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As a central coordinator of physiologic metabolism, adipose tissue has long been
appreciated as a highly plastic organ that dynamically responds to environmental cues.
Once thought of as a homogenous storage depot, recent advances have enabled deep
characterizations of the underlying structure and composition of adipose tissue depots.
As the obesity and metabolic disease epidemics continue to accelerate due to modern
lifestyles and an aging population, elucidation of the underlying mechanisms that control
adipose and systemic homeostasis are of critical importance. Within the past decade, the
emergence of deep cell profiling at tissue- and, recently, single-cell level has furthered our
understanding of the complex dynamics that contribute to tissue function and their
implications in disease development. Although many paradigm-shifting findings may lie
ahead, profound advances have been made to forward our understanding of the adipose
tissue niche in both health and disease. Now widely accepted as a highly heterogenous
organ with major roles in metabolic homeostasis, endocrine signaling, and immune
function, the study of adipose tissue dynamics has reached a new frontier. In this
review, we will provide a synthesis of the latest advances in adipose tissue biology
made possible by the use of single-cell technologies, the impact of epigenetic
mechanisms on adipose function, and suggest what next steps will further our
understanding of the role that adipose tissue plays in systemic physiology.

Keywords: adipose tissue, white adipocytes, brown adipocytes, beige adipocytes, thermogenesis, tissue
heterogeneity, obesity, type 2 diabetes
INTRODUCTION

Metabolic flexibility is a crucial trait of organisms strongly selected for across evolutionary time. As
environmental conditions change, organisms must readily adapt physiologically and behaviorally to
ensure survival. While nutrient availability fluctuates with time, organisms capable of storing excess
energy under calorie abundance are more resilient to starvation and thermogenic stress during times
of limited nutrient supply (1). Wired to be highly plastic and respond rapidly to changing cues,
adipose tissue is an essential organ that serves multiple important functions, including storage and
release of caloric substrates. However, the modern era fuels chronic abundance of calorically-dense
foods and significantly contributes to the epidemic of metabolic dysfunction (2). Diseases such as
n.org March 2022 | Volume 13 | Article 8472911
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obesity and type II diabetes (T2D) are amongst the most
significant contributors to pathologic morbidity and mortality
in developed nations and are wreaking havoc on quality of life.
Dysfunctional adipose tissue is often one of the early indicators
of metabolic disarray (3). To understand the mechanisms
underlying metabolic diseases, a detailed understanding of
adipose tissue in the healthy state, and the changes that occur
during the onset of dysfunction, are pertinent areas of interest
that are gaining significant attention over the last few decades (3–
5). Initially described as a connective tissue capable of storing
triglycerides, our modern understanding of adipose tissue
demonstrates that it is highly heterogenous from both
anatomic and physiologic perspectives. In addition to its role
in energy storage and release, adipose depots are also major
contributors to systemic physiology through endocrine signaling,
regulation of the inflammatory state, and control of behavior. In
particular, the past 5-10 years have seen rapid accelerations of
resolution into adipose tissue dynamics. Implementation of
modern techniques such as genetic engineering, lineage-tracing
and single-cell characterizations revealed that adipose tissue is
quite complex in composition and function. Resident cell types,
includingmature lipid-storing adipocytes, adipocyte precursor cells
(APCs), and immune cells are major players that contribute to the
overall function and remodeling.Heterogeneity subsists beyond the
existence of divergent cell types, as individual cells exhibit unique
characteristics indicative of distinct functional roles.
HETEROGENEITY OF WHITE
ADIPOCYTES

White adipose tissue (WAT) represents most prominent adipose
depots by weight and volume in mice and humans. WAT is
generally regarded as the major storage site of nutritional
metabolites upon excess intake in the form of lipids such as
triglycerides (TGs). To safely harbor energy stores and avoid
lipotoxic effects, white adipocytes maintain large, unilocular lipid
droplets (LDs) that are capable of remodeling for expansion or
contraction depending on the nutritional status. Integrating its
lipid storage capacity to systemic homeostasis, WAT exerts
endocrine functions via regulated release of adipokines such as
leptin and adiponectin, cytokines and other lipid-derived
signaling molecules (6, 7). The entire suite of adipokines and
detailed descriptions of their endocrine effects are covered
elsewhere (6–9), however it is important to provide adequate
context of the major endocrine mediators. Leptin and adiponectin
are the most prominent and best characterized adipokines and
have major effects on systemic physiology. Leptin primarily
communicates an adipose-derived nutritionally-fed status to the
hypothalamus, in turn decreasing appetite and promoting energy
expenditure (6, 10). Leptin also exerts effects on the periphery,
including major metabolic organs such as the liver (11) and
skeletal muscle (12, 13). Whereas leptin exerts most of its’ effects
in the brain, adiponectin primarily acts in the periphery to
modulate insulin sensitivity, glucose and fatty acid metabolism
and inflammatory processes in major organs (8). Perturbations to
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homeostatic physiology such as obesity and age-related disease
are strongly associated with altered circulating levels of both
leptin and adiponectin (14–16). Therefore, the cellular
composition of adipose tissue and the endocrine capacity of
depots is likely to be remodeled in response to environmental
and temporally-induced changes.

Of note, not all WAT depots function similarly and may not
respond to environmental cues in the same manner.
Subcutaneous WAT (sWAT) and inguinal WAT (iWAT) in
humans and mice, respectively, are functionally distinct from
visceral WAT (vWAT) and perigonadal/epididymal WAT (pg/
eWAT) (17). Furthermore, the plasticity and responses of
individual depots can vary widely depending on biological sex
(18). The heterogeneity of WAT function arises from the
diversity of cell types that reside in the adipose tissue,
including the mature adipocytes themselves. New advances in
analytic techniques are peeling back the layers of complexity that
exist within the depots, and reveal that mature adipocytes have
distinct characteristics and functions from one another.

Until recently, the analysis of mature adipocytes has been
technically difficult due to the extreme lipid contents which are
largely incompatible with fluorescence activated cell sorting
(FACS) and single-cell analysis strategies. However, single-nuclei
RNA sequencing (sn-RNAseq) and spatial transcriptomics have
created an avenue to explore the complexity of adipocyte status
and function in vivo. While current knowledge keeps expanding, it
is now clear that distinct adipocyte populations exist within WAT
depots. Two independent studies characterizing the
subpopulations of mouse and human WAT have described two
predominant types of mature adipocytes. The first type includes
insulin-sensitive and lipogenic adipocytes characterized by
elevated levels of classical adipogenic markers such as PPARG,
PLIN and de novo lipogenesis enzymes (referred to as LGAs/
AdipoPLIN populations) (19, 20). Instead, the second, distinct
subpopulation is marked by high expression of genes involved
in lipid uptake and handling (i.e., LSAs/AdipoLEP populations),
suggesting that this subtype of adipocytes relies on scavenging
lipids rather than de novo lipid synthesis (19, 20) (Figure 1).
Notably, both studies showed that this latter population of cells
constitutes the largest fraction of mature adipocytes in both
visceral and subcutaneous depots in adult mice and humans (19,
20). In vivo studies also indicate that this subpopulation is less
responsive to insulin in humans when compared to the smaller
lipogenic population (20). Recent work from the Granneman lab
has confirmed the identification of these two subclasses during
postnatal iWAT development in proportions as described
previously (21). In line with their gene expression signatures,
these two distinct populations may also have distinct adipokine
secretion profiles. The Corvera lab also identified two types of
adipocytes resembling those described above that appear to
preferentially express adiponectin or leptin, respectively (22).
Therefore, the endocrine effects of these fat cells may play
distinct roles in coordinating physiologic responses. Future
efforts aiming to functionally characterize these two populations
and their contributions to tissue homeostasis will certainly be
revealing. Although the majority of mature adipocytes appear to
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fall into the lipogenic or lipid-scavenging class, less abundant
subtypes have also been described. Sárvári & Van Hauwaert et al.
identified a population of adipocytes with a transcriptional profile
resembling the lipid-scavenging subpopulation, but enriched in
stress response genes (19). Instead, Bäckdahl & Franzén and
coworkers reported a cluster of rare adipocytes that resemble
traditional adipogenic population with enhanced expression of
genes involved in retinol metabolism (20). Further investigation
into these less abundant subtypes will shed light on their function
and how they relate to the two major populations that dominate
the fat depots.

One challenge that the field of adipose biology continuously
encounters is deciphering differences in cellular composition based
Frontiers in Endocrinology | www.frontiersin.org 3
on species and adipose depot locations. To better understand
where and under what conditions WAT depots differ from one
another, a recent pre-print from the Rosen group describes an
extensive single-cell characterization of visceral and subcutaneous
WAT stratified by species (23). This adipose “single-cell atlas”, in
addition to building on the characterization of adipocyte
subpopulations, revealed that mouse adipocytes, while distinct
from one another at the transcriptional level, do not clearly map
to human adipocyte counterparts (23). Furthermore, mouse
adipocytes do not show clear differences in subpopulation
enrichment specifically in iWAT or eWAT in a healthy, lean
state, contrary to depot-specific adipocyte enrichments found in
human sWAT and vWAT (23). Future work will help characterize
FIGURE 1 | Mature adipocytes possess distinct spatial and functional roles. Sc-RNAseq revealed all adipocytes are not equal, and subpopulations carry out unique functions.
The prominence of mature adipocyte cell types is dependent on type (white vs. brown) and anatomical position (subcutaneous vs. visceral vs. interscapular).
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the inter- and intra-species differences in adipose depot
composition. However, the evidence generated in humans and
mice to date does not necessarily translate to one another,
warranting caution when extrapolating data between species.
HETEROGENEITY OF BROWN
ADIPOCYTES

Brown adipose tissue (BAT) dissipates energy in the form of heat
thus increasing energy expenditure and, simultaneously, putting a
brake on excessive fat deposition (24). The discovery of BAT in
adult humans and its correlation with body mass index (25–28),
especially in older people (25), suggests a potential role of BAT in
adult human metabolism and whole-body homeostasis. Similar
to WAT, BAT consists of many different cell types, including
immune cells, precursors and mature adipocytes, and the
dynamics of resident cells reflect the adaptation to
environmental changes, such as temperature, nutritional state
and age. In response to prolonged cold exposure or direct b-
adrenergic stimulation, BAT activates lipolytic and thermogenic
machinery. The heat production of brown adipocytes is largely
attributed to the expression of the uncoupling protein 1 (UCP1), a
mitochondrial transmembrane protein that decouples the proton
gradient generated by the electron transport chain from ATP
synthesis, dissipating the energy as heat. However, other UCP-1
independent mechanisms that contribute to BAT thermogenesis,
such as the futile creatine cycling, have been discovered (29–33)
and is now clear that the thermogenic capacity of these cells
extends beyond Ucp1-expression (31). As a matter of fact, elegant
work from Cinti and colleagues in 2002 (34), subsequently
confirmed by Spaethling & Sanchez-Alavez et al. (35), reported
Frontiers in Endocrinology | www.frontiersin.org 4
uneven expression of Ucp1 across brown adipocytes, providing a
first peek of BAT heterogeneity. These observations were further
supported by in vivo data using adipocyte lineage tracing reporter
mice that confirmed the existence of two distinct subpopulations
of brown adipocytes residing within interscapular BAT (iBAT),
marked by high (BA-H) and low (BA-L) expression of adiponectin
(36) (Figure 1). Further characterization revealed that Ucp1
expression directly correlates with adiponectin levels, and that
BA-L cells have decreased mitochondrial number, low basal
oxygen consumption rate (OCR), and larger lipid droplets (36).
Transcriptional profiling highlighted fatty acid uptake, rather than
de novo synthesis, as the predominant metabolic process in BA-L
subtype (36). Interestingly, the emergence of these two
populations is not linked to sympathetic innervation as it might
be expected, but may instead be due to differences in sensitivity to
adrenergic stimulation. High-Adiponectin, high-Ucp1 cells (BA-
H) also exhibit higher expression of Adrb3 and are characterized
by elevated basal and uncoupled OCR in response to
norepinephrine compared to their BA-L counterparts (36).
However, both BA-H and BA-L cells show similar maximal
respiration, indicating that BA-L cells still possess elevated
mitochondrial potential that can be activated if needed (36).
Similarly, brown adipocytes can undergo a “whitening” effect
upon thermoneutral housing, dampening thermogenic gene
expression and acquiring a white adipocyte-like morphology and
phenotype (37) (Figure 2). Of note, the reversibility of these
transcriptional programs and metabolic states only highlights the
enormous plasticity of brown adipocytes, and whether they relate
to distinct brown adipocyte subpopulations remains to be
explored. In fact, “whitened” adipocytes maintain their
epigenetic identity as bona fide brown fat cells and are primed
to undergo a new “browning” cycle upon repeat cold exposure or
adrenergic stimulation (37) (Figure 2).
FIGURE 2 | Brown adipocytes exhibit unique plasticity in response to environmental cues. In response to changes in ambient temperature, BAT-resident adipocytes
undergo physiologic changes. Through trans-differentiation, adipocytes alter lipid droplet morphology, expression of thermogenic genes and mitochondrial function.
During cold exposure, adipocyte proportions shift towards BA-H prominence, while thermoneutrality shifts the population towards a whitened state.
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While the exact mechanisms by which brown adipocytes
interconvert between distinct thermogenic capacities is not
fully understood, a recent study from Sun et al. described a
rare subpopulation of mature brown adipocytes, found in both
mice and humans, capable of regulating thermogenesis of
neighboring cells (38). Marked by elevated expression of
Cyp2e1 and Aldh1a1 , these adipocytes have altered
mitochondrial morphology, lower expression of Ucp1 and
Cidea and, similar to BA-L adipocytes, increase in the iBAT of
mice housed at thermoneutrality. Despite the low abundance,
Cyp2e1+/Aldh1a1+cells are major contributors of the
thermogenic capacity of the entire fat depot. Gain and loss of
function studies manipulating Aldh1a1 showed that Ucp1
expression and OCR inversely correlate with Aldh1a1
expression (38). Finally, the authors demonstrated that
inhibition of thermogenic activity is mediated by increased
production and secretion of acetate, which signals in a
paracrine manner through Gpr43 (38, 39).
PLASTICITY OF BROWN ADIPOCYTES

Considering the capacity of brown adipocytes to adjust
thermogenic output and directly regulate neighboring cells in
response to environmental cues, the following questions are
proposed: what are the modalities by which adipocytes are
wired to dynamically respond to external signals? And what
are the inputs that dictate these abilities? While it is generally
appreciated that sympathetic innervation is a major contributor
to the induction of the thermogenic gene program, Song et al.
found that the fates of high and low thermogenic adipocytes is
not due to differences in innervation (36). In mice, lineage
tracing demonstrated that brown adipocyte differentiation
initiates in utero, and that mature adipocytes persist with very
low turnover throughout lifespan (36). Intriguingly, the
transcriptional programming of BA-H and BA-L cells appears
to occur shortly after birth, and the proportions of these cell
types reach equilibrium by postnatal day 7 (P7) (36). Similarly, in
humans, the number of adipocytes shows rapid increase during
childhood and adolescence, but then stabilizes and remain set in
adulthood in both lean and obese subjects, with an
approximately 10% annual turnover (40). Alongside early-life
determination of brown adipocyte developmental trajectory,
thermogenic capacity appears to be in part controlled by
epigenetic mechanisms. An interesting study performed by Sun
& Dong et al. found that the offspring of cold-exposed male mice
have elevated BAT activity and function, with improved cold
tolerance, higher sympathetic innervation, increased OCR and
elevated expression of classical thermogenic genes (41). Sperm
derived from cold-exposed mice have marked differential
methylated regions (DMRs) that enrich for neuronal
development and signaling as well as metabolic processes,
providing evidence that hereditary and early-life programming
of brown adipose depots correlates with thermogenic functions
(41). Additional studies have implicated additional epigenetic
machineries in contributing to thermogenic capacity in brown
Frontiers in Endocrinology | www.frontiersin.org 5
adipocytes through adrenergic-dependent (42) and adrenergic-
independent (43) mechanisms. Future studies to identify the
signaling and epigenetic mechanisms that specifically pre-wire
thermogenic capacity and mediate fate-switching will advance
our understanding of brown adipose tissue function.
HETEROGENEITY OF BRITE/BEIGE
ADIPOCYTES

Brown-like adipocytes possessing thermogenic capacity are
found in classical white fat pads (44, 45) and have been named
brite (brown-to-white) or beige adipocytes. The prevalence of
these cells can vary significantly and relies on genetic factors (46),
as well as physiological (34, 47), pharmacological (34, 48, 49) and
pathological (50, 51) cues. Although less understood compared
to their neighbor white adipocytes, brite/beige fat cells also
present some degree of heterogeneity. The characteristic mark
of brite/beige cells is the presence of detectable levels of UCP1
(49, 52). However, the Farmer lab showed that these cells can
have distinct transcriptional signatures dependent on the
browning signal that led to their recruitment/expansion (53),
suggesting that beige subtypes may arise from different origins.
Additionally, another subtype of beige cells (named g-beige fat)
marked by enhanced glucose oxidation and derived from a
distinct cellular lineage has also been identified (54). Though,
not all brite/beige cells express Ucp1. In search of an answer to
the fact that Ucp1 null mice gradually acclimated to cold can
survive as well as wildtype mice, the Kajimura lab identified a
Ucp1-independent thermogenic mechanism that relies on ATP-
dependent Ca2+ cycling through the sarcoendoplasmic reticulum
Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2)
(31), providing evidence for another, distinct subpopulation of
beige adipocytes (Figure 1).
ADIPOSE RESIDENT IMMUNE CELLS

Innate and adaptive immune cells play critical roles in the
maintenance and turnover of adipose tissue. To ensure
homeostasis, adipose depots undergo remodeling and constant
turnover to enact necessary functions upon challenge with cold
stress and nutrient depletion/enrichment, which is discussed in
more detail in following sections. Regardless, immune cells play
an important role in preserving the metabolic and structural
flexibility of adipose tissue. Clearance of lipid-laden cells requires
specialized metabolic machinery, thus adipose-resident immune
cells are, relative to other non-adipose-residing immune cells,
uniquely able to induce expression of the master regulator of
lipid metabolism, PPARG (55–57). Therefore, immune cells
within the adipose tissue are specialized to function within the
context of the organ. However, this does not exempt them from
dysfunction. As discussed in later sections, modulation of
immune cell proportions, transcriptional programs and activity
can have drastic consequences on both depot and systemic
homeostasis. The diversity of innate and adaptive immune cells
March 2022 | Volume 13 | Article 847291
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residing in the adipose tissue is substantial. An in-depth
discussion of each population is beyond the scope of this
review and is comprehensively covered elsewhere (58–62).
Nevertheless, a brief synopsis of resident immune cells is
worthy of discussion.

Recent sc-RNAseq studies (19, 63–65) have confirmed previous
reports (66, 67) thatmacrophages (commonly referred toas adipose
tissue macrophages, ATMs) are one of the dominant immune cell
types by proportion and function within the adipose tissue.
Transcriptional profiling of ATMs demonstrates that they also
have divergent functions in specialized niches within the tissue, as
reported by multiple groups (19, 64, 68–70). These include
perivascular (PVM), non-perivascular (NPVM), lipid-associated
(LAM) and collagen-expressing (CEM) macrophage populations,
as recently denoted by Sárvári & Van Hauwaert et al. (19).
Generally, macrophages strictly balance pro- and anti-
inflammatory processes within the tissue to maintain a proper
spatial structure. Bymodifying extracellular matrix, clearing debris
and acting as buffers of lipid metabolism to prevent pathogenic
signalingor ectopic accumulation (71),ATMsaremajor controlling
hubs of depot dynamics. Additionally, other innate immune cell
types reside within the adipose tissue (19, 63–65). Innate T cells
serve as a bridge between the innate and adaptive immune
responses and regulate activity of cells in both immunity classes
through cytokine release. Natural killer (NK) cells, innate lymphoid
(ILC) cells, and innate T cell populations including mucosal-
associated invariant T (MAIT), invariant natural killer T (iNKT)
and gd T cells, have all been demonstrated to reside within adipose
depots. Similarly, classical adaptive immune cells also reside within
adipose depots, including CD4+ helper T and CD8+ cytotoxic T
cells, along with B cells (19, 63–65). However, the density and
activity of these cells is highly dependent on environmental signals
and presence/absence of pathophysiology, which is discussed in
more detail in later sections.
HETEROGENEITY OF ADIPOCYTE
PROGENITORS

The plasticity of the adipose tissue is the product of complex
interactions between resident cell types. Through cell-cell
crosstalk, cell differentiation and environmental adaptation, the
adipose tissue is histologically and functionally modulated. The
maintenance of a healthy adipose phenotype under post-prandial
conditions and excess caloric intake is largely attributed to
expansion of adipocytes through hyperplasia, rather than
adipocyte hypertrophy (72). Therefore, adipocyte precursors and
progenitor cells (APCs) are an integral subpopulation that has
important implications for prevention and treatment of metabolic
disorders. The structural and metabolic changes that fibroblast-
resembling APCs undergo to form lipid-ladenmature adipocytes is
quite extreme. To ensure that cellular differentiation occurs
properly, APCs undergo drastic transcriptional rewiring in order
toadopt amature adipocyte fate (73).Uponrelease fromaquiescent
stem-like phase, APCs rapidly modulate genes related to cell cycle,
growth and protein synthesis. Following this early priming phase,
Frontiers in Endocrinology | www.frontiersin.org 6
the transcriptional profile switches to focus on extracellular and
structural remodeling, followed by late-stage changes that activate
new centralmetabolic networks. The dynamics ofAPCpopulations
and how they contribute to the functional heterogeneity of adipose
depots has revealedmuchabout thedevelopment,maintenanceand
physiology of systemic metabolic homeostasis.

Due to technical difficulties ofmatureadipocyte characterization
at the single cell level, much focus has pertained to studying the cell
populations that make up the stromal vascular fraction (SVF),
which includes all non-adipocyte resident cell types within the
adiposedepot.Deconvolutionanalysesof SVFcell populationshave
identified unique APC populations, some of which are shared or
distinct between adipose depots. To separate APCs from the other
resident cell types (i.e., endothelial, immune, mesothelial, and
smooth muscle cells), sorting of cells by FACS or single-cell
sequencing criteria based on consensus precursor-positive (such
as Pdgfra, Cd24, Cd29, Cd34, Sca1/Ly6a) and precursor negative
(suchasLin,Cd31,Cd45)haveenabled specific enrichmentofAPCs
for downstream analysis. Within the past few years, numerous
single-cell studies have robustly identified subpopulations of APCs
and have revealed that the heterogeneity offat progenitors relates to
both differentiation trajectory and differences in function.

Current models of adipose tissue development widely regard
mesenchymal stem cells from the mesoderm as the source of
embryonic precursors and progenitors of adipocytes (45, 74–77).
Recent work using lineage determination of APCs has suggested
that not all adipocytes derive from the same pool of cells. Lineage
tracing studies in mice revealed that, while many mature
adipocyte cells come from Myf5+/Pax3+ precursors from the
dermomyotome, additional precursor lineages are also involved
(78). In BAT, previous studies suggested that all brown adipocytes,
but not white adipocytes, arise from Myf5+ progenitors (79).
However, more recent work showed that not all brown adipocytes
originate from a Myf5+ lineage and that, in mice, Myf5+/Pax3+

precursors also contribute to WAT development in a sex-
dependent and anatomically-defined manner (78). Although it is
clear that skeletal muscle and adipose share certain pools of
precursors (79), the contribution of MyoD+ lineages to mature
adipocyte formation is controversial. Multiple studies have shown
that MyoD+ cells can undergo adipocyte differentiation following
loss of MyoD expression (80–82). However, lineage tracing
demonstrated that MyoD+ precursors do not contribute to
adipocyte formation in vivo (78). These studies indicate that both
brown and white adipocytes derive from multiple lineages and
contribute heterogeneously to adipocyte development in vivo
(Figure 3). It remains to be confirmed whether or not the same
precursor populations contribute to the development or
maintenance of white and brown adipose depots in humans.

In line with the assertions that certain adipose depots may
develop from distinct pools of embryonic precursors, evidence
has mounted that vWAT develops from a mesothelial origin
(74). Numerous follow-up characterization studies have relied on
the assertion that the gene Wt1 is specifically expressed in
mesothelial cells, and that Wt1+ cells are indicative of
mesothelial origin (65, 74). However, a recent study found that
Wt1 is not specific to mesothelial lineage only, and that
March 2022 | Volume 13 | Article 847291
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mesothelial cells do not contribute to adipocyte formation in vivo
(83). As these results have not yet been confirmed in humans,
further investigation is needed to identify whether the
development of visceral depots in humans diverges from mice
regarding the contribution of mesothelial progenitors to the pre-
and mature adipocyte pool.
WAT PRECURSORS AND PROGENITORS

The adipose tissue is constantly undergoing maintenance by
controlled removal of dysfunctional cells and replacement
through progenitor recruitment and differentiation. Therefore,
sc-RNAseq characterizations can reveal cells at different stages of
developmental trajectories. Identification of two distinct
progenitor populations with divergent differentiation capacities
have recently been described in mouse iWAT, with marked
differences in gene expression (84, 85). In this model, TGFb
signaling serves to maintain a highly proliferative, uncommitted
stem-like pool. Downstream, a second subpopulation of
committed preadipocytes, derived from the former population,
are primed for differentiation upon pro-adipogenic cues (84, 85).
These findings largely agree with previous studies that analyzed
Frontiers in Endocrinology | www.frontiersin.org 7
the composition of the SVF in mouse eWAT depots under
varying conditions (86, 87), in which two populations
resembling stem-like progenitors with limited adipogenic
potential can, under favorable conditions, progress towards a
committed preadipocyte lineage. The recent pre-print from the
Rosen lab generated an in-depth report of mouse adipocyte
progenitor subpopulations compared across multiple studies
discussed above (84–87), revealing extensive overlap consistent
with previous analyses. Notably, this adipose single-cell atlas
showed that scRNAseq classifications are highly consistent and
confirmed the complex heterogeneity of APCs within mouse and
human adipose depots (23). These studies reinforce the concept
of continuous developmental trajectories that exist in defined
progenitor and committed preadipocyte states.

The stem-like uncommitted progenitors identified in various
studies have both shared and divergent transcriptional
signatures. Burl et al. (87), Merrick & Sakers et al. (85), and
more recently Rondini et al. (21) described Dpp4+ cells that
consist of a population of interstitial progenitors similar to other
subpopulations defined by marked expression of Ly6c1 (FIPs)
(86), Ebf2 (FAP3 and G1) (19, 84), and Ly6a (G4) (84).
Histological analysis indicated that this population of cells lies
near endothelial cells and/or within the reticular interstitium
FIGURE 3 | Differentiation trajectories of major adipocyte populations. Mesenchymal stem cells serve as shared early progenitors and contribute to adipocyte
formation through unique lineages. The contribution of progenitor lineages varies depending on depot and adipocyte type. Some progenitors can give rise to multiple
types of adipocytes depending on environmental signals and anatomical position.
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(RI) (85), a fluid-filled network containing extracellular matrix
fibers, located between the endothelial and parenchymal regions
of the tissue depot (88). The anatomical positioning and
trajectory fate analyses suggest that this population relies on
Wnt/TGFb signaling to maintain proliferative identity. Upon
appropriate environmental cues that trigger fate commitment,
these cells are transcriptionally re-wired, migrate into the adipose
depot as committed preadipocytes and undergo terminal
adipocyte differentiation (85). This anatomical distribution was
also found in human adipose tissue in which an analogous
population of DPP4+ cells form distinct homotypic clusters of
uncommitted progenitors with adipogenic potential (20).

Similar to a consensus subpopulation of uncommitted
progenitors, the existence of a defined committed lineage of
preadipocytes has been reproducibly detected across multiple
reports. Consistent markers for this lineage in mice include
Icam1, Cd36 and Fabp4, with slightly elevated levels of
traditional adipogenic markers including Pparg, AdipoQ and
Cebpa (19, 21, 84–87). Trajectory analysis suggests that these
cells are derived from their upstream Dpp4+ progenitors, with
decreased proliferative capacity and robust differentiation
potential in minimally permissive adipogenic conditions (84,
85). Histological evidence supports trajectory analyses, as these
primed precursors are recruited out of the RI into the adipose
depot to undergo differentiation (85). Therefore, a consistent
body of work shows that committed preadipocytes represent an
intermediate state of APCs derived from upstream progenitors
recruited from surrounding perivascular and RI regions into the fat
depots to complete their differentiation into mature adipocytes.

Certain APC populations are refractory to differentiation,
especially uncommitted progenitors that utilize Wnt/TGFb
signaling to maintain pluripotency and proliferative capacity
(19, 84–87). Interestingly, Schwalie, Dong & Zachara et al.
identified in mice and humans a small subset of preadipocytes,
called Aregs (adipogenesis-regulatory cells), marked by elevated
expression of Cd142 and Abcg1, that exert anti-adipogenic effects
on committed progenitors through a paracrine mechanism (84).
Numerous reports identified a similar, but larger, population of
APCs expressing Cd142 that do not possess anti-adipogenic
properties (85, 86). The enrichment employed to identify the
Aregs targets a specific subpopulation of Cd142+ precursors that
also express high levels of Abcg1, a marker not common to all
Cd142+ population (84). In fact, the expression of Cd142 in
precursor cells appears to be quite broad. Multiple groups
showed Cd142 expression across a large proportion of APCs,
while Abcg1 expression is limited only to a restricted set of
Cd142+ cells (85, 86). This discrepancy has since been accounted
for as a product of different sorting strategies. A recent follow-up
report from the Wolfrum group has confirmed that their
previously identified Areg (Cd142+/Abcg1+) population exists
as a subset of Cd142+ cells within the adipose tissue. Specifically,
this Areg population exerts anti-adipogenic effects on
uncommitted precursors through a Wnt/b-catenin signaling
cascade mediated by Rspo2 and Lgr4 (89) Interestingly, Aregs
also express high levels ofMeox2 (84), a transcription factor that
plays an important role in myogenic differentiation (80). An
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Areg-like population of Cd142+ cells has also been reported
within human and mouse skeletal muscle, which may protect
against intramuscular fat deposition (90). Therefore, it has been
proposed that Aregs may represent a subset of differentiation-
resistant precursor cells or reflect a checkpoint state for
adipogenic commitment and may either be protective or
pathological depending on depot activity.

Another population of anti-adipogenic APCs functionally
distinct from Aregs has also been described. Pdgfrb+/Ly6c+

cells localized in visceral depots, termed fibroinflammatory
progenitors (FIPs), exhibit a pro-inflammatory transcriptional
profile, can potentiate the inflammatory response in
macrophages, and dampen proadipogenic properties of other
adipose-resident cell types (86). Notably, multiple studies
reported that this cell type overlaps with Dpp4+ multipotent
progenitors (19, 23, 85). However, despite the similarity within
transcriptional signatures, these two populations are
characterized by opposite response to TGFb. Dpp4+ cells rely
on TGFb signaling to maintain their identity but, upon TGFb
signaling blockade, they can rapidly differentiate into mature
adipocytes. Furthermore, Dpp4+ cells efficiently differentiate into
mature adipocytes when exposed to a complete adipogenic
cocktail in vitro (85). In striking contrast, TGFb signaling
induces a pro-fibrotic phenotype in FIPs, as marked by the
upregulation of collagen genes. Finally, when treated with a
complete differentiation medium, FIPs display limited
adipogenic capacity compared to Dpp4+ cells (86). Further
complicating the deconvolution of these populations, the
Mandrup group described two fibro-adipogenic progenitor
pools (FAP3 and FAP4) that partly overlap with FIPs and
Dpp4+ cells but do appear not to contribute to the adipocyte
lineage in vivo (19). Therefore, it is possible that, despite the
similarities of their transcriptional signatures, these three cell
types may not be as comparable as suggested, and may in fact be
distinct precursor subpopulations. Further work to functionally
characterize Dpp4+, FIP and FAP populations will help clarify
their contribution to adipose tissue development and function.

First reported in 2016, spatial transcriptomics was only
recently applied to adipose tissue (20). Utilizing this platform,
Bäckdahl & Franzén et al. demonstrated that cell types within the
human WAT are spatially defined by a characteristic structural
makeup. Human WAT architecture closely reflects the one seen
in mice, with Dpp4+ uncommitted progenitors forming
homotypic clusters near vascular and fibrotic structures that
resemble the RI. These cells were mainly found in proximity of
M2-like macrophages, hinting at an immune cell-APC cross-talk
that maintains APC state. Additional subpopulations of
progenitors interspersed within the adipose depot also
exhibited high localization scores with M2-like macrophages,
which also suggests that this spatial relationship is important for
adipose tissue repair and remodeling. Spatial analysis identified
two major populations of mature adipocytes (AdipoPLIN and
AdipoLEP) that tend to cluster together within the depots and
away from the less prominent homotypic cluster formed by a
third class of adipocytes (AdipoSAA) (20). Collectively, this first
spatial transcriptomic study of the adipose tissue revealed that
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human WAT consists of defined cell clustering patterns that
likely represent functional spatial relationships. Future
investigations into the distinct communication and
interactomes of these proximally associated cell types will
greatly further our understanding of cell-cell crosstalk in
adipose tissue and define the dynamics associated with adipose
remodeling with age and disease development. Comparison of
spatial histologic features between mouse and human adipose
will also be of critical importance to inform how they are
functionally comparable and distinct from one another.
BRITE/BEIGE PRECURSORS AND
PROGENITORS

Sensitive to cues that induce brown adipocyte expansion and
activity, recruitment of beige adipocytes and trans-differentiation
of resident cells can occur under cold exposure and b-adrenergic
stimulation. However, beige cells are likely derived from a lineage
distinct from brown adipocytes and, in some cases, also distinct
from traditional white adipocytes (22). In contrast to mouse data
showing that mesothelial cells do not contribute to the adipocyte
pool (83), evidence exists that a subset of visceral APCs with
transcriptional profiles resembling brown/beige thermogenic
programs emerge from a Myf5- mesothelial origin (65).
Furthermore, a recent reports from the Kajimura lab
demonstrated that g-beige adipocytes can arise from a MyoD1+

lineage (54), which was previously thought to not contribute to
adipocyte formation in mice (78), and that a unique subset of
APCs, defined by high expression of the surface markers
PDGFRa, Sca1, and CD81, is specifically required for beige fat
formation (91). Notably, the CD81+ population identified by
Oguri and colleagues largely overlaps with a group of CD34-

APCs that were shown to give rise to Ucp1+ adipocytes (92).
Given that white adipocytes can also undergo beigeing under
appropriate environmental cues (93, 94), it seems clear that beige
adipocytes arise from multiple lineages.

Intriguingly, the emergence of beige adipocytes in traditional
white depots are also dependent on immunomodulatory
mechanisms. Numerous reports have demonstrated that Ucp1+

adipocytes and their precursors reside intimately with lymph
nodes in mouse iWAT (54, 95) and human vWAT (23). In line
with this localization pattern, immune cells contribute to the
adoption of the thermogenic program in adipocytes (96–98).
Interestingly, recent evidence emerged that the immune cell
compartment of adipose tissue responds differently to cold
exposure compared to traditional adrenergic stimulus (99).
Whereas cold exposure preferentially promoted increased
recruitment of lymphoid B and T cells, adrenergic stimulation
favors recruitment of myeloid cell types such as macrophages,
dendritic cells (DCs) and granulocytes via increased interferon/
Stat1 signaling (99). Thus, the exact mechanisms by which
environmental stimuli induce adipose beiging may be less
similar than previously thought. Macrophages were shown to
promote beiging via direct catecholamine production within the
adipose niche (100–103). However, this concept has been
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questioned by other studies supporting the opposite scenario
where macrophages partake in catecholamine clearance (104–
106). Despite the lack of consent on what is the definitive role of
macrophages in adipocyte browning/beiging, it is clear that
adrenergic stimulation has a profound impact on all adipose-
resident cells, not only those belonging to the adipogenic lineage,
and that all cells likely contribute to the overall increase in energy
expenditure. Single cell profiling of the response to b3-adrenergic
receptor activators from the Granneman lab showed significant
reprogramming of macrophage population, with a specific
subpopulation strongly upregulating the expression of genes
involved in ECM remodeling, to facilitate removal of dead
adipocytes, and lipid uptake and metabolism, to support
differentiation of fat cell progenitors within the adipogenic
niche (87, 107). Elegant work from the Tontonoz lab also
demonstrated that IL-10 represses thermogenic program in
adipocytes by inhibiting recruitment of Pgc1a and C/ebpb to
thermogenic gene enhancers (108). Single cell transcriptional
analysis of adipose depots pinpointed B- and T-lymphocytes as
major producers of IL-10 in response to adrenergic stimulation,
and selective depletion of these cell types is sufficient to replicate
the phenotype observed in mice lacking IL10 or its receptor
IL10Ra in the adipose (109). Interestingly, not all the browning
effects of immune cells are linked to sympathetic nerve
activation. The Czech group recently reported that the
browning/beiging effects observed in mice lacking FASN
specifically in the adipose is not blocked by denervation but is
significantly impaired in macrophage-depleted mice (110).
Although the signals involved in this immune cell-adipocyte
crosstalk are yet to be identified, this work provides the first
evidence of an adrenergic-independent pathway that promotes
energy expenditure via paracrine signaling of adipose-
resident cells.

If induction of beige adipocyte formation as a therapeutic
approach is to be effective, selective induction, control and
maintenance of these populations will be essential .
Identification of transcriptional and epigenetic mechanisms of
beige adipocyte formation and fate preservation implicate a
number of key factors. In MyoD1+ precursor cells, beige fate
adoption can be controlled independently of adrenergic
stimulation through activation of Gabp⍺ (54). However, there
is general consensus that Prdm16, Tle3, Ebf2 and Zfp423 are
central hubs that regulate beige adipocyte formation (111–118).
To ensure recruitment of appropriate transcriptional machinery
to thermogenic genes, beige adipocytes readily adopt an
epigenetic landscape similar to traditional brown adipocytes
(37). Upon warming, beige adipocytes readily convert back to
white adipocytes, accompanied by physiological changes
(unilocular lipid droplets, decreased mitochondria) and a
reversion of the epigenome in line with white adipocyte gene
expression (37, 94). This trans-differentiation appears to be at
least partially exerted via increased glucocorticoid receptor
activity, acting as a transcriptional activator of Zfp423 (37).
Remarkably, these whitened beige adipocytes readily convert
back into thermogenic adipocytes upon repeated cold exposure
(37, 94). Through maintenance of H3K4me marks at inactive
March 2022 | Volume 13 | Article 847291

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Duerre and Galmozzi Heterogeneity of Fat Tissue
enhancer and promoter elements, once-previously beige
adipocytes are primed for re-activation of the thermogenic
program upon repeated cold exposure (37). Additional
epigenetic remodeling mechanisms have also been implicated
in beige adipocyte formation, including Tet1 (119), Kmt5c (42)
and Ehmt1 (43). These works demonstrate that beige adipocytes
are highly plastic and rely on key epigenetic marks to maintain
flexibility in response to changing environmental stimuli.
BAT PRECURSORS AND PROGENITORS

Contrary to the substantial efforts put in characterizing the
development of white adipocytes from APCs, deep profiling of
brown APCs and their contributions to mature adipocyte
populations within depots is less understood. It is well
appreciated that brown adipocytes emerge from Myf5+/Pax7+

or Pax3+ multipotent stem cells that also give rise to skeletal
muscle (78, 79, 81, 82). Beyond these characteristics and some
understanding of transcriptional and epigenetic programs that
push precursors towards a brown fate (e.g., Prdm16, Ebf2), more
work remains to understand the APC pools within BAT. A
recent glimpse into processes and populations controlling brown
depots comes from the Seale lab, which sought to better
understand adipose formation in the perivascular (PVAT)
regions of both mice and humans (120). The authors found
that aortic PVAT, which in mice develops between embryonic
day 18 (E18) and postnatal day P3, resembles iBAT, showing
multilocular adipocytes and elevated expression of thermogenic
genes, including Ucp1. Discrete populations of fibroblast
progenitors (Pi16+/Ly6a+/Dpp4+) and preadipocytes (Pparg+/
Pdgfra+/Lpl+) were observed in between smooth muscle and
adipocyte cells. Similar to progenitors found in WAT depots,
PVAT progenitors rely on Wnt/Tgfb signaling to maintain their
progenitor status, suggesting that both BAT and WAT depots
develop via converging signaling and cellular trajectories.
Interestingly, the authors also found that, in adult mice, the
predominant, postnatal PVAT preadipocyte population is lost
and replaced by smooth muscle-like cells (SMC2, Cd200-/
Trpv1+) with pro-adipogenic potential. Comparing mouse and
human PVAT, the authors also report comforting analogies, with
all major adipogenic cell types detected in mouse PVAT also
found in human depots (120).
THE IMPACT OF OBESITY ON THE
COMPOSITION OF ADIPOSE TISSUE

Adipose tissue is critical for systemic insulin sensitivity and
glucose homeostasis (121). Chronic insulin resistance in the
adipose tissue impairs glucose uptake and prevents insulin-
mediated inhibition of lipolysis, leading to excess circulating
glucose and free fatty acids, leaving other tissues sensitive to
lipotoxic stress vulnerable to ectopic fat accumulation and
progression of metabolic dysfunction (122–124). Recent
evidence from single-cell studies revealed compositional and
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transcriptional events occurring in visceral and subcutaneous
adipose during obesity shining light on the processes that
precede and contribute to adipose dysfunction and
development of metabolic syndrome.

Shifts in the proportions of resident cell populations along
with alterations in gene expression profiles are major
contributors to pathologic depot remodeling. Recent data from
single cell analysis confirms that remodeling of adipose-resident
immune cells is tightly associated with changes in depot
function. Although an in-depth discussion of adipose-resident
immune cell population dynamics in health and diseases is
summarized in detail by others (59–61, 125), an overview of
adipose immune cell dynamics within the context of other
resident cell types is warranted. Of all immune cell types,
macrophages are the predominant class of immune cells in the
adipose, and deserve to be mentioned. Obesity leads to
recruitment and rapid expansion of Trem2+ lipid-associated
macrophages (LAMs) with increased phagocytic activity and
lipid handling capacities (64, 67, 126). Notably, these cells
closely associate with mature adipocytes to prevent
hypertrophy and protect against adipose dysfunction (64, 68).
However, in obese adipose, LAMs can also acquire
proinflammatory functions by increasing the release of
inflammatory cytokines, including IL-1b and TNFa (19, 63).
In obesity, beyond recruitment of new macrophages, two subsets
of adipose-resident macrophages called perivascular-like (PVM)
and non-perivascular-like (NPVM) macrophages, normally
present in lean state, also undergo profound transcriptional
rewiring that boosts their lipid handling capacities similar to
LAMs (19, 23, 63, 65). These data, along with trajectory analyses,
further corroborate the importance of adipose-resident and
newly infiltrated macrophages to the progression of adipocyte
dysfunction in obesity.

Other innate and adaptive immune cells also appear to
change during the onset of obesity and metabolic dysfunction,
and further exacerbate pathophysiology (Figure 4). Evidence
from sc-RNAseq studies corroborate previous reports suggesting
numerous cell types as potential culprits in the aggravation of
pathophysiology. Innate lymphoid cell (ILC) subsets undergo
differential expansion or contraction during obesity. For
example, ILC1 cells expand during obesity and promote tissue
inflammation through inflammatory signaling, while ILC2 cells,
which may function to suppress inflammation and promote Th2
phenotype of tissue-resident CD4+ cells, are depleted and
inhibited (63, 127, 128). Additionally, ILC3 cells expand in
adipose tissue with obesity and may exacerbate local tissue
inflammation (63). Invariant natural killer (iNKT) cells appear
to exert protective effects in response to perturbations by acting
on macrophages and regulatory T (Treg) cells (129), while
mucosal-associated invariant T (MAIT) and gd T cell numbers
increase and may promote an inflammatory environment in
response to high-fat feeding and obesity (63, 130). CD4+ Treg
cells act to dampen immune responses, promote an anti-
inflammatory environment and are likely protective against
pathologic progression, as subsets of these cells are enriched in
lean mice but lost with obesity and insulin resistance (131). CD8+
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cytotoxic T cells appear to increase in obese adipose tissue (132),
and their activation is one of the earliest inflammation-inducing
events occurring during the onset of obesity (133). B cells,
likewise, are recruited early during the onset of obesity induced
by high-fat diet (134). B-2 cells appear to promote a
proinflammatory environment through release of cytokines
and IgG (135), while B-1 cells and regulatory B cells (Bregs)
dampen inflammation through IL10 and IgM (136, 137). Overall,
obesity promotes an inflammatory environment within adipose
tissue depots and exacerbates metabolic dysfunction. These
pathologic changes are dampened or even reversed in animals
Frontiers in Endocrinology | www.frontiersin.org 11
undergoing longevity-associated lifestyle interventions such as
calorie restriction (CR) and/or exercise (69, 138–141). Further
elucidation of the spatial and temporal relationships of adipose-
resident immune cells at the single cell level during the
progression of metabolic dysfunction, and their alterations
during CR or exercise regimens in the obese state may reveal
promising targets for therapeutic intervention.

Beyond immune cells, APC populations also alter their
functional capacity upon high-fat feeding, obesity onset and
T2D (Figure 5). Transcriptional profiling of APCs and
adipocytes between lean and obese states reveals a switch
FIGURE 4 | Immune cell populations are altered with obesity and high-fat diet feeding. Adipose-resident immune cells are major contributors to depot dysfunction
from HFD feeding and obesity. In line with precursor and mature adipocyte populations, immune cells transition towards pro-inflammatory phenotypes and inhibit
resident cell types that act to maintain an anti-inflammatory environment. Chronic activation of inflammatory immune cells exacerbates metabolic dysfunction and
contributes to low-grade, chronic inflammation seen in animals and individuals with cardiometabolic disease. LAM, lipid-associated macrophage; (N)PVM, (non-)
perivascular macrophage; iNKT, invariant natural killer T cell; MAIT, mucosal-associated invariant T cell; Treg, regulatory T cell; Breg, regulatory B cell.
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towards a fibro-inflammatory phenotype, indicated by elevated
expression of pro-inflammatory cytokines, extracellular matrix
(ECM)- and stress response-related genes (19, 23, 86, 142). The
induction of collagen (Col1a1, Col3a1) and ECM remodeling
enzymes (Mmp1, Mmp2) observed in obesity (19, 23, 86, 142)
reflects the extensive changes to the structural environment that
occur within the adipose depots under these conditions (143).
Consistent with these observations, Hepler and colleagues
showed an enrichment in FIPs in response to high-fat diet
(86). Similarly, the prevalence of other APC subpopulations
changes. Adipose tissue expansion is driven in part by
adipocyte hyperplasia. To accommodate this need, multipotent
Dpp4+ cells decrease in abundance (19, 85), while committed
Cd142+ and Icam1+ preadipocytes expand (19). Interestingly,
these newly recruited preadipocytes show reduced lipogenic
capacity due to downregulation of key lipid processing genes, a
condition that further exacerbates impaired lipid handling
capacity of the depot (19). In summary, high-fat diet and
obesity drastically alter the composition and function of APCs
promoting a pro-inflammatory phenotype, deplete early
progenitor cel ls and increase a pool of committed
preadipocytes primed for adipocyte dysfunction.
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Inaccordancewithalterations inAPCfunctionandproportions,
the composition of mature adipocytes also undergoes extensive
remodeling (Figure 5). Lipogenic adipocytes (LGAs), characterized
by high sensitivity to insulin and ability to initiate de novo
lipogenesis, make up a significant proportion of mature
adipocytes in eWAT depots in lean mice (19). However, in
obesity, this population decreases dramatically and is replaced by
the hypertrophic expansionof lipid-scavenging (LSAs) and stressed
adipocytes (SLSAs) (19). Upon high-fat feeding, both LSAs and
SLSAs repress the expression of traditional adipocyte gene
programs such as adipokine secretion and insulin sensitivity, and
upregulate pro-inflammatory and ECM gene programs (19, 142).
Additionally, lipolytic capacity is significantly hindered through
decreases in central lipolysis enzyme expression (Atgl and Magl)
and reduction in active Hsl (142). These observations in mice
correlate with results obtained in humans. Of the three
subpopulations of adipocytes identified by spatial mapping of
human subcutaneous white adipose tissue (20), only one
population is particularly sensitive to insulin (AdipoPLIN), and
the proportion of this class within the fat depots negatively
correlates with BMI and HOMA-IR. Temporally, these changes
in adipocyte populations coincide with remodeling of macrophage
FIGURE 5 | Precursor and mature adipocyte populations are altered with obesity and high-fat feeding. In response to chronic high-fat diet and obesity onset, both
precursors and mature adipocytes undergo remodeling towards a chronic, low-grade inflammatory state. Transcriptional rewiring of mature adipocytes and precursors
results in extensive ECM remodeling and immune signaling which contributes to adipose tissue dysfunction.
March 2022 | Volume 13 | Article 847291

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Duerre and Galmozzi Heterogeneity of Fat Tissue
populations (64), which is consistent with altered immune-
adipocyte crosstalk in obese subjects (23). Taken together, these
studies revealed that obesity-induced remodeling of the adipose
depot is extensive and imparts negative consequences on all
adipose-resident cell types: progenitors, mature adipocytes, and
immune cells. Analysis of the recent single-cell resource published
byMa et al. exploring the effects ofCRon age-associated changes in
rodents (139) may offer insight into how health- and longevity-
associated interventions may alter obesity-induced changes in the
APC and adipocyte landscape of adipose tissue.
DISCUSSION

In the last two decades, technological advances such as CRISPR-
Cas9 and scRNA-seq have significantly boosted our ability to
address prominent biological questions. As scRNA-seq
continues to gain in popularity, it is important to also
recognize the limitations of these techniques. Extensive
discussion over this topic is covered elsewhere (144–146), but a
few key points warrant discussion. First, one must take into
account the species of interest, biological sex and genetic
backgrounds. Many similarities exist between mice and
humans, but clear divergencies have also been shown,
including differences in adipose deposition, sensitivity to
environmental cues (diet, temperature), and even proportions
of adipose resident cell populations. Second, sorting strategies
that isolate cell populations of interest may further increase
variability. Despite the existence of consensus markers of
specific cell populations, selection strategies using known
markers are intrinsically biased and are not consistent across
studies, confounding results and explaining in part the
differences observed between analyses. Third, the massive size
of sc-RNAseq datasets requires algorithmic-based analyses to
properly analyze results. QA/QC methods must be robust
enough to enhance signal-to-noise ratio while maintaining
high sensitivity to rare populations and low-count reads. Data
analysis, oftentimes done through dimensionality reduction
(PCA, UMAP), may not be consistent between studies, as there is
nogold standard.However, it is reasonable to expect that in thenear
future many of these current limitations will be addressed through
improved sensitivity and standardization of methods.

Although many questions remain to be answered, researchers
are equipped with an abundance of novel tools and techniques.
Frontiers in Endocrinology | www.frontiersin.org 13
Expansion of -omics technologies will likely continue to gain
traction amongst research groups and existing datasets, coupled
with generation of new ones, will offer additional opportunities
to identify previously unrecognized functions of adipose cell
types beyond what is currently known. Identification of
epigenomic states within adipose cell populations and
integration of these data with single-cell datasets will likely
provide clarity regarding the function and plasticity of cell
types in response to changing environments. In particular, the
combination of additional -omics platforms at single-cell
resolution (147), including single-cell proteomics (148, 149)
and metabolomics (150, 151) integrated with spatial resolution
(152, 153), will further advance our ability to understand how
resident cell types respond to inputs and interact with neighbors
to dictate tissue function. Utilization of these platforms to
compare adipose hierarchy between health and disease states
will provide powerful assessments of the changes linked with
aberrant adipose function. These tools will reveal extremely
useful to better understand the beiging process in humans and
tailor therapeutic strategies to promote energy expenditure in
vivo. Altogether, our understanding of adipose biology will
continue to accelerate as we look forward into the next decade,
and the future looks brite/beige.
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