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The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to opti-
mize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies address-
ing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo
conditions. The current work evaluated the relationship among systemic drug exposure, target tissue
availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin,
abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by
high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated
in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the com-
parative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from
lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin
(P < 0.05) concentrations in plasma was observed. The concentrations of the three compounds in the
mucosal tissue and digestive contents were significant higher than those measured in plasma. Drug con-
centrations were in a range between 452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treat-
ment) in the gastrointestinal (GI) contents (abomasal and intestinal). Concentrations of the three
compounds in H. contortus were in a similar range to those observed in the abomasal contents (positive
correlation P = 0.0002). Lower moxidectin concentrations were recovered within adult H. contortus com-
pared to abamectin and ivermectin at day 2 post-treatment. However, the efficacy against H. contortus
was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment
induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher
values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative
pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new
insights into the action of these drugs.

� 2012 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Among the available chemical groups used to control the para-
sitic diseases in ruminants, the macrocyclic lactones (MLs) have
been the most used drugs during the last 30 years. The intensive
use of these broad-spectrum antiparasitic compounds has led to
the emergence of high levels of resistance mainly in nematodes
of sheep and goats but also in cattle gastrointestinal (GI) parasites
(Kaplan, 2004; Demeler et al., 2009). This high level of resistance to
the MLs has encouraged the search for strategies to optimize their
enormous potential as antiparasitic agents in an attempt to extend
their life span, particularly in geographic areas where resistance is
not yet fully present.

The use of the MLs by the oral route in sheep and goats has led to
some advantageous efficacy patterns against resistant nematodes
in comparison to subcutaneous treatment (Gopal et al., 2001;
Lloberas et al., 2012). Moreover, different efficacy performances
have been described for ivermectin (IVM), abamectin (ABM) and
moxidectin (MXD) in sheep infected with resistant GI nematodes
(Barnes et al., 2001; Vickers et al., 2001; Alka et al., 2004). Although
these ML compounds belong to two different chemical families,
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avermectins (IVM, ABM) and mylbemycins (MXD), they share a
common ML structure and many physicochemical and pharmaco-
logical properties. In spite of the fact that compounds in both fam-
ilies seem to exert their antiparasitic effect by the same mode of
action, some clear pharmacokinetic (Lanusse et al., 1997; Molento
et al., 2004) and also pharmacodynamic differences between IVM
and MXD (Njue et al., 2004) have been described and it may account
for their differential effectiveness against certain resistant nema-
todes, which has been recently reviewed by Prichard et al. (2012).
However, there is still a need for pharmaco-parasitological studies
addressing these kinetic-dynamic differences under standardized
in vivo conditions.

The P-glycoprotein (P-gp)-mediated drug efflux was proposed
among the mechanisms of nematode resistance to the MLs (Xu
et al., 1998; Prichard and Roulet, 2007). Significantly different
affinities by mammalian P-gp have been reported among MLs
using in vitro assessments (Lespine et al., 2007). Additionally, mod-
ifications on the pattern of nematode P-gp expression have been
observed in resistant nematodes recovered from animals treated
with MLs (Prichard and Roulet, 2007). To gain some further insight
into the comparative pharmacology of the therapeutically-used ML
compounds, the work reported here was designed to establish the
relationship among systemic drug exposure, target tissue availabil-
ities and the pattern of drug accumulation within resistant Hae-
monchus contortus for three of the most used compounds. The
comparative assessment of the systemic and tissue pharmacoki-
netics of MXD, ABM and IVM was complemented with the simulta-
neous evaluation of the clinical efficacy of the three molecules in
lambs infected with resistant nematodes. Furthermore, the work
included the comparative determination of the level of expression
of the H. contortus drug transporter, P-gp 2, in adult worms recov-
ered from lambs treated with each of the MLs.
2. Material and methods

2.1. Animals

Sixty-four (64) Romney Marsh lambs (27.2 ± 4.48 kg), naturally
infected with resistant GI nematodes were involved in this trial.
The isolate was from a sheep Experimental Unit (Reserva 8, Institu-
to Nacional de Tecnología Agropecuaria, Balcarce, Argentina) with
a parasite control program based on the intensive use of anthel-
mintics over many years. The use of IVM several times a year over
many years had been documented until 1997 (Entrocasso, personal
communication). The reduction of the faecal egg counts obtained
after treatment with IVM the years prior to performing the trial
described here was below 80% (Entrocasso et al., 2008; Lifschitz
et al., 2010a). The selection of the animals was based on worm
egg per gram counts (epg). On day-1 all lambs were checked for
epg, ear tagged and the individual body weights were recorded.
Experimental animals had an average of 4071 ± 1630 epg counts
ranging from 2600 to 8200. Animals were allocated in a paddock
and fed on a lucerne/white and red clover pasture during the
experiment and for 20 days before the start of the clinical efficacy
study. All the animals had free access to water. Animal procedures
and management protocols were approved by the Ethics Commit-
tee according to the Animal Welfare Policy (act 087/02) of the
Faculty of Veterinary Medicine, Universidad Nacional del Centro
de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
(http://www.vet.unicen.edu.ar).
2.2. Experimental design, treatments and samplings

Experimental lambs were assigned into four (4) experimental
groups. Group A (n = 10) remained as untreated controls. Animals
in group B–D (n = 18 in each group) received MXD (Cydectin�, Fort
Dodge, Argentina), ABM (Abamin�, Rosenbusch, Argentina) or IVM
(Ivomec� Oral, Merial, Uruguay) intraruminally at 0.2 mg/kg,
respectively. The intraruminal (IR) route was selected instead of
oral administration in order to avoid the closure of the esophageal
groove and hence, to minimize the variability in drug uptake. To
study the distribution of the three drugs to target tissues and par-
asites and to measure the nematode’s P-gp2 expression in H. con-
tortus, four animals from groups B–D were sacrificed at 0.5, 1
and 2 days post-administration and samples of blood, abomasal
and small intestine (craneal jejunum) contents and mucosal tissue
were taken following the procedures described in Lifschitz et al.
(2000). From the abomasum of each animal, 20 adult females of
H. contortus were rapidly recovered, gently washed in saline solu-
tion at 4 �C and immediately frozen in vials in liquid nitrogen to
study the nematode P-gp2 expression. Then, the total mass of
H. contortus was recovered from the abomasal contents, gently
washed in saline solution at 4 �C, blotted on coarse filter paper
and immediately frozen (�20 �C) in vials to measure the drug con-
centration in the parasites. Additionally, four animals of group A
(untreated group infected with a resistant H. contortus isolate)
and four lambs artificially infected (7000 L3 each lamb) with a
susceptible strain of H. contortus, were sacrificed and the adult par-
asite females were collected as a control to measure the nematode
P-gp2 expression.

To characterize the efficacy of MXD, ABM and IVM, faecal sam-
ples were collected from the lambs in each experimental group at
days-1 and 14 post-treatment in order to estimate the epg count
reduction (Coles et al., 1992). For the plasma disposition study
(n = 6 in each group), jugular blood samples (5 ml) were collected
into heparinized vacutainer� tubes (Becton Dickinson, USA) prior
to and at 0, 3, 6, 9 h and 1, 2, 3, 4, 6, 8, 10 and 13 days post-treat-
ment. Blood samples were centrifuged at 2000g for 20 min and the
recovered plasma was kept in labeled vials. Plasma, tissues and GI
contents samples were stored at �20 �C until analyzed by high per-
formance liquid chromatography (HPLC). Additionally, at 14 days
post-treatment, all the animals involved in the pharmacokinetic
study and six animals from the untreated control group were sac-
rificed by captive bolt gun and rapidly exsanguinated. Abomasum
and different gut sections were identified and isolated (small and
large intestine) and the contents analyzed to record the different
parasite stages following the World Association for the Advance-
ment of Veterinary Parasitology guidelines (Wood et al., 1995).

3. Analytical procedures

3.1. Pharmacological determinations

3.1.1. MLs chemical extraction and derivatization
The extraction of each ML from spiked and experimental plasma

samples was carried out following the technique first described by
Alvinerie et al. (1993), slightly modified by Lifschitz et al. (1999,
2000). Basically, 1 ml aliquot of plasma, 0.5 g of GI samples (muco-
sas and contents) or 100 mg of parasites were combined with the
internal standard compound (doramectin) and then mixed with
1 ml of acetonitrile–water (4:1). The preparation was mixed (Multi
Tube Vortexer, VWR Scientific Products, West Chester, PA, USA)
over 15 min. Parasites and GI tissue/content samples were soni-
cated in an ultrasonic bath for 10 min. (Transsonic 570/H, Labora-
tory Line Instruments Inc., Melrose Park, IL, USA). The supernatant
was manually transferred into a tube and the procedure was re-
peated once more for the GI tissue/content and parasite samples.
The supernatant was then placed on the appropriate rack of an
Aspec XL sample processor (Gilson, Villiers Le Bel, France) to
perform the solid-phase extraction (Lifschitz et al., 1999).
The derivatization of MLs was done with 100 ll of a solution of
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Table 1
GenBank accession numbers, sequences of primer sets used for real-time PCR and the
respective product sizes.

Gene
name

GenBank accession
number

50–30 Primer sequence Product size
(bp)

Actin DQ080917.1 f: gctcccagcacgatgaaaa 66
r:
accaatccagacagagtatttg

P-gp2 AF003908.1 f: cggcagcagatctcatggt 61
r:
tcggttagacgagctgtgagatt

P-gp: P-glycoprotein; f: forward; r: reverse.
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N-methylimidazole (Sigma Chemical, St. Louis, MO, USA) in aceto-
nitrile (1:1) and 150 ll of trifluoroacetic anhydride (Sigma Chemi-
cal, St. Louis, MO, USA) solution in acetonitrile (1:2) (De Montigny
et al., 1990). After completion of the reaction (<30 s), an aliquot
(100 ll) of this solution was injected directly into the HPLC system.

3.1.2. Chromatographic conditions
MLs concentrations were determined by HPLC using a Shima-

dzu 10 A HPLC system with autosampler (Shimadzu Corporation,
Kyoto, Japan). HPLC analysis was undertaken using a reverse phase
C18 column (Kromasil, Eka Chemicals, Bohus, Sweden, 5 lm,
4.6 mm � 250 mm) and an acetic acid 0.2% in water/methanol/ace-
tonitrile (1.6/60/38.4) mobile phase at a flow rate of 1.5 ml/min at
30 �C (Lifschitz et al., 1999). MLs were detected with a fluorescence
detector (Shimadzu, RF-10 Spectrofluorometric detector, Kyoto,
Japan), reading at 365 nm (excitation) and 475 nm (emission
wavelength). A validation of the analytical procedures used for
extraction and quantification of each ML from plasma, GI mucosa
and contents and parasites were performed before starting analysis
of the experimental samples obtained during the pharmacokinetic
trial. Calibration curves were established using least squares linear
regression analysis, and correlation coefficients (r) and coefficient
of variations (CV) were calculated.

3.2. Parasitological techniques

Individual faecal egg counts were performed using the modified
McMaster technique (Roberts and O’Sullivan, 1949). The anthel-
mintic efficacy of the treatments was evaluated by the faecal egg
count reduction test (FECRT), calculated according to the formula:

FECRT ð%Þ ¼ 100� ð1� T=CÞ;

where T is the arithmetic mean epg counts in the treated group at
14 days post treatment and C is the arithmetic mean epg counts
in the untreated control group at 14 days post treatment (Coles
et al., 1992). The 95% confidence intervals were calculated as re-
ported by Coles et al. (1992). Direct adult nematode counts of ani-
mals from experimental groups were determined 14 days after
treatment according to the World Association for the Advancement
of Veterinary Parasitology (WAAVP) guidelines (Wood et al., 1995).
The efficacy of each anthelmintic treatment was determined by the
comparison of worm burdens in treated versus untreated animals.
The following equation expresses the percentage of efficacy (%E)
of a drug treatment against a given parasite species (S) in a single
treatment group (T) when compared with an untreated control (C):

%E ¼ ½ðMean of S in C �Mean of S in TÞ=Mean of S in C� � 100

The geometric mean was used according to the recommenda-
tions of Wood et al. (1995).

3.3. Quantification of P-gp expression in H. contortus

3.3.1. Isolation of total RNA and reverse transcription
Total RNA was isolated from about 30 mg of frozen resistant

H. contortus recovered from control and treated lambs. Susceptible
adults H. contortus recovered from untreated lambs were also
processed as a positive control. The total RNA was extracted using
the Trizol reagent according to the manufacturer’s protocol
(Invitrogen). Briefly, 1 ml of Trizol was added to an aliquot
(30 mg) of parasites and homogenized manually several times
using a 1 ml syringe. Then, samples were purified with a phenol–
chloroform extraction process. Total RNA purity and concentration
were determined by measuring the absorbance at 260 and 280 nm
after dilution of the sample 1:500 in RNase-free water. In all
samples the 260/280 ratio was P1.8. Reverse transcription was
performed using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Foster City, CA, USA) following the manu-
facturer’s procedure. Complementary DNA was stored at �20 �C
until Real-time PCR analysis.

3.3.2. Real-time quantitative PCR
H. contortus mRNA sequences of target and reference genes

were obtained from the GenBank web site (http://www.ncbi.nlm.
nih.gov). Primer sequences used for nematode P-gp2 expression
and quantification analysis were designed using Primer Express™
Software 2.0 (Applied Biosystems) based on the sequences pub-
lished by Xu et al. (1998) for P-gp2 and subjected to primer test
analyses to exclude dimer formation (Primer Test Document appli-
cation in Primer Express™ Software). The set of primers for the
amplification of H. contortus actin mRNA was obtained from the se-
quences published by Kotze and Bagnall (2006). Primer sequences,
GenBank accession numbers and product sizes used for Real-time
PCR analysis are summarized in Table 1. Each primers set was opti-
mized in a 200–500 nM range to identify the concentration that
provided the highest sensitivity. Real-time quantification was car-
ried out in an ABI Prism 7500 Real Time PCR System (Applied Bio-
systems). The reaction mixture included 10 ll of PCR SYBR Green
Master Mix 2� (Applied Biosystems), 2 ll of each primer set
(200 nM), 1 ll of cDNA diluted 1:250 and 7 ll of water to obtain
a final volume of 20 ll. Amplification was carried out in a 96-wells
plate. The Real-time PCR was run under the following thermal pro-
file: 50 �C for 2 min. and 95 �C for 10 min. (holding stage), 40 cycles
of 95 �C for 15 s and 60 �C for 1 min. (cycling stage). Validation
curves were performed with decreasing amounts of a cDNA pool
diluted at 5-fold intervals to evaluate the Real-time PCR efficiency.
Standard curves with �3.6 < slope < �3.1 and precision (r2) higher
than 0.985 were considered as acceptable as it is recommended in
the ABI Prism 7500 Real Time PCR System guidelines (Applied Bio-
systems S.A.). To measure the nematode P-gp2 expression, the
mRNA relative quantification was carried out using the DDCt
method (Livak and Schmittgen, 2001). The slope curves were
�3.56 (P-gp2 mRNA) and �3.51 (actin mRNA). The r2 values were
0.998 for both genes under study.
4. Pharmacokinetic and statistical analysis of the data

The plasma concentrations versus time curves obtained after
each treatment in each individual animal were fitted with the PK
Solutions 2.0 (Ashland, Ohio, USA) computer software. Pharmaco-
kinetic parameters were determined using a non-compartmental
model method. The peak concentration (Cmax) was read from the
plotted concentration–time curve in each individual animal. The
area under the concentration vs. time curves (AUC) were calculated
by the trapezoidal rule (Gibaldi and Perrier, 1982) and further
extrapolated to infinity by dividing the last experimental
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Table 2
Mean (±SD) plasma pharmacokinetic parameters for moxidectin, (MXD), abamectin
(ABM) and ivermectin (IVM) (n = 6) obtained after their intraruminal (IR) adminis-
tration (0.2 mg/kg) to lambs.

Plasma kinetic parameters MXD ABM IVM

Tmax (days) 0.54 ± 0.37a 0.90 ± 0.26a 1.06 ± 0.52a

Cmax (ng/ml) 11.3 ± 2.87ab 13.6 ± 2.64a 9.02 ± 1.47b

AUC (ng d/ml) 29.5 ± 3.87a 34.8 ± 11.3a 23.6 ± 7.63a

t 1/2 el (days) 4.70 ± 2.17b 1.10 ± 0.25a 1.15 ± 0.30a

Tmax: time to peak plasma concentration. Cmax: peak plasma concentration. AUC:
area under the concentration vs time curve extrapolated to infinity. t ½ el: elimi-
nation half-life. Values with different superscript among MLs are statistically dif-
ferent at P < 0.05.
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concentration by the terminal slope (kz). The elimination half-life
(t ½ el) was calculated as In2/kz. ML plasma concentrations and
all the estimated pharmacokinetic parameters are reported as
mean ± SD. Statistical moment theory was applied to calculate
the mean residence time (MRT) as follows:

MRT ¼ AUMC=AUC

where AUC is as defined previously, and AUMC is the area under the
curve of the product of time and drug concentration vs. time from
zero to infinity (Gibaldi and Perrier, 1982).

Faecal egg and nematode counts (reported as arithmetic
mean ± SD) were compared by non-parametric ANOVA (Kruskal–
Wallis test). Mean pharmacokinetic parameters for each com-
pound were statistically compared using ANOVA. The assumption
that the data obtained after treatments have the same variance
was assessed. A non-parametric ANOVA (Kruskal–Wallis test)
was used where significant differences among standard deviations
were observed. The statistical analysis was performed using the In-
stat 3.0 Software (Graph Pad Software, CA, USA). A value of P < 0.05
was considered statistically significant.
5. Results

The comparative plasma disposition kinetics of the MLs showed
some differences among the drugs under study. Slightly higher
plasma concentration profiles were obtained after the treatment
with ABM compared to those of MXD and IVM. Although the sys-
temic drug exposure (measured as AUC) was similar (P > 0.05)
among the three compounds, the Cmax of ABM (13.6 ng/ml) was
significantly higher than that measured after the IVM treatment
(9.00 ng/ml). Whereas MXD was detected in plasma until day 13
post-treatment, ABM and IVM were measured in the all the exper-
imental animals only up to 8 days post-treatment. The longer per-
sistence of MXD plasma concentrations accounted for a significant
longer t ½ el and MRT compared to ABM and IVM. The ML plasma
concentration profiles obtained after the IR administration to
lambs are compared in Fig. 1. The main pharmacokinetic parame-
ters for the three MLs under study are shown in Table 2.

High drug concentrations were recovered in the GI target tis-
sues. The concentrations of the three compounds in the mucosal
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Fig. 1. Mean (±SD) (n = 6) moxidectin, (MXD), abamectin (ABM) and ivermectin
(IVM) plasma concentrations obtained after their intraruminal (IR) administration
(0.2 mg/kg) to nematode infected lambs. The insert shows the comparative plasma
mean residence time obtained for the three compounds under study. (⁄) Values for
MXD are statistically different from those obtained after the administration of ABM
and IVM at P < 0.05.
tissue and digestive contents were significant higher than those
measured in plasma. Drug concentrations were in a range between
452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treat-
ment) in the GI contents (abomasal and intestinal) and between
231 ng/g (0.5 day post-treatment) and 30 ng/g (2 days post-treat-
ment) in the mucosal tissue. Whereas the concentrations in GI con-
tents and mucosal tissues were similar for the three MLs at 0.5 and
1 day post-treatment, MXD concentrations were significantly low-
er compared to IVM and ABM at 2 days post-treatment. Mean ML
concentrations in GI contents and mucosal tissues are compared
in Fig. 2 and Table 3.

The in vivo drug concentrations in H. contortus were character-
ized at different times post-treatment. Concentrations of the ML
measured in H. contortus were in a similar range to those observed
in the abomasal content (positive correlation P = 0.0002). Signifi-
cant differences among the MLs were observed at day 2 post-treat-
ment, with lower MXD concentrations recovered within adult H.
contortus compared to ABM and IVM (Fig. 3). Despite the lower
concentrations recovered in the abomasal contents and accumu-
lated within the parasite, the total mass of H. contortus specimens
recovered were lower (P < 0.05) after the administration of MXD at
day 1 and 2 post-treatment (0.13–0.14 g) compared to ABM (1.13–
1.50 g) and IVM (1.02–1.38 g).

The faecal egg counts obtained for all the experimental groups,
including the results of the FECRT and upper and lower confidence
limits (95%) are shown in Table 4. The low percentage of reduction
in the eggs counts in faeces indicates the presence of GI nematodes
resistant to the ML compounds. The FECRT was 0% for IVM as well
as for ABM and reached 86% after the MXD treatment. The efficacy
against H. contortus showed significant differences among the MLs.
The efficacy was 20.1% (IVM), 39.7% (ABM) and 89.6% (MXD). Effi-
cacies against other abomasal, small and large intestine nematode
species were above 98% after the treatment with each ML. The
adult nematode counts and resultant clinical efficacy obtained for
the MXD, ABM and IVM treatments are shown in Table 5.

The pattern of the drug-transporter P-gp mRNA expression in H.
contortus exposed to the three compounds was established. First of
all, a comparison of the level of P-gp2 expression in susceptible and
resistant adults H. contortus recovered from untreated lambs was
performed. The relative quantification showed that the expression
of this gene was significantly higher (P < 0.05) in resistant
(1.00 ± 0.42) than in susceptible (0.32 ± 0.14) H. contortus adult
specimens. Interesting data emerged from the comparison of
P-gp2 expression in the resistant adult H. contortus collected from
untreated lambs and those recovered from ML-treated lambs. The
IVM treatment induced an enhancement on the expression of
P-gp2 in the recovered adult H. contortus reaching significantly
higher values at 12 and 24 h post-administration. Although the
P-gp2 expression tended to increase at 12 h after the MXD treat-
ment, there was not a significant change on the transporter expres-
sion in the resistant H. contortus. On the other hand, P-gp2
expression in the H. contortus recovered after the ABM treatment
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Table 3
Comparative moxidectin (MXD), abamectin (ABM) and ivermectin (IVM) concentrations measured in abomasal and intestinal mucosal tissues after their intraruminal
administration (0.2 mg/kg) to nematode infected lambs.

Drug concentration (ng/g)

Time post-treatment (days) Abomasal mucosa Intestinal mucosa

MXD ABM IVM MXD ABM IVM

0.5 65.5 ± 9.74a 76.8 ± 11.6a 76.5 ± 9.83a 231 ± 83a 203 ± 11.5a 198 ± 55.7a

1 48.3 ± 12.7a 78 ± 24.2a 58.2 ± 8.75a 134 ± 41.7a 152 ± 12.4a 117 ± 26.8a

2 30.1 ± 5.80b 64.6 ± 45.4ab 42.6 ± 4.53a 57.1 ± 5.30b 118 ± 85.9a 128 ± 51.4a

Values with different superscript among MLs are statistically different at P < 0.05.
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Fig. 3. Comparative mean (±SD) (n = 4) moxidectin, (MXD), abamectin (ABM) and
ivermectin (IVM) concentrations measured within adult H. contortus recovered
from intaruminally (IR) treated (0.2 mg/kg) infected lambs. (⁄) Values for MXD are
statistically different from those obtained after the administration of both ABM and
IVM at P < 0.05. The insert shows the total amount (expressed in grams) of H.
contortus resistant specimens recovered from lambs treated with the different
macrocyclic lactone compounds.

Table 4
Nematode egg counts1 (range) and faecal egg counts reduction percentages (FECRT) in
the untreated (control) and in moxidectin (MXD), abamectin (ABM) and ivermectin
(IVM) intraruminally treated animals (0.2 mg/kg) infected lambs.

Treatment group Mean epg1 (range) FECRT (%) UCL LCL

Day 0 Day 14

Untreated group 3325
(2010–4440)

4330a

(3180–6660)
– – –

MXD 3432
(2610–3945)

570b

(240–960)
86.8 92 78

ABM 3307
(2490–4155)

4460a

(1200–6000)
0 34 0

IVM 3285
(2160–4200)

4620a

(1860–12480)
0 53 0

1 Arithmetic mean of eggs per gram of faeces; UCL: upper confidence limit 95%;
LCL: lower confidence limit 95%. Nematode egg counts at day 14 post-treatment
with different superscript are statistically different at P < 0.05.
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did not show any significant modification. The data on the relative
quantification of P-gp2 mRNA in resistant H. contortus recovered
from untreated and treated lambs is shown in Fig. 4.



Table 5
Adult nematode worm counts (geometric mean) and efficacy obtained at 14 days post-administration of either moxidectin (MXD), abamectin (ABM) or ivermectin (IVM)
(intraruminally at 0.2 mg/kg) to nematode infected lambs. Nematode worm counts recorded in the untreated control group is also shown.

Untreated group MXD ABM IVM
Parasites Worm counts Worm counts(Efficacy)

Abomasum
Haemonchus spp. 1276a 133b(89.6%) 769a(39.7%) 1021a(20.1%)
Teladorsagia spp. 1709a 0b(100%) 0b(100%) 5b(99.7%)
Trichostrongylus axei 118a(1900–10400) 0b(100%) 0b(100%) 0b(100%)

Small intestine
Trichostrongylus colubriformis 963a 0b(100%) 0 b(100%) 6.28b(99.3%)
Cooperia spp. 171a 0b(100%) 0 b(100%) 3.08 b(98.2%)
Nematodirus spp. 959 0b(100%) 2.32 b(99.8%) 4.87 b(99.5%)

Large intestine
Trichuris spp. 52.8a 0b(100%) 0 b(100%) 0b(100%)

Adult nematode counts at day 14 post-treatment with different superscript are statistically different at P < 0.05.
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6. Discussion

The plasma pharmacokinetics of the different MLs has been
extensively studied in healthy sheep. However, kinetic information
emerging from comparative trials in parasite infected animals is
scarce (Lespine et al., 2004; Pérez et al., 2006). The comparative ki-
netic data generated in the current trial working under standard-
ized experimental conditions showed no significant differences in
the systemic exposure (measured as AUC values) after the admin-
istration of MXD, ABM and IVM to nematode infected lambs. The
persistence of MXD concentrations in plasma was longer compared
to ABM and IVM. The higher lipophilicity as well as the lower affin-
ity of MXD by P-gp may account for the well established longer
persistence of MXD in the animal body (Lanusse et al., 1997; Le-
spine et al., 2007; Prichard et al., 2012).

High drug concentrations were measured in the GI sites where
parasites are located (abomasum and small intestine) after the IR
administration of the three MLs to infected lambs. These concen-
tration profiles were significantly higher than those measured in
the bloodstream. The highest drug levels were measured at the
abomasal and intestinal contents. The ratio between ML concentra-
tions in the digestive contents and mucosal tissues were between
1.08 and 6.9 (abomasum) and between 0.76 and 1.62 (small intes-
tine) for the three ML compounds under study. These values are
significantly higher than those obtained when the MLs are admin-
istered by the subcutaneous route to sheep (Lifschitz et al., 1999,
2000). The work described here reports for the first time the com-
parative in vivo ML concentrations measured in adult H. contortus
recovered from infected treated lambs. As it was recently described
for IVM (Lloberas et al., 2012), the drug concentrations measured
in the abomasal content for the three molecules under investiga-
tion reflected the amount of drug accumulated within the adult
H. contortus. After the administration of IVM by an enteral route
(oral, intraruminal), the access of drug to H. contortus was substan-
tially greater than that obtained following the subcutaneous
administration (Lloberas et al., 2012). This finding may confirm
that an advantageous transcuticular pattern of drug uptake may
occur for GI located nematodes when lipophilic compounds formu-
lated as a drug solution are orally administered, achieving large
availability of soluble drug at the GI lumen. It is interesting to re-
mark that after the administration of the MLs by an enteral route,
there is a good correlation between drug concentrations achieved
in the bloodstream and those in GI mucosa (r = 0.78, P < 0.0001).
However, that correlation does not exist between the drug profiles
in the systemic circulation and those measured in either digestive
contents (r = �0.01, P < 0.953) or H. contortus specimens (r = �0.02
P < 0.892). The concentration profiles measured within the adult H.
contortus for the three ML molecules intraruminally administered
reflected those achieved in the abomasal content with a significant
positive correlation (r = 0.62, P < 0.0002).

IVM and MXD are closely related ML compounds belonging to
the avermectin and milbemycin class of anthelmintics, respec-
tively, and although some pharmacological differences exist, early
publications suggested that both compounds have similar mecha-
nisms of action and resistance (Conder et al., 1993; Forrester et al.,
2004). However, at the therapeutic dose recommended for rumi-
nants, MXD remains more effective against many IVM-resistant
nematode species. Drug concentrations in the GI target tissues/
contents during the first 2 days post-treatment are relevant for
the effectiveness of the MLs against resident worms in sheep. In
the current study, although ML drug levels achieved within the tar-
geted nematode parasites were similar at 0.5 and 1 days post-
treatment, MXD concentrations were significantly lower at day 2
post-administration compared to ABM and IVM. Despite the lower
drug concentrations accumulated in the parasite tissues, the total
mass of H. contortus specimens recovered from the abomasum
was lower after MXD treatment (at 2 day post-administration)
and the efficacy (measure a 14 days post-treatment) was signifi-
cantly higher for MXD compared to both IVM and ABM (Fig. 3,
Table 5). The well described differences in the plasma kinetics dis-
position between MXD and the avermectin-type compounds are
insufficient to explain the observed differential pattern of efficacy.
It seems that the pharmacodynamic features of each compound
may play a relevant role on the activity against resistant nema-
todes. A differential pattern of interaction at the parasite site of ac-
tion, namely the glutamated-gated chloride channel, was recently
reported (Prichard et al., 2012). The differences on the chemical
structure between MXD and IVM may be sufficient to account for
a differential binding to the glutamate-gated chloride channel
(Prichard et al., 2012), according to the recently proposed IVM
binding model (Hibbs and Gouaux, 2011).

Mammalian P-gps are transmembrane proteins which are able
to pump a broad range of structurally unrelated compounds out
of the cell by an ATP-dependent process (Ling and Thompson,
1974). P-gp activity has been observed in healthy tissues in mam-
mals, particularly in organs relevant to drug disposition kinetics
(Lin, 2003). The in vitro/ex vivo interaction of the MLs with mam-
malian P-gp has been evaluated (Laffont et al., 2002; Ballent
et al., 2006; Lespine et al., 2007) and the in vivo co-administration
of MLs with different P-gp modulator agents has been investigated
in different animal species (Lifschitz et al., 2002, 2004; Alvinerie
et al., 2008). In vitro studies provided clear evidence that MXD
has a lower affinity by mammalian P-gp compared to avermec-
tin-type compounds (Lespine et al., 2007). P-gp has been described
not only in mammals but also in different parasites (Sangster et al.,
1999; Prichard and Roulet, 2007). An enhanced P-gp-mediated
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Fig. 4. Relative expression (mean ± SD) of P-glycoprotein 2 (P-gp2) in resistant
adult H. contortus recovered from untreated lambs and from those intraruminally
(0.2 mg/kg) treated with either moxidectin, (MXD) (a), abamectin (ABM) (b) or
ivermectin (IVM) (c). (⁄) Values are statistically different from those obtained in H.
contortus recovered from untreated lambs at P < 0.05.
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drug efflux in target parasites has been proposed as a potential IVM
resistance mechanism (Xu et al., 1998). In fact, it has been recently
shown that modulation of P-gp activity enhances the systemic
availability of MLs and improves the in vivo field efficacy against
resistant nematodes in sheep and cattle (Lifschitz et al., 2010a,b;
Bartley et al., 2012). However further investigations are needed
to evaluate and understand the potential interaction between
MLs and the nematode P-gps. The present study included the
assessment of the comparative effects of MXD, ABM and IVM on
P-gp2 expression in resistant H. contortus recovered from treated
lambs at different times post-treatment. Resistant H. contortus
recovered from untreated lambs showed higher levels of P-gp2
expression than those reported in susceptible strains. Williamson
and Wolstenholme (2012) did not find differences in P-gp expres-
sion between resistant and susceptibles isolates of H. contortus. As
that comparison was performed using H. contortus larvae (L3

stage), the changes on the nematode P-gp expression occurring
throughout the life cycle could be a confounding factor and may
explain this discrepancy (Williamson and Wolstenholme, 2012).
The IVM treatment significantly increased the P-gp2 expression
in resistant H. contortus recovered from treated lambs 0.5 and
1 days post-treatment compared to those parasites recovered from
untreated animals. However, treatments with either MXD or ABM
did not induce any significant modification in the pattern of the
drug transporter expression in the nematode. The up-regulation
of P-gp in H. contortus recovered 1 day post-administration was
reported previously after IVM treatment, but also to a lesser degree
than after MXD administration (Prichard and Roulet, 2007). The
reasons to explain the observed differences between IVM and
ABM regarding the up-regulation of P-gp2 in H. contortus remain
unclear, although speculation on the presence of a double bond
at C22–23 in the ABM structure (lacking in IVM) may be raised.
IVM-induced P-gp up-regulation during a short period of time
was also demonstrated in hepatocyte cell lines (Ménez et al.,
2012). This induction of P-gp by IVM involved an increase in mRNA
half-life in the hepatocytes. The highest level of P-gp induction in
the hepatocytes was reached after 24–48 h of IVM exposure and
then decreased, which may be in agreement with the observations
at the parasite level for the same compound reported here. How-
ever, the link between nematode P-gp expression and the MLs
accumulation in susceptible and resistant nematodes is not clear
and in vitro assays should be developed to evaluate the possible
role of nematode P-gps in mediating ML resistance. The potential
role of P-gps in IVM resistance in C. elegans was recently reported
(Ardelli and Prichard, 2012). The expression of different nematode
P-gps was increased in resistant and susceptible strains in the pres-
ence of IVM. In addition, the co-incubation of IVM and P-gp mod-
ulators produced significant changes in movement and pharyngeal
pumping of the resistant strain of C. elegans (Ardelli and Prichard,
2012).

In conclusion, the comparative ML concentrations attained in
the target tissues and accumulated within resistant H. contortus
in lambs was described for the first time in the work described
here. The assessment of the drug levels achieved within a target
GI nematode in relationship to the obtained efficacy and the
expression of a marker of one of the mechanism of resistance, were
conducted under standardized experimental conditions in the
same infected animals. The knowledge of the epidemiological fea-
tures of nematode infestations in ruminants together with the
pharmacological basis of ML action may supply to practitioners a
tool to select compounds suitable for use on farms where the level
of susceptibility of nematodes is still adequate.
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