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Abstract
Introduction: Physiology-guided cardiopulmonary resuscitation (CPR) offers the potential to optimize resuscitation and enable early prognosis.

Methods: Physiology-Guided CPR was one of six focus topic for the Wolf Creek XVII Conference held on June 14–17, 2023 in Ann Arbor, Michigan,

USA. International thought leaders and scientists in the field of cardiac arrest resuscitation from academia and industry were invited. Participants

submitted via online survey knowledge gaps, barriers to translation and research priorities for each focus topic. Expert panels used the survey results

and their own perspectives and insights to create and present a preliminary unranked list for each category, which was then debated, revised and

ranked by all attendees to identify the top 5 for each category.

Results: Top knowledge gaps include identifying optimal strategies for the evaluation of physiology-guided CPR and the optimal values for existing

patients using patient outcomes. The main barriers to translation are the limited usability outside of critical care environments and the training and

equipment required for monitoring. The top research priorities are the development of clinically feasible and reliable methods to continuously and

non-invasively monitor physiology during CPR and prospective human studies proving targeting parameters during CPR improves outcomes.

Conclusion: Physiology-guided CPR has the potential to provide individualized resuscitation and move away from a one-size-fits-all approach. Cur-

rent understanding is limited, and clinical trials are lacking. Future developments need to consider the clinical application and applicability of mea-

surement to all healthcare settings. Therefore, clinical trials using physiology-guided CPR for individualisation of resuscitation efforts are needed.
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Introduction

Cardiac arrest carries high mortality.1,2 Cardiopulmonary resuscita-

tion (CPR) is the cornerstone of initial management but follows a

one-size-fits-all treatment paradigm. Physiology-guided CPR holds

great potential to improve patient outcomes through optimising and

individualising resuscitation efforts for each patient.

Physiology-guided CPR involves the continuous monitoring of

various physiologic parameters, such as electrocardiogram (ECG)

waveform, arterial blood pressure (BP), end-tidal carbon dioxide

(PETCO2), regional cerebral oxygenation (rSO2) and electroen-

cephalography (EEG). By leveraging real-time data, resuscitation

strategies can be tailored and adjusted on a patient-specific basis

in response to the individual’s unique physiological needs.3,4 This

approach moves away from rigid adherence to predefined cycles

or fixed time intervals for resuscitation, allowing for a more dynamic
and adaptive response to the patient’s evolving condition. Impor-

tantly, rSO2 and EEG may uniquely provide additional insights

regarding real-time brain tissue perfusion. Continuous arterial BP

monitoring will guide healthcare providers to tailor chest compres-

sions to achieve the best blood pressure and, specifically, the high-

est coronary perfusion pressure. Furthermore, integrating

physiological monitoring into CPR holds promise for early prognosti-

cation, enabling healthcare providers to assess the likelihood of a

positive outcome more accurately.

Physiology-guided CPR represents a forward-looking approach

that capitalises on continuous monitoring and data-driven decision-

making to revolutionise the way we treat cardiac arrest, offering

the potential for improved patient survival and long-term outcomes.

This paper discusses the current state, potential future state, knowl-

edge gaps, barriers to translation and research priorities for

physiology-guided CPR.
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Methods

Since its inception in 1975, the Wolf Creek Conference has a well-

established tradition of providing a unique forum for robust intellec-

tual exchange between thought leaders and scientists from

academia and industry that focuses on advancing the science and

practice of cardiac arrest resuscitation.5 The Wolf Creek XVII Confer-

ence was hosted by the Max Harry Weil Institute for Critical Care

Research and Innovation in Ann Arbor, Michigan, USA on June

15–17 2023.6

Physiology-guided CPR was one of 6 focus topics for the Wolf

Creek XVII Meeting. Meeting invitees included international aca-

demic and industry scientists as well as thought leaders in the field

of cardiac arrest resuscitation. All participates were required to com-

plete conflict of interest disclosures. Prior to the meeting, all partici-

pants were asked via an online survey to list up to three knowledge

gaps, barriers to translation and research priorities for each topic.

Participants were instructed that the topic of the physiology-guided

CPR session would focus on physiologic monitoring techniques that

can be used to guide and optimise therapy during CPR. Knowledge

gaps were defined as areas where our understanding or knowledge

is incomplete or limited. These gaps can arise due to various factors,

such as lack of research, inadequate information, limited access to

data or resources, or simply because the topic is new or complex.

Barriers to translation were defined as obstacles that can prevent

the successful transfer of knowledge or innovations from research

or development settings to practical applications in the real world.

Research priorities were defined as the areas of study that are con-

sidered most important or urgent by the scientific community or soci-

ety as a whole. These priorities are often determined by a range of

factors such as knowledge gaps, scientific breakthroughs, new chal-

lenges, societal needs or funding opportunities.

Expert panellists in each topic provided an overview of the field’s

current state and potential future state. This layed the groundwork for

an informed debate. They also used the survey results and their own

perspectives and insights to create an initial unranked list of up to ten

items for each category. This was followed by the presentation and

initial ranking of the knowledge gaps, barriers to translation, and

research priorities by all attendees using electronic voting, discus-

sion and revision by the panel and attendees, and then re-ranking

(supplemental materials). The top five items in each category under-

went final review on the last day of the conference. This manuscript

presents and discusses an overview of the current and potential

future state of the field and prioritized results for physiology-guided

CPR.

Current state

Two mechanical effects are evident when blood flow occurs during

cardiac activity or chest compressions. Firstly, the heart’s motion

induces a recoil effect on the chest. Secondly, the motion of the

blood generates a recoil effect throughout the entire body. Utilising

physiological biosensors, including invasive arterial BP monitoring,

ECG, PETCO2, pulse oximetry (SpO2), rSO2, ballistocardiography

(BCG), point-of-care Ultrasound (POCUS) and echocardiography,

enables the measurement of these effects (Table 1). These sophis-

ticated tools offer a comprehensive approach to assessing the intri-

cate dynamics of blood flow and cardiac activity during both
natural heart function and resuscitation efforts, providing valuable

insights into the physiological responses of the cardiovascular

system.

Invasive arterial blood pressure

During CPR, invasive arterial BP can indicate CPR quality, measure

systemic and organ perfusion pressures, and be a surrogate for the

systemic blood flow generated by chest compressions. Restoration

and maintenance of myocardial blood flow during CPR is critical to

resuscitation success. Thus, longstanding clinical and laboratory

data have demonstrated that higher intra-arrest coronary perfusion

pressure values, the primary determinant of myocardial blood flow,

are strongly associated with higher rates of return of spontaneous

circulation (ROSC) and survival.7,8 As the real-time determination

of coronary perfusion pressure during CPR can be difficult, systemic

diastolic BP has been endorsed as an alternative to coronary perfu-

sion pressure with similar associations with survival outcomes.9–10

Which part of the diastolic phase of the compression-

decompression cycle the diastolic pressure should be measured is

debated. The monitor’s algorithms for measuring and presenting

the value on the screen are created for spontaneous beating hearts

and not for chest compression-generated blood pressures. In labora-

tory studies, hemodynamic-directed CPR strategies, including real-

time chest compression mechanics and vasopressors titration,

improve intra-arrest physiology and superior survival outcomes.11,12

Despite promising pre-clinical data and associations of invasively

measured BP with CPR outcomes, the widespread use of BP for

monitoring or guiding CPR has not occurred.13,14 One significant bar-

rier is the requirement for an invasive arterial catheter – as such, this

is typically limited to in-hospital settings or out-of-hospital settings

with physicians. Intra-arrest placement of an arterial catheter to

assist with guiding CPR may divert attention from other aspects of

high-quality resuscitation. Additionally, though coronary perfusion

pressure or diastolic blood pressure thresholds are a valuable start-

ing point, the actual strategies for achieving these goals have not

been determined in humans and CPR guidelines do not instruct clin-

icians regarding how resuscitation may be optimized or tailored

based on BP. Thus, the prospective study of BP-directed CPR is crit-

ically important to moving forward.

Cerebral oximetry

Cerebral oximetry measured by near-infrared spectroscopy (NIRS) is

a noninvasive measure reflecting the balance of oxygen delivery and

uptake in the cerebral circulation.15 It has been increasingly used

during CPR.16–22 NIRS sensors placed on the forehead emit and

detect near-infrared light that penetrates �3 cm into the brain’s fron-

tal region. Relying on the unique absorption spectra of oxy- and

deoxyhemoglobin, NIRS devices calculate rSO2 using the Beer–

Lambert Law.23–24 As venous blood makes up �75% of blood in

the sampled area, normal rSO2 values are 60–80 % and reflect the

dynamic balance between oxygen delivery and uptake.24 Cerebral

oximetry does not rely on pulsatile flow and has been used in diverse

settings, including cardiac arrest, neurosurgery, and cardiothoracic

surgery.25–29

Generally, rSO2 falls to critically low values with cardiac arrest

and remains low,30–31 but can increase with continued high-quality

CPR.30,32 Higher values of rSO2 are consistently associated with

ROSC in multiple systematic reviews.17,33–37 This suggests that

rSO2 may indicate the quality of oxygen delivery to the brain but also



Table 1 – Summary of the current state of physiological monitoring parameters (Adapted from Marquez3).

Parameter Advantages Disadvantages

Coronary perfusion

pressure

� reflects myocardial blood flow -a major determi-

nant of good outcome

� invasive

� requires arterial and central venous catheters

� limited availability outside of ICU/OR

Diastolic blood

pressure

� surrogate of coronary perfusion pressure � invasive

� requires arterial catheter

ECG waveform � derives directly from current practice

� measures can be derived standard equipment

(defibrillators)

� noninvasive

� requires validation and operational evaluation to optimize

clinical implementation

End-tidal carbon

dioxide

� surrogate for blood flow / cardiac output

� wide availability with advanced airways

� confounded by etiology, ventilation rate, vasopressors

Cerebral oximetry � measure of cerebral oxygenation

� noninvasive

� optimal values unknown

� technical limitations in commercially available devices

� questionable accuracy in low blood/oxygenation states

Cardiac ultrasound � determine reversible cause and optimize

compressions

� noninvasive

� technically difficult, may distract from CPR

� specialty equipment
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other vital organs, including the heart, and potentially acts as a sur-

rogate for coronary perfusion pressure.38

One meta-analysis reported better neurologic outcomes with

higher rSO2 during resusciation.17 However, included studies were

limited by the small number of survivors and the types of NIRS mea-

surements during resuscitation influenced the association with

ROSC.

ECG

Currently, most out-of-hospital resuscitations have rescuers use a

snapshot every two minutes of the patient’s cardiac rhythm and vital

status to help inform care (CPR, defibrillation, medications).39

Between these snapshots, rescuers are often blinded to the patient’s

ECG rhythm and vital status as active CPR obscures the ECG and

challenges the ready assessment of the patient’s vital status. The

consequence is that CPR is interrupted every few minutes to update

the patient’s underlying rhythm and vital status. And yet, the patient’s

ECG and physiologic phenotype can be dynamic during these peri-

ods of CPR.40 Consequently, protocolised care may not align with

a patient’s physiology. For example, the protocolised administration

of a vasopressor during CPR despite an underlying (unrecognised)

ROSC.

There is an advancing science that applies artificial intelligence to

process bio-signals (ECG and impedance) to accurately provide

real-time (continuous) rhythm identification during active CPR and

gauge the rhythm’s vitality (i.e. whether the organised rhythm pro-

duces a spontaneous pulse, whether a shock for ventricular fibrilla-

tion (VF) produce an organised rhythm or spontaneous pulse).41–44

These innovations have the potential to continuously inform the res-

cuer of the patient’s rhythm and physiologic status during CPR and,

in turn, potentially improve care.

Moreover, these same types of advanced data interrogation

methods can be used to predict early-on specific downstream clinical

circumstances that may enable more directed care earlier in the

course of resuscitation. For example, patients with refractory VF

require 3 or more shocks often requiring additional therapies (i.e.

antiarrhythmic medications, shock vector change, or double sequen-

tial defibrillation). Implementation of these treatments currently only
occurs after the patient has demonstrated refractoriness. Innovative

techniques of real-time ECG processing may predict at the outset of

resuscitation which patients are most likely to manifest refractory VF,

providing an opportunity for earlier interventions that may improve

the course of resuscitation.45
Continuous waveform Capnography (end-tidal carbon

dioxide)

A substantial body of pre-clinical evidence establishes that PETCO2

can serve as a surrogate marker of pulmonary blood flow and cardiac

output during CPR.46–49 Among clinical studies, there are four main

themes that arise: 1) PETCO2 values are generally higher among

patients who achieve ROSC50–52; 2) low PETCO2 values (<10 mmHg)

are associated with a low chance of successful resuscitation without

E-CPR support52–54; 3) a sudden rise in PETCO2 can be used to

detect the onset of ROSC55; and 4) as CPR quality improves, so

does PETCO2.
56–58 Unfortunately, many factors can confound

PETCO2 values during real-life use as a CPR quality monitor, includ-

ing vasopressor administration, obstructed endotracheal tubes,

PETCO2 measurement algorithm used, or clinical scenarios with extreme

ventilation-perfusion (VQ) mismatch (e.g., pulmonary embolism).
Photoplethysmography (PPG) Waveforms: Pulse oximetry

A major barrier to the widespread adoption of physiologic-directed

CPR is the indentification and validation of non-invasive monitors

suitable for a diverse set of clinical environments. Extensive literature

supports the use of photoplethysmography (PPG) waveforms to

evaluate the cardiovascular system, particularly for assessing vol-

ume status or fluid responsiveness,59–67 and determining vascular

distensibility, tone,68–71 and BP.72–73 Recent animal models indicate

that PPG waveform characteristics (e.g., amplitude [Amp] and area

under the curve [AUC]) can gauge CPR quality74 and detection of

ROSC.75 A clinical observational study corroborated these PPG

characteristics (Amp and AUC) as predictors of ROSC during in-

hospital events.74 However, the current lack of clinical evidence sup-

porting the prospective adjustment of resuscitation based on PPG

values represents a notable knowledge gap.
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Point-of-Care ultrasound (POCUS) and echocardiography

POCUS during cardiac arrest has traditionally been used to identify

reversible causes of arrest (e.g., cardiac tamponade or tension pneu-

mothorax) or to identify the underlying cardiac rhythm (PEA vs. asys-

tole vs. fine VF), a finding that may have prognostic benefit.76

Despite promise in previous studies, images obtained via a transtho-

racic approach can be limited due to the inability of the proceduralist

to obtain adequate cardiac windows. As an alternative, trans-

esophageal echocardiography (TEE) has demonstrated clinical util-

ity, including optimizing hand position during CPR, ensuring that

the chest compressions are applied to the left ventricle, rather than

the aortic outflow track.77–79 Of note, as chest compression fraction

is highly associated with patient outcomes, and resuscitation teams

should ensure that any use of POCUS or echocardiography does

not result in increased interruptions in CPR.
Potential future state

We increasingly understand that a spectrum of time-sensitive phys-

iology can occur within a single or across the population of cardiac

arrest patients. The understanding supports a more dynamic, preci-

sion approach whereby information from various biosensors could be

smartly integrated to help guide a more patient-specific approach

that aligns the choice, dose, and timing of treatments with the

patient’s physiology (Fig. 1). This precision strategy of physiologic-

guided treatment has inherent appeal as we understand treatment

response is not uniform and instead may depend on patient charac-

teristics.80–82

Although promising, substantial knowledge gaps must be

addressed to meaningfully achieve this strategy.
Knowledge gaps

The top five knowledge gaps identified by the conference partici-

pants are listed in Fig. 2 and discussed below. Additional knowledge

gaps can be found in the supplemental materials.

1. Identifying the optimal strategies for the evaluation of

physiologically-directed CPR

Physiologically-directed CPR relies on a nuanced understanding

of physiological responses, which can be intricate and multifaceted.

Translating these complex mechanisms into practical guidelines for

healthcare providers requires clear and simplified frameworks with-
Fig. 1 – The patient-specific approa
out sacrificing essential details. While there is a growing body of

research supporting the benefits of physiology-guided CPR, more

robust high-quality evidence is needed.

2. Identifying the optimal values for existing physiological

parameters using patient outcomes

Many of the measures currently recommended are indirect mea-

sures of physiology (e.g. PETCO2 as an indirect measure of cardiac

output). There is insufficient knowledge about how these modalities

gauge acute physiology, distinguish physiological phenotypes, and

predict short- and long-term outcomes in real-time. Ideally, continu-

ous monitoring would provide ongoing resuscitation assessment

and help measure the patient’s acute physiology and predict

prognosis.

Not all patients may respond the same way to physiological inter-

ventions, and individual responses may be unpredictable. This may

make it challenging to develop standardized protocols for

physiology-guided CPR.

3. Accuracy of existing modalities in measuring perfusion and

oxygenation in humans

Physiologically based measures often serve as surrogate indica-

tors of the underlying physiological processes. Presently, our under-

standing of the efficacy of these modalities in accurately assessing

acute physiology, such as tissue perfusion and oxygenation, remains

incomplete. Additionally, there is a need to ascertain how reliably

these measurements reflect the generation of blood flow and the per-

fusion of the lungs during chest compressions and, ultimately, the

supply of oxygen to the brain.

4. Understanding the impact of underlying etiology on physio-

logical parameters

Distinguishing physiologic phenotypes holds the potential to tailor

patient-specific care. For example, the decision between ongoing

CPR and medication administration versus an immediate shock

depends upon the patient’s acute physiologic status. While it is use-

ful to know if these measures can gauge CPR (flow and oxygena-

tion), it is equally important to understand how these measures

might gauge the patient’s acute physiology and how this information

might guide differential treatment. The question remains: can these

measures truly direct care, or do we still lack comprehensive knowl-

edge about well-defined physiologic and prognostic phenotypes and

their role in influencing the selection, timing, and dosage of various

treatments, including CPR, medications, and defibrillation?
ch of physiological-guided CPR.



Fig. 2 – Physiological-guided cardiopulmonary resuscitation: Top 5 knowledge gaps as ranked by attendees at Wolf

Creek XVII, June 15–17, 2023, Ann Arbor, MI, USA.
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5. Lack of human clinical trials of interventions in

physiologically-directed CPR

Much of the evidence supporting these parameters is derived

from animal studies,83 and there is a lack of human studies demon-

strating that physiological-based CPR improves patient outcomes.

Conducting rigorous research on CPR, especially in real-world clini-

cal settings, is inherently complex. It can be challenging to control all

variables, and ethical considerations may limit the extent to which

experimental interventions can be applied to critically ill patients.

The multifactorial nature of these interventions, which may include

personalised adjustments based on continuous monitoring, makes

designing and conducting clinical trials challenging. Establishing uni-

form protocols for a clinical trial while accommodating the person-

alised nature of these interventions poses a methodological

challenge. However, establishing a clear evidence base through

well-designed clinical trials is essential to validate the effectiveness

of these approaches in real-world scenarios. Such trials will require

patient-centred outcomes such as measures of quality of life,84 to

provide evidence of effectiveness.

Dissenting opinions

There was a discussion supporting these knowledge gaps, the need

for direct measures during CPR, and the lack of progress in this field.

Barriers to translation

The top five barriers to translation identified by the conference partic-

ipants are listed in Fig. 3 and discussed below. Additional barriers to

translation can be found in the supplemental materials.
Fig. 3 – Physiological-guided cardiopulmonary resuscitation

Wolf Creek XVII, June 15–17, 2023, Ann Arbor, MI, USA.
1. Modalities that can be used outside of critical care

environments

A significant barrier to the widespread adoption of physiological

monitoring is its limited application beyond well-resourced critical

care environments. Currently, the selection of a physiological moni-

toring modality is contingent upon the clinical context in which they

are applied. Some measures require specialised medical expertise,

involving invasive procedures and reliance on sophisticated and

costly monitoring equipment.3 These factors restrict their use and

applicability in prehospital and resource-limited settings. To address

this challenge, future advancements in point-of-care modalities

should consider the unique challenges of the prehospital and low-

resource environments and aim to be universally applicable across

all healthcare settings.

2. Skills, training and equipment required for monitoring

strategies

Implementing physiology-guided CPR effectively requires health-

care providers to receive specialised training. For some measure-

ments (e.g. ultrasound), simulation-based training may be required.

Training includes understanding how to interpret physiological data,

adjust interventions accordingly, and make real-time decisions based

on this information. This can be resource-intensive and may not be

feasible for all healthcare settings. Healthcare providers need to be

well-trained and experienced in reading and responding to these

data accurately. How innovative new methods for physiology moni-

toring can be integrated into understandable, easy-to-use systems

for all professionals is not yet understood.
: Top 5 barriers to translation as ranked by attendees at
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3. Increasing complexity of monitoring and treatment during

CPR could reduce focus on interventions proven to be

effective

A significant concern is the additional monitoring and complica-

tion of advanced life support algorithms in physiological-based

CPR, which has the potential to distract providers from tasks that

are known to be effective. The real-time decision-making involved

in physiology-guided CPR adds complexity to resuscitation efforts.

Healthcare providers must balance the need for personalized care

with the urgency of the situation, and this can be challenging in

high-stress, time-sensitive situations. The continuous monitoring

and adjustments required in physiology-guided CPR may consume

more time compared to traditional CPR protocols. This could poten-

tially delay other critical interventions or lead to longer resuscitation

attempts. There are likely patient- and setting-specific scenarios in

which physiology-directed CPR offers benefit and potentially alterna-

tive scenarios in which focusing on standard CPR algorithms is more

ideal – understanding these relationships will be key to guiding the

implementation of physiology-directed resuscitation strategies.

4. Lack of coordination of basic science, experimental and

human studies

A significant challenge in this field is translating scientific discov-

ery into operational clinical actions. Most of the scientific evidence

does not provide the best clinical thresholds for differential actions

(e.g. when to change CPR, administer a drug, or immediately defib-

rillate), what are optimal clinical goals, whether physiological mea-

surements can be combined or what outcomes are best to

examine. In resuscitation, there is also the complexity of adding prac-

tices with the need to keep resuscitation algorithms as simple as pos-

sible to ensure maximal adherence to best practices. Bridging the

gap between basic science, clinical and implementation science,

and bedside practice is essential to ensure that the theoretical foun-

dations of physiologically-directed CPR align seamlessly with practi-

cal application.

5. Regulatory issues

Regulatory issues can effect both the implementation and study

of physiology-directed CPR. Though the use of physiologic monitor-

ing during CPR is endorsed by resuscitation guidelines, actual titra-

tion of resuscitation therapies to physiologic metrics may conversely

require deviation from established CPR algorithms. The feasibility of

obtaining informed consent must also be considered in designing

prospective studies of physiology-directed CPR.

Dissenting opinions

There were no dissenting opinions for the barriers to translation.

Research priorities

The top five research priorities identified by the conference partici-

pants are listed in Fig. 4 and discussed below. Additional research

priorities can be found in the supplemental materials. The Top 5

research priorities identified in the survey and supported in the polls

were to assess the implementation of specific physiological-guided
CPR measures in the clinical environment to determine optimal goals

to achieve favourable patient outcomes.

1. What interventions in physiological-guided CPR, compared

to standard care, improve physiological parameters and

patient outcomes?

The top-ranked research priority highlights the distinct lack of clin-

ical data testing of the use of interventions guided by physiological

measures. A better understanding of the relationship between speci-

fic intra-arrest interventions and the achievement of physiologic

goals is imperative to moving forward with physiologic-directed CPR.

2. Development of clinically feasible and reliable methods to

continuously and non-invasively monitor brain and heart

perfusion, energy state and oxygenation during CPR in all

care state.

The second-ranked research priority highlights the need for sim-

ple and reliable measures and measurement tools that can be easily

and rapidly implemented. Many current physiologic measurement

tools are limited in that they are surrogate measures of the physiol-

ogy of interest (e.g., blood pressure as a surrogate of blood flow).

Moreover, many established indicators of intra-arrest physiology

require invasive monitoring and are thus limited in terms of the set-

tings in which they can be readily deployed. Ideally, existing technol-

ogy (e.g., pulse oximetry) will be studied and leveraged to monitor

CPR across more diverse clinical scenarios and environments and

new monitoring tools will be devised through the collaboration of

basic scientists and clinicians and be usable in all healthcare

settings.

3. Does targeting a specific partial pressure of end-tidal carbon

dioxide (PETCO2) goal, compared to standard care, during

CPR improve outcomes?

The third-ranked research priority was to identify a target range of

PETCO2. Capnography is widely available in a range of healthcare

settings and is already familiar to healthcare professionals. Though

studies in both adults and children have identified PETCO2 thresholds

associated with superior outcomes, prospective studies are neces-

sary to determine if these values can be targeted to improve out-

comes. Identifying a target range of PETCO2 that improves patient

outcomes holds great promise for a measurement that is already

readily available and used during resuscitation. Another question is

when during ventilation PETCO2 should be measured. Different mon-

itors measure at different timepoints, and therefore may report differ-

ent values for the same patient that will influence care.85,86

4. Does targeting a specific arterial relaxation pressure (i.e.,

diastolic BP) during CPR, compared to standard care,

improve outcomes?

The fourth-ranked research priority was to identify a target range

of arterial diastolic BP. Invasively measured arterial blood pressure

measurements are readily available in some healthcare settings

(e.g. critical care units), and given the importance of organ and coro-

nary perfusion to resuscitation outcomes, it was prioritised by partic-

ipants. The critical next steps are to 1) determine when during the



Fig. 4 – Physiological-guided cardiopulmonary resuscitation: Top 5 research priorities as ranked by attendees at

Wolf Creek XVII, June 15–17, 2023, Ann Arbor, MI, USA.
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diastolic phase to measure and 2) prospective studies titrating resus-

citation therapies to diastolic BP to optimize physiology and improve

patient outcomes.

5. Does targeting a specific cerebral oximetry goal, compared

to standard care, improve outcomes?

The fifth-ranked research priority, to identify a target range for

cerebral oximetry, highlights the importance of cerebral perfusion,

which is critical for minimising neurological damage. Larger prospec-

tive studies are needed to assess neurologic recovery and must con-

sider the crucial impact of comprehensive post-resuscitation

interventions.15 Effective delivery of critical care measures, such

as targeted temperature management, treating blood gas abnormal-

ities, and blood pressure control, are necessary to optimize neuro-

logic outcomes, which NIRS findings may guide or complement.
Dissenting opinions

There was robust discussion about using “standard care” (i.e. stan-

dard CPR) as the control group in the proposed research questions.

However, no better solution was proposed.

Conclusions

By leveraging real-time physiological data, physiology-guided CPR

empowers healthcare professionals to adapt their approach dynam-

ically, addressing each patient’s unique needs. This precision

approach represents a significant advancement in resuscitation

strategies, as it prioritizes the individual patient’s response over a

one-size-fits-all approach, ultimately increasing the likelihood of a

positive neurological outcome following a cardiac arrest event. How-

ever, there is limited evidence as to how these measures can be

applied to guide resuscitation. Future research is needed to establish

therapeutic targets and explore the impact on patient outcomes.
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