rates (FDR) < 0.05 and log2 |fold change| > 2.
Differential expression analysis between LUAD tumor tissues and
para-carcinoma tissues was performed using the “limma” R
package. In the training cohort, the differentially expressed
IRGs were first subjected to univariate Cox regression analysis
(p < 0.05). Following this, the least absolute shrinkage and
selection operator (LASSO) regression analysis was performed
to narrow down the prognostically significant candidate IRGs.
Then, multivariate Cox regression analysis was used to determine
the best weighting coefficient of each prognostically significant
candidate IRG. This IRG signature included all the differentially
expressed and prognostically significant IRGs. The risk score for
each case was calculated according to normalized expression
levels of IRGs and their corresponding regression coefficients
following the same kind literature (Huang, et al., 2021). The
specific formula for this is as follows: Risk score � sum
(expression level of each IRG × corresponding coefficients).

In the TCGA training cohort, all patients were divided into a
high-risk and low-risk group according to the cut-off value of risk
scores derived from maximally selected log-rank statistics, which
was used the R package “Maxstat” with the Horton and Lausen
(HL) p value approximation method (Hothorn and Zeileis 2008)
The Kaplan-Meier method was used to compute the overall
survival (OS), and the log-rank test was used to compare OS
between the two groups.

To validate the IRG signature, the risk score of LUAD cases in
the GSE31210, and GSE30219 datasets were calculated using the
same formula as the TCGA cohort. Cases in the validation set
were also divided into two groups according to the cut-off point
of risk score obtained from the maximally selected log-rank
statistics. Survival curves of the low- and the high-risk groups
in the validation cohort were also estimated using the Kaplan-
Meier method and were compared via the log-rank test.

Gene Set Enrichment Analyses
To investigate the potential molecular mechanisms of the
signature IRGs that were identified, Gene Set Enrichment
Analysis (GSEA) was used to find enriched terms between the
high-risk and low-risk patients in the TCGA and GEO cohort.
After excluded gene with no expression value, all mRNA was
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entered in GSEA which performed in Java GSEA v. 4.0.1 with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in
C2, and Gene Ontology (GO) terms in C5. After performing
1,000 permutations, genes with a false discovery rate q < 0.05
were deemed significantly enriched.

Immune Cell Infiltration and Tumor
Mutation Burden Analyses
After normalizing the expression data in the TCGA and GEO
dataset, we used a single sample GSEA (ssGSEA) to evaluate 28
immune cells using the R package “GSVA” (Tamborero et al.,
2018). The results were visualized in a heatmap. With the perm
set to 1,000, the CIBERSORT software package was used to
perform the CIBERSORT algorithm and evaluate the
proportion of 22 types of infiltrating immune cells based on
LM22 (Newman et al., 2015). In TCGA cohort, according to the
length of the human exon, the TMB calculated for each patient

was calculated as the total mutation frequency/35MB. Dividing the
total number of mutations by the size of the coding region of the
target is the resulting TMB per megabase. TheMann-Whitney U test
was performed to compare the differential expression levels of
PDCD1, CD274, PDCD1LG2, CTLA4, CD276, CD80, CD86,
VTCN1, and the TMB between the two risk groups.

Establishment of a Predictive Nomogram
Using the TCGA training set, a nomogram integrating the IRG
signature and stage to predict individual survival was established.
In addition, calibration curves and the area under the curve
(AUC) for the OS probability at 1, 3, 5 years were plotted to
evaluate the predictive accuracy of this nomogram in the TCGA
set and the GEO validation set.

Statistical Analyses
Continuous data are shown as the mean ± SD and were compared
using Student’s t-test. Categorical variables were analyzed using

FIGURE 1 | Flow chart of data collection and analysis.

TABLE 1 | Patients’ characteristics.

TCGA training cohort n = 488 GSE31210
cohort n = 226

GSE30219
cohort n = 85

Gender
Male 223 (45.7) 105 (46.5) 66 (77.6)
Female 265 (54.3) 121 (53.5) 19 (22.4)
Age (year) 65.2 ± 10.0 59.6 ± 7.4 61.5 ± 9.3

Smoking history
No 68 (13.9) 114 (50.4) 0 (0)
Yes or ever 406 (83.2) 112 (49.6) 85 (100)
Unknown 14 (2.9) 0 (0) 0 (0)

Stage
I 262 (53.7) 168 (74.3) 81 (95.3)
II 121 (24.8) 58 (25.7) 3 (3.5)
III 80 (16.4) 0 (0) 0 (1.2)
IV 25 (5.1) 0 (0) 0 (0)
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the chi-square (χ2) test. Cox regression analyses were performed
to determine the independent prognostic factors for OS. A
prognostic nomogram model was established using the “rms”
R package, while its predictive accuracy was assessed via the
creation of calibration curves. Statistical analysis was performed
using SPSS (version 22.0) and R software (version 4.0.1). The
threshold of statistical significance was set at a p-value < 0.05.

RESULTS

Identification of a Prognosis-Related IRG
Signature
After differential expression analysis in the TCGA dataset between
535 tumor tissues and 59 normal tissues, we discovered 2,849
upregulated and 689 downregulated DEGs, including 22
differentially expressed IRGs. After excluding 27 cases with
unsatisfied follow-up or those lacking important clinical
information, 488 cases from the TCGA training set were included
to identify prognosis-related IRGs and to construct an IRG-based
signature. In addition, 226 cases from the GSE31210, and 85 cases in
GSE30219 datasets were used to validate the IRG-based signature
(Figure 1). The clinicopathological factors of the three datasets are
shown in Table 1.

After univariate Cox analysis using the gene expression
profiles of each differentially expressed IRG, five OS-related
IRGs from the TCGA training cohort were found
(Supplementary Figure S1). These five IRGs were also found
to be significant in the LASSO regression analysis (Figures 2A,B),
which became the IRG signature candidates. Multivariate Cox
regression analysis determined the corresponding regression
coefficients of each candidate in this ARG risk signature.
Finally, a five-IRG risk signature was constructed according to
the 488 LUAD cases in the TCGA cohort, whose risk scores were
specifically calculated based on a linear combination of gene
expression levels and their corresponding regression coefficients.
The specific formula for this is as follows: Risk score � EREG ×

0.076861—GPC3 × 0.042023—IL7R × 0.150135—LAMP3 ×
0.009471—NMUR1 × 0.072508.

Prognostic Value of the IRG Signature in the
Training Cohort
In the TCGA training cohort, the cut-off value of risk scores was
determined as -2.0 using the maximally selected log-rank
statistics (Supplementary Figure S2) after dividing the cases
into low-risk and high-risk groups. Figure 3A shows the
distribution of the risk scores. As shown in Figure 3B, the
high-risk group has significantly more deaths than the high-
risk group. A heatmap showing the differential expression of
these 5 IRGs between the low-risk and high-risk groups is
depicted in Figure 3C. The adjusted FDR and log2 |fold
change| of these five IRGs were shown in Supplementary
Table S2. Additionally, patients in the low-risk group have
significantly longer OS time compared with the high-risk
group (p � 1.697e−05) (Figure 3D).

Prognostic Value of the IRG Signature in the
Validation Cohort
According to the risk score based on the maximally selected log-
rank statistics, 226 cases were divided into the high- (N � 186)
and low-risk (N � 40) groups in the GSE31210 validation cohort.
The distribution of risk scores is presented in Figure 4A. Similar
to the training cohort, more patients died in the high-risk group
compared with the low-risk group (Figure 4B). As shown in
Figure 4C, the expression profiles of the five IRGs between the
low-risk and high-risk groups were plotted in the heatmap and
the adjusted FDR and log2 | fold change | of these five IRGs were
shown in Supplementary Table S2. The survival curves showed
that patients in the low-risk group had a better OS than patients
in the high-risk group (p � 1.359e−02) (Figure 4D).

The maximally selected log-rank statistics divided 85 cases in
GSE30219 validation cohort into high- (N � 36) and low-risk

FIGURE 2 | Identification of a prognosis-related IRG-based signature in the TCGA training cohort. (A) Selection of the optimal candidate genes in the LASSO
model. (B) LASSO coefficients of prognosis-associated ARGs, each curve represents a gene.
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(N � 49) groups. The distribution of risk scores is presented in
Figure 5A. Similar to the training cohort, more patients died in
the high-risk group compared with the low-risk group
(Figure 5B). As shown in Figure 5C, the expression profiles
of the five IRGs between the low-risk and high-risk groups were

plotted in the heatmap and the adjusted FDR and log2 | fold
change | of these five IRGs were shown in Supplementary Table
S2. The survival curves showed that patients in the low-risk group
had a better OS than patients in the high-risk group (p �
1.183e−03) (Figure 5D).

FIGURE 3 | Assessment of prognostic value of the IRG signature model in the TCGA training cohort. (A) The distribution of risk scores in the TCGA. (B) Patient
distribution in the high- and low-risk group according to overall survival status. (C) The heatmap showing expression profiles of the five IRGs. (D) Kaplan-Meier curves for
the overall survival of patients in the high- and low-risk group.
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Gene Set Enrichment Analysis for Important
Pathways
To investigate the underlying functional mechanisms associated
with these five IRGs in patients with LUAD, GSEA through GO
and KEGG pathway enrichment analysis was performed between

the high-risk and low-risk groups in the TCGA training set and
two GEO validation set. In the high-risk group, KEGG
enrichment analysis found that genes were primarily enriched
in base excision repair, nucleotide excision repair, oxidative
phosphorylation, pyrimidine metabolism, and RNA
degradation in all three datasets. GO enrichment analysis

FIGURE 4 | Assessment of prognostic value of the IRG signature model in the GSE31210 validation cohort. (A) The distribution of risk scores in the GSE31210
validation cohort. (B) Patient distribution in the high- and low-risk group according to overall survival status. (C) The heatmap showing expression profiles of the five IRGs.
(D) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk group.
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found that genes were primarily enriched in metabolism and
function of ncRNA, such as ncRNA metabolic process, ncRNA
processing and ncRNA transcription; metabolism and function of

scRNA, such as snRNAmetabolic process and snRNA binding. In
patients with low-risk, KEGG enrichment analysis found that
genes were primarily enriched in B cell receptor signaling

FIGURE 5 | Assessment of prognostic value of the IRG signature model in the GSE30219 validation cohort. (A) The distribution of risk scores in the GSE30219
cohort. (B) Patient distribution in the high- and low-risk group according to overall survival status. (C) The heatmap showing expression profiles of the five IRGs. (D)
Kaplan-Meier curves for the overall survival of patients in the high- and low-risk group.
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pathway, cell adhesion molecules cams, T cell receptor signaling
pathway, and WNT signaling pathway. GO enrichment analysis
found that genes were primarily enriched in metabolism and
function of calcium ion, such as calcium-mediated signaling,
calcium channel complex, calcium dependent protein kinase
activity; T cell selection; cargo receptor activity; and scavenger
receptor activity (Figures 6A–F).

Tumor Immunity Landscape and TMB in
LUAD
To explore the relation between the IRG risk signature and the
tumor immunity landscape, the CIBERSORT algorithm and
ssGSEA were utilized to evaluate immunity infiltration
between low- and high-risk groups in the TCGA training set
and 2 GEO validation set. The heatmaps show the immune cell

infiltration landscape of the 28 immune cells in three cohorts, as
obtained from the results of the ssGSEA analysis (Figures
7A,C,E). The barplot show the immune cell infiltration
landscape of the 22 immune cells as obtained from the results
of the CIBERSORT algorithm (Supplementary Figure S3A,C,E).
As shown in Figures 7B,D,F, patients in low-risk had
significantly higher proportions of infiltrating resting mast
cells in all three cohorts. Patients in low-risk also had higher
proportions of infiltrating resting CD4+ memory T cells and
monocytes in TCGA cohort, and gamma delta T cell in GSE31210
cohorts. Patients in high-risk group had higher proportions of
infiltrating of Treg cells, activated NK cells in TCGA and
GSE30219 cohort, while those of follicular helper T cells were
significantly higher in TCGA cohort. High-risk patients in
GSE31210 had higher proportions infiltrating of M2
macrophage and neutrophils. The proportions of infiltrating

FIGURE 6 |Gene set enrichment analysis between the low- and high-risk subgroups in TCGA training cohort and two GEO validation cohorts. (A) Enriched KEGG
terms between high- and low-risk groups in TCGA cohort. (B) Enriched GO pathways between high- and low-risk groups in TCGA cohort. (C) Enriched KEGG terms
between high- and low-risk groups in GSE31210 cohort. (D) Enriched GO pathways between high- and low-risk groups in GSE31210 cohort. (E) Enriched KEGG terms
between high- and low-risk groups in GSE30219 cohort. (F) Enriched GO pathways between high- and low-risk groups in GSE30219 cohort.
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28 immune cells in ssGSEA were shown in Supplementary
Figure S3B,D,F. The proportions of infiltrating eosinophils
and mast cells were higher in low-risk group among three
cohort. In the cohort with large samples, TCGA and
GSE31210, low-risk group had higher proportions infiltrating
of activated CD8 T cells, effector memory CD8 T cell, central
memory CD4 T cell, type 1 helper T cell and activated B cell,
which play an important role in anti-tumor immunity. Somatic
mutation analysis revealed that patients in the low-risk group had
a lower TMB. (Supplementary Figure S4). We also investigated
the expression levels of eight immune checkpoint genes between
the low- and high-risk groups. There was no difference in the
expression level of CD274, CD276, and VTCN1 (Figure 8)
between the two risk groups. However, patients in the low-risk
group had a higher expression level of PDCD1, PDCD1LG2,
CD80, CD86, and CTLA4 (Figure 8).

Nomogram Based on the IRG Signature for
LUAD
After adjusting for gender, age and smoking history, multivariate
Cox analysis demonstrated that the stage (HR � 1.60, 95%CI �
1.39–1.85, and p < 0.001) and risk score was a negative prognostic
factor of OS in the training cohort (HR � 2.39, 95%CI �
1.49–3.83, and p < 0.001) (Figure 9A). Based on the IRG risk
scores and stage, a visualized predictive nomogram for individual
OS probability at 1, 3, and 5 years was developed using the data of
the training cohort (Figure 9B). Bootstrap validation was
performed in this nomogram. The C-index of the training
cohort was 0.687 (95% CI: 0.644–0.730), while the C-index of
the GSE31210 and GSE30219 cohort was 0.678 (95% CI:
0.586–0.771), and 0.656 (95% CI: 0.571–0.740), respectively,
which suggested its good performance in predicting OS for
LUAD. Calibration curves were drawn in the training and two

FIGURE 7 | The difference of immune cell infiltration between the high- and low-risk group in the TCGA training and two GEO validation cohort. (A) Heatmap of the
28 immune-infiltrating cells landscape of ssGSEA in TCGA cohort. (B) Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk
group of CIBERSORT in TCGA cohort. (C) Heatmap of the 28 immune-infiltrating cells landscape of ssGSEA in GSE31210 cohort. (D) Violin plot showing differences of
infiltrating immune cell types between the low- and the high-risk group of CIBERSORT in GSE31210 cohort. (E) Heatmap of the 28 immune-infiltrating cells
landscape of ssGSEA in GSE30219 cohort (F) Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk group of CIBERSORT in
GSE30219 cohort.
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GEO validation cohorts (Figures 9C,E,G) to verify the accuracy
of the nomogram. At 1, 3, and 5 years, the calibration curves
demonstrated a satisfactory consistency between the actual
observations and the predicted survival probabilities. The time
ROC curve in 1, 3, and 5 years also showed the good performance
of this nomogram. The AUC values of the 1-, 3-, and 5-years OS
in the TCGA cohort were 0.745, 0.690, and 0.697, respectively
(Figure 9D). The AUC values of the 1-, 3-, and 5-years OS in the
GSE31210 cohort were 0.901, 0.712, and 0.665, respectively
(Figure 9F). The AUC values of the 1-, 3-, and 5-years OS in
the GSE30219 cohort were 0.771, 0.685, and 0.637, respectively
(Figure 9H).

DISCUSSION

In this study, we explored the relationship between the expression
level of IRGs and survival from LUAD. We constructed a novel
prognostic ARG signature consisting of five IRGs, including
EREG, GPC3, ILR7, LAMP3, and NMUR1. In addition, the
multivariate Cox analysis confirmed the prognostic value of
the IRG signature. Furthermore, we established a nomogram
integrating the IRG signature and stage for predicting individual
survival and validated its predictive ability in the GSE31210 and
GSE30219 datasets. Finally, we also explored the relationship
between expression levels of IRGs and immune cell infiltration
in LUAD.

With increasing convenience in data collection from open-
access public databases, many studies concentrated on the
relationship between RNA-seq data of specific gene sets and
individual patient outcomes (Wu et al., 2019; Qu et al., 2020; Zhu
et al., 2020; Xu and Chen, 2021). These studies were limited to
autophagy, aging, and immune infiltration, but most of them lack
clinical applications. In addition, the study focused on the

prognostic role of the IRGs in LUAD is lacking. Increasing
evidence demonstrated the underlying mechanism of the local
inflammatory microenvironment and systemic inflammatory
response driving tumorigenesis in many cancers, including
lung cancer (Gomes et al., 2014; Lucas et al., 2017; Greten and
Grivennikov, 2019; Oya et al., 2020). Several previous studies
reported the prognostic value of a single inflammatory-related
gene, such as BTG2, TNFRSF10B, and IL1B (Landvik et al., 2012;
Schabath et al., 2013; He et al., 2015). However, a comprehensive
model with multiple genes and a stronger predictive ability is also
necessary. In this study, our nomogram showed good prediction
performance in both the training and validation sets.

The IRG risk score formula used in this study indicated that a
high gene expression of epiregulin (EREG) was unfavorable for
individual survival. EREG is a ligand that belongs to the ERBB
family. EREG can bind to the ERBB1 and ERBB4 receptors,
activating their intrinsic kinase domain and leading to the
phosphorylation of specific tyrosine residues in their receptor’s
cytoplasmic tail of their receptors (Shelly et al., 1998). The
overexpression of EREG is found in LUAD and associated
with unfavorable prognoses (Sunaga and Kaira, 2015).
Phosphatidylinositol proteoglycan-3 (GPC3) is an extracellular
glycoprotein belonging to the heparan sulfate proteoglycan
(HSPG) family (Gonzalez et al., 1998). Interestingly, the GPC3
gene regulates cell proliferation as a tumor suppressor gene in
LUAD (Kim et al., 2003) but shows the opposite effect in LUSC
(Lin et al., 2012). Interleukin-7 receptor (IL7R) is the receptor of
IL-7, and the IL-7/IL-7R interaction seems to have a two-sided
effect in lung cancer. On the one hand, IL-7/IL-7R suppresses
autophagy by activating the PI3K/Akt/mTOR signaling pathway
and promoting lymphangiogenesis (Ming et al., 2009; Jian et al.,
2019). On the other hand, IL-7/IL-7R improves
chemotherapeutic sensitivity and anti-tumor immunity (Shi
et al., 2019; Bednarz-Misa et al., 2021). Lysosome-associated

FIGURE 8 | Expression of the PDCD1, PDCD1LG2, CD274, CD276, CD80, CD86, CTLA4, and VTCN1 between the low- and the high-risk group.
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FIGURE 9 | Development of a nomogram based on IRGs signature for predicting overall survival of patients with LUADs. (A)Multivariate Cox regression analysis of
ARGs signature and other clinicopathological factors. (B) The nomogram plot integrating IRG risk score, and stage. (C) The calibration plot for the probability of 1-, 3-,
and 5-years OS in the TCGA training cohort (D) Time ROC curves nomogram-based OS prediction in the TCGA training cohort. (E) The calibration plot for the probability
of 1-, 3-, and 5-years OS in the GSE31210 cohort. (F) Time ROC curves nomogram-based OS prediction in the GSE31210 cohort. (G) The calibration plot for the
probability of 1-, 3-, and 5-years OS in the GSE30219 cohort. (H) Time ROC curves nomogram-based OS prediction in the GSE30219 cohort.
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membrane protein 3 (LAMP3) belongs to the LAMP family of
proteins, influencing cellular processes such as phagocytosis,
aging, and lipid transport. The role of LAMP3 in cancer
remains to be elucidated (Alessandrini et al., 2017).
Neuromedin U receptor 1 (NMUR1) is one of the receptors of
Neuromedin U. A previous study reported that the methylation
of the NMUR1 gene was related to poor survival in patients with
head and neck squamous cell carcinoma (Misawa et al., 2020).
The potential mechanisms and function of NMUR1 in LUAD
had not been reported.

Tumor inflammation is closely associated with immune cell
infiltration in the tumor microenvironment, which contributes to
immunotherapy response. However, there is no study exploring
the relationship between tumor inflammation and immune cell
infiltration in LUAD. The ssGSEA and CIBERSORT algorithms
were performed to compare tumor infiltration between the two
risk groups in this study. We found that patients in high-risk
group had higher proportions of immune cells, which against the
anti-tumor immunity, such asregulatory T cells, follicular helper
T cells, M2 macrophage, and neutrophils. Previous studies had
reported that high proportions of these immune cells promote
progression and metastasis in NSCLC (Shi et al., 2014; Marshall
et al., 2016; Powell and Huttenlocher, 2016; Pritchard et al., 2020).
In patients with low-risk group, a higher proportions infiltrating
of resting CD4 memory T cells, activated CD8 T cells, effector
memory CD8 T cell, central memory CD4 T cell, type 1 helper
T cell, activated B cell and resting mast cells were found, and
which contribute to the anti-tumor immunity and are positively
associated with prognosis (Chamoto et al., 2006; Lange et al.,
2019; Han et al., 2020; Xu et al., 2020). Besides, we investigated
the expression level of 8 immune checkpoint genes. The proteins
of these 8 genes were costimulatory molecules belong to B7-CD28
family members, which closely associated with anti-tumor
immunity (Zhang et al., 2020). Previous study mentioned that
patients with high expression level of these 8 genes might had
better response of immunotherapy (Li et al., 2019). We found
cases in the low-risk group had a higher expression level of
PDCD1 (PD-1), PDCD1LG2 (PD-L2), CTLA4, CD80 (B7.1), and
CD86 (B7.2), which indicate that patients with a low-risk score
may benefit more from immunotherapy.

Some limitations should be considered in this study. First, this
IRG prognostic model was established through bioinformatics
analyses from data available in the TCGA and GEO databases.
Hence, the results of this study need further validation from
prospective, multicenter trials or experimental data. In addition,
this study preliminarily investigated the potential relationship
between the IRG risk signature and immune cells infiltration, so
further studies are needed to reveal the underlying mechanisms
for this. Finally, although the IRG signature and the stage were
integrated into our prognostic nomogram, we cannot identify the
contribution of each IRG in this signature.

In conclusion, to determine if the IRG risk signature we
deduced was related to OS in patients with LUAD, we
constructed and validated a prognostic nomogram for LUAD,

including the use of the IRG risk signature and stage, and for
predicting individual survival. Patients with a low IRG risk score
have a higher expression levels of immune checkpoint gene and
this IRG risk signature can be a potential indicator of
immunotherapy.
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