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Background. Colon cancer is a heterogeneous disease, differing in clinical symptoms, epigenetics, and prognosis for each individual
patient. Identifying the core genes is important for early diagnoses and it provides a more precise method for treating colon cancer.
Materials and Methods. In this study, we wanted to pinpoint these core genes so we obtained GSE101502 microRNA profiles from
the GEO database, which resulted in 17 differential expressed microRNAs that were identified by GEO2R analysis. Then, 875
upregulated and 2920 downregulated target genes were predicted by FunRich. GO and KEGG pathway were used to do enrich
analysis. Results. GO analysis indicated that upregulated genes were significantly enriched in the regulation of cell communication
and signaling and in nervous system development, while the downregulated genes were significantly enriched in nervous system
development and regulation of transcription from the RNA polymerase II promoter. KEGG pathway analysis suggested that the
upregulated genes were enriched in axon guidance, MAPK signaling pathway, and endocytosis, while the downregulated genes
existed in pathways in cancer, focal adhesion, and PI3K-Akt signaling pathway. The top four molecules including 82 hub genes
were identified from the PPI network and involved in endocytosis, spliceosome, TGF-beta signaling pathway, and lysosome. Finally,
NUDT21, GNB1, CLINT1, andCOL1A2 core gene were selected due to their correlationwith the prognosis of IIA stage colon cancer.
Conclusion. this study suggested that NUDT21, GNB1, CLINT1, and COL1A2 might be the core genes for colon cancer that play an
important role in the development and prognosis of IIA stage colon cancer.

1. Introduction

Colon cancer is the secondmost commonly diagnosed cancer
and the fourth leading cause of cancer death worldwide.
It has been estimated that there were 1,360,600 new cases
and 693,900 deaths of colon and rectum cancer worldwide
in 2012 [1]. The American Cancer Society estimated that
the incidence of colon cancer (71%) is higher than rectum
cancer (29%) [2]. Colon cancer is a heterogeneous disease,
differing in clinical symptoms, gene mutation or alteration,
epigenetics, prognosis, and the response to therapy [3]. It is

reported that multiple genes and pathways play a role in the
occurrence and development of colon cancer [4]. Moreover,
colon cancer is a global burden due to the rising healthcare
costs to manage the disease.

MicroRNA (miRNA) is a small endogenous, noncoding
RNA molecule, which is composed of approximately 21-25
nucleotides. These small miRNAs usually target one or more
mRNA, regulating gene expression through translation level
inhibition or breaking target mRNAs [5]. miRNAs char-
acterize an innovative epigenetic mechanism that controls
gene expression in several pathological conditions within
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the cancer tissues [6], and the dysfunction of miRNA is
associated with different cancers. For example, Ruan et al.
[7] reported that miR-1181 and miR-4314 were associated
with ovarian cancer through downregulated FOXP1 and
GRWD1/IP6K1/NEGR1 whereas Zhang et al. [8] indicated
that the tumor suppressive role of miR-149 targeted the
AKT-mTOR pathway in human hepatocellular carcinoma.
miR-149-5p inhibited epithelial-to-mesenchymal transition
(EMT) of cells via targeting FOXM1 in non–small cell lung
cancer [9]. miR-203a-suppressed cell proliferation in human
gastric cancer via targeting E2F transcription factor 3 has
been described by Yang et al. [10]. Moreover, Liu et al. [11]
suggested that Jun/miR-22/HuR regulatory axis may play
a role in colorectal cancer progression. It is reported that
no reliable biomarker profile has been identified in order
to discriminate cancerous from normal tissue [12]. Many
miRNA expression profiling experiments on colon cancer
carcinogenesis have been published during the last several
years using microarray, RNA-seq, DNA-seq, and ChIP-seq
technology which have exposed hundreds of differentially
expressed miRNA or genes involved in biological processes,
molecular functions, or different pathways [13–15].Therefore,
how to predict genes using miRNA and identify those
target genes is vital to understand the molecular mechanism,
develop early diagnostics, and precisely treat colon can-
cer.

Gene Expression Omnibus (GEO) is an open database
that provides high quantity miRNA expression data [16].
With the emerging development of high-throughput next
generation sequencing in the biological sciences, the identifi-
cation of core genes and the extraction of useful information
from large set of gene data are essential. Therefore, we used
bioinformatics analysis to solve this problem. One problem
we ran into though was that miRNA targets are difficult to
characterize as each miRNA has multiple gene targets so the
accurate identification of miRNA and miRNA interaction
remains a challenge. In this condition, several tools have been
developed for miRNA target prediction with one of them
being comprehensive bioinformatics analysis, which we used
to analyze the expression of differential miRNA and find the
core genes that exist in the development and progression of
colon cancer.

In the present study, we will examine related miRNA
datasets of human colon cancer from the GEO database.
Overall, miRNA expression profiles of cancer tissues in
patients with colon cancer were compared with those patients
with normal colon tissue to identify the differential expressed
miRNA.Weused FunRich software to predict the target genes
from the differential expressed miRNA, and the STRING
(Retrieval of Interacting Genes) and Cytoscape software
were used to analyze the target genes and select hub genes.
Furthermore, the DVIAD online tool was used to perform
enrichment analysis, and the GEPIA was used to investigate
the overall survival and gene expression level of hub genes. In
the end, we figured out which core genes were closely related
to colon cancer, which might help researchers to examine
molecular mechanisms involved in the disease prognosis,
thus providing information on the precise gene therapy for
colon cancer research.

2. Materials and Methods

2.1. Database and MicroRNA Selection. GEO (Gene Expres-
sion Omnibus, https://www.ncbi.nlm.nih.gov/geo/) is a pub-
lic genomics database, including gene array, RNA-seq, DNA-
seq, and ChIP-seq based data [16]. “Colon cancer” AND
“microRNA” AND “Homo sapiens” keywords were used
to search related gene expression profiles by GEO datasets.
The GSE101502 profile included three IIA stage colon cancer
tissues and three normal colon mucosa tissues.

2.2. Identifying Differentially Expressed MicroRNA. GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an online
statistics tool that allows user to compare different groups
of samples to identify differential microRNA across experi-
mental conditions. We performed a T test to identify
differential microRNA. |logFC| ≥ 2 cutoff and P value < 0.05
were considered to have a statistically significant difference
whereas logFC ≥ 2 was upregulated microRNA and logFC ≤
-2 was downregulated [16].

2.3. Predicting Target Genes. FunRich (functional enrich-
ment) is an analysis tool used for functional enrichment and
protein-protein interactionnetwork analysis for genes or pro-
teins. The microRNA enrichment function in FunRich could
be used to perform miRNA enrichment analysis, to predict
targets of microRNAs, or to find microRNAs through given
target genes. Functional analysis of differentially expressed
microRNA target genes was conducted to predict target genes
with FunRich [17].

2.4. GO and KEGG Pathway Analysis of DEGs. GO (Gene
Ontology) analysis is a common advantage method for
annotating genes and classifying characteristic biological
attributes for high-throughput genome and transcriptome
data. KEGG (Kyoto Encyclopedia of Genes and Genomes) is
a database used in conducting searches regarding genomes,
biological pathways, diseases, drugs, and chemical sub-
stances. DAVID (Database for Annotation, Visualization
and Integrated Discovery, https://david.ncifcrf.gov/) is an
online bioinformatics tool that is utilized to provide the
functional understanding of large lists of genes. P < 0.05
was set as the cutoff criterion. We conducted key biological
processes (BP), molecular functions (MF), cellular compo-
nents (CC), and pathways among those DEGs by DAVID
[18, 19].

2.5. PPI Network and Modules Analysis. STRING (the
Retrieval of Interacting Genes, https://string-db.org/) is web
tool created to evaluate PPI (protein-protein interaction)
networks information. To detect the potential relationship
among those DEGs, we used Cytoscape software and a
confidence score of ≥ 0.4 was set as the cutoff criterion.
MCODE (Molecular Complex Detection) app in Cytoscape
was utilized to display modules of PPI network with node
score cutoff = 0.2, k-core = 2,max. depth from seed = 100, and
degree cutoff = 2. Then, the top four molecules were mapped
into STRING [20, 21].



BioMed Research International 3

Figure 1: All target genes were screened and shown as association networks by STRING.

2.6. Comparison of the Hub Genes Expression Level. The
GEPIA (http://gepia.cancer-pku.cn/index.html) is an interac-
tive online tool for analyzing the RNA-seq expression data
of 9,736 tumor samples and 8,587 normal samples from the
TCGA (the Cancer Genome Atlas dataset, found by NCI
and NHGRI, multidimensional maps of important genomic
changes in 33 types of cancer) and the GTEx projects
(Genotype-Tissue Expression projects, launched by NIH, is
a tissue bank and resource for biological research), with a
standard processing pipeline. It offers customizable functions
such as tumor and normal tissue gene differential expres-
sion analysis, and we can determine the expression of hub
genes in colon cancer tissues and normal colon mucosa
tissues. Survival analysis is then performed to show the high
expression and low expression hub genes relationship of
colon cancer and overall survival. P<0.05 was considered
as significantly different. The boxplot was conducted to

visualize the association between cancer and normal tissue
[22].

3. Results

3.1. MicroRNA Data. The gene expression profiles for
GSE101502, “microRNA expression profiling in human colon
cancer”, were obtained fromGEOdatasets (https://www.ncbi
.nlm.nih.gov/geo/). GSE101502, which was based on the
GPL21439 platform (miRCURY LNA microRNA Array, 7th
generation hsa, mmu, and rno [miRBase 21; probe ID
version]), was submitted by Huang et al. on Jul 18th, 2017.
The GSE101502 dataset contained three male patients’ tis-
sues comprised of six samples including three IIA stage
colon cancer tissues and three normal colon mucosa tissues.
Table 1 showed the characteristics of tissues’ information
from GSE101502.
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Table 2: Identification of differentially expressed miRNA.

miRNA Name adj.P.Val P.Value t B logFC
1 hsa-miR-5195-3p 0.863 0.00755 3.480604 -4.53 2.143968
2 hsa-miR-548aw 0.863 0.04462 2.481081 -4.58 2.063515
3 hsa-miR-5681a 0.863 0.02794 -2.816049 -4.57 -2.112315
4 hsa-miR-561-3p 0.863 0.04632 -2.559382 -4.58 -2.141209
5 hsa-miR-4777-3p 0.863 0.01428 -3.314158 -4.56 -2.160746
6 hsa-miR-500a-3p 0.863 0.03301 -2.541129 -4.55 -2.226463
7 hsa-miR-29c-3p 0.863 0.03073 -2.585747 -4.55 -2.232961
8 hsa-miR-200a-3p 0.863 0.03114 -2.577578 -4.55 -2.279405
9 hsa-miR-34c-3p 0.863 0.01521 -3.028324 -4.54 -2.305722
10 hsa-miR-378d 0.863 0.03592 -2.488453 -4.56 -2.354464
11 hsa-miR-142-3p 0.863 0.03736 -2.463817 -4.56 -2.488274
12 hsa-miR-4524b-3p 0.863 0.02313 -3.116108 -4.58 -2.565208
13 hsa-miR-3653-3p 0.863 0.01347 -3.105707 -4.54 -2.832038
14 hsa-miR-320c 0.863 0.00898 -3.367253 -4.54 -2.926313
15 hsa-miR-375 0.863 0.00836 -3.413574 -4.54 -3.17402
16 hsa-miR-4539 0.863 0.02251 -2.780929 -4.55 -3.278709
17 hsa-miR-215-5p 0.863 0.01006 -3.293314 -4.54 -3.955771

3.2. Identification of Differentially Expressed MicroRNA.
The six samples were divided into two groups (cancer and
normal tissue group), and the differentially expressedmiRNA
analysis was conducted by GEO2R (https://www.ncbi.nlm
.nih.gov/geo/geo2r/?acc=GSE101502). P values <0.05,
|LogFC > 2)| were considered as differentially expressed
microRNA. LogFC > 2 was upregulated microRNA, LogFC
< -2 was down-regulated. Table 2 showed the identification
of differentially expressed miRNA in the two groups.

3.3. Prediction of Target Genes. miRNA enrichment was used
to predict potential target genes from differentially expressed
miRNA. The up- and downregulated microRNA were
inputted into the FunRich software tool, respectively. There
were 875 up- and 2920 downregulated target genes found.

3.4. GO Function and KEGG Pathway Enrichment Analysis.
All target genes were imported into the online analysis
tool, DAVID, to identify potential GO categories and KEGG
pathways. GO analysis results revealed that upregulated tar-
get genes were expressively enriched in biological processes
(BP), including regulation of cell communication, regulation
of signaling, and nervous system development; in molec-
ular function (MF) including receptor signaling protein
activity, transcription factor activity, RNA polymerase II core
promoter proximal region sequence-specific binding, and
enzyme binding; and in cell component (CC) including cell
junction, cell leading edge, and adherens junction (Table 3).
The downregulated target genes were expressively enriched
in BP, including nervous system development, regulation of
transcription from RNA polymerase II promoter, and posi-
tive regulation of RNA metabolic process; in MF including
RNA polymerase II transcription factor activity, sequence-
specific DNA binding, regulatory region nucleic acid bind-
ing, and regulatory region DNA binding; in CC, including

nucleoplasm, neuron projection, and neuron part (Table 3).
KEGG pathway analysis showed that the upregulated target
genes were enriched in axon guidance, MAPK signaling
pathway, endocytosis, proteoglycans in cancer, and the FoxO
signaling pathway, while the downregulated target genes
were enriched in pathways in cancer, focal adhesion, PI3K-
Akt signaling pathway, small cell lung cancer, and signaling
pathways regulating pluripotency of stem cells. Table 4 shows
the most significantly enriched pathways of the upregulated
target genes and downregulated target genes were performed
by KEGG analysis.

3.5. Module Screening and Hub Gene Selecting from the
Protein-Protein Interaction (PPI) Network. All target genes
were imported into the STRING database to conduct the
PPI network. A combined score of > 0.4 of the nodes was
considered as significance (Figure 1). Then, the results of the
PPI network were exported as.txt and imported to Cytoscape
softwarewhichwas analyzed using plug-insMCODE. Finally,
the top four significantmodules were selected and considered
as hub genes. The 82 hub genes are illustrated in Figures
2(a), 2(c), 2(e), and 2(g). The functional annotations of
those genes were analyzed by DAVID. Enrichment analysis
indicated that the genes in modules 1 through 4 were
mainly associated with endocytosis, spliceosome, TGF-beta
signaling pathway, and lysosome (Figures 2(b), 2(d), 2(f), and
2(h)).

3.6. Survival Plots and Expression Level of Hub Genes. We
used survival analysis by GEPIA (Gene Expression Profiling
Interactive Analysis) to detect the overall survival of 82 hub
genes between the high and low expression groups. It was
found that high expressions of NUDT21 (HR= 0.57, P = 0.023)
(Figure 1(a)), GNB1 (HR=0.028, P=0.026) (Figure 1(c)), and
CLINT1 (HR=0.6, P=0.043) (Figure 1(d)) were associated

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE101502
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE101502
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(a)

Term Count P-Value Fold Enrichment FDR Genes

Endocytosis 9 1.03E-08 16.10573123 9.27E-06
EPS15, AP2B1, DAB2, TFRC, 
RAB5C, ARRB1, NEDD4L, 
ARPC5, EPN1

Ubiquitin 
mediated 
proteolysis

3 0.031312 9.987132353 24.84759 CUL5, UBA6, NEDD4L

(b)

(c)

P-ValueTerm Count Fold Enrichment FDR Genes

Spliceosome 5 4.61E-06 32.07720588 0.00145213
6

AQR, DDX46, CRNKL1, U2AF2, 
DHX15

mRNA 
surveillance 
pathway

2 0.0896571
88 18.76344086 25.5986930

2 CSTF3, NUDT21

(d)

(e)

P-ValueTerm Count Fold Enrichment FDR Genes

TGF-beta 
signaling 
pathway

9 4.18E-09 21.4207 4.43E-06
INHBB, ACVR2A, ACVR1B, 
SMAD5, SMAD4, SMAD3, 
SMAD2, SMAD1, TGFB2

Signaling 
pathways 
regulating 
pluripotency of 
stem cells

8 1.04E-06 13.76783 0.001104
INHBB, ACVR2A, ACVR1B, 
SMAD5, SMAD4, SMAD3, 
SMAD2, SMAD1

Cell cycle 6 2.08E-04 10.40592 0.220111 CCND2, SMAD4, SMAD3, 
CDK6, SMAD2, TGFB2

(f)

(g)

P-ValueTerm Count Fold Enrichment FDR Genes

Lysosome 4 4.48E-06 60.18254 4.48E-04 AP1S1, AP4E1, AP1G1, AP3S1

(h)

Figure 2: Top 4 modules from the PPI network. (a, c, e, g) modules 1 to 4; (b, d, f, h) the enriched pathway of modules 1 to 4.

with better overall survival for colon cancer patients. How-
ever, a high expression of COL1A2 (HR 1.8, P = 0.017)
(Figure 1(b)) was associated with worse overall survival for
colon cancer patients (Figure 3), and there was no statistical
significance in the other 78 hub genes. Taken together,
NUDT21, GNB1, CLINT1, and COL1A2 were considered as
core genes with a close relationship to colon cancer. Then,
we used GEPIA analysis to explore the core genes’ expression
level between colon cancer and normal tissue (Figures 4(a),
4(b), 4(c), and 4(d)).

4. Discussion

Pathogenesis of colon cancer is association with gene muta-
tion, epigenetics, and the CpG island methylator phenotype
[23]. In order to diagnose this disease early to precisely and
effectively treat colon cancer, understanding the molecular

mechanism is imperative. Microarray and high-throughput
next generation sequencing have beenwidely utilized in order
to predict the potential therapeutic targets gene of colon
cancer as both techniques could provide expression levels
for thousands of genes. miRNA regulates the progression
of the tumor by regulating these target genes, and some
miRNAs have been identified as being involved in several
types of cancer [24, 25]. Therefore, it is of great significance
to study the expression profile of miRNAs and predict the
target genes in colon cancer. In this study, we extracted the
data from GSE101502 and identified two upregulated and
15 downregulated differential expressed microRNAs between
colon cancer tissue and adjacent normal mucosa tissue using
bioinformatics analysis [26, 27]. And we found that NUDT21,
GNB1, CLINT1, and COL1A2 might be the potential core
genes that play an important role in the development and
prognosis in IIA stage colon cancer.
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Figure 3: Prognostic values of the four genes (NUDT21, GNB1, CLINT1, and COL1A2) in colon cancer patients. Overall survival analysis
over time with high vs. low NUDT2 expression (a), low vs. high COL1A2 expression (b), high vs. low GNB1 expression (c), and low vs. high
CLINT1 expression (d). The P value was determined by log-rank test between risk groups.

In this study, the GO analysis showed that these poten-
tially upregulated genes were mainly enriched in the regula-
tion of cell communication, receptor signaling protein activ-
ity, and cell junction. Potential downregulated genes were
involved in nervous system development, RNApolymerase II
transcription factor activity, sequence-specific DNA binding,
and nucleoplasm. Pinto et al. [28] indicated that there is
a complicated cell communication in response to ionizing
radiation revealed by primary human macrophage-cancer
cell culture. Kim et al. [29] reported that IFITM1 expres-
sion was positively correlated with galectin-3 via receptor
signaling protein activity in human colon cancer cells. The
cell junctions might lead to cancer due to the differences in
cell junctions for colorectal cancer [30]. Moreover, nervous
system development also plays a key role in colorectal
cancer metastasis [31, 32]. RNA polymerase II transcription

factor contains sequence-specific DNA binding, transcrip-
tional regulation in mammalian cells by sequence-specific
DNA binding proteins [33, 34]. Between the nucleoplasm
and cytoplasm called perinuclear, the signal transmission
becomes abnormal by the perinucleus in malignant cell
transformation [35]. All those studies indicated that the
molecular functions of those up- and downregulated genes
are related to colon cancer.

Moreover, the KEGG pathways for upregulated genes
were enriched in axon guidance, MAPK signaling path-
way, endocytosis, proteoglycans cans in cancer, and FoxO
signaling pathway. Downregulated genes were involved in
the pathways in cancer, focal adhesion, PI3K-Akt signaling
pathway, small cell lung cancer, and regulation of signaling
pathways in the pluripotency of stem cells.The axon guidance
indicates that netrin 1 and Slits are causally involved in human
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Figure 4: Expression levels of the four genes: NUDT21 (a), GNB1 (b), CLINT1 (c), and COL1A2 (d) in colon cancer and normal tissues. ∗P
< 0.05.

cancer [36]. The ERK MAPK (extracellular-signal-regulated
kinases) is one of the subfamilies of MAPK (mitogen-
activated protein kinases), and it has been found that over-
expression and activation of ERK MAPK play a role in the
progression of colorectal cancer [37].Through PIP2mediated
vinculin activation, PIPKI𝛾 might positively regulate focal
adhesion dynamics and colon cancer cell invasion [38]. The
PI3K/AKT pathway plays an important role in the prognostic
and predictive values in colorectal cancer [39]. Evidence
suggests that endocytosis, proteoglycans in cancer, FoxO
signaling pathway, and regulation of signaling pathways in
the pluripotency of stem cells are all associatedwith colorectal
cancer [40–42].

Finally, NUDT21, COL1A2, GNB1, and CLINT1 closely
related to the overall survival of colon cancer were selected
as core genes. COL1A2 is collagen type I alpha 2 chain, the
fibrillary collagen detected in most connective tissues. This
observation suggests that patients with a high expression
of COL1A2 have a worse prognosis. Pekow et al. indicated
that downregulating miR-4728-3p reduces ulcerative colitis
associated colon cancers, and miR-4728-3p is a regulator of
COL1A2 [43]. NUDT21 is Nudix hydrolase 21, belonging to
the Nudix family of hydrolases. GNB1 is G protein subunit
beta 1. Wazir et al. researched on 136 human breast cancer
tissues and 31 normal tissues, undertook reverse transcription
and quantitative polymerase chain reaction, and suggested
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that GNB1 plays an important character in the mTOR-related
antiapoptosis pathway and might potentially be targeted in
breast cancer [44]. CLINT1 is Clathrin interactor 1. Ajiro et
al. [45] indicated that SRSF3 regulates a lot of genes including
CLINT1 affecting gene expression to keep cell homeostasis.
Moreover, further deeply investigated molecular mechanism
of NUDT21, COL1A2, GNB1, CLINT1, and colon cancer is
necessary; it is also the limitation of this study.

5. Conclusion

In conclusion, this study showed that NUDT21, GNB1,
CLINT1, and COL1A2 might be the potential core genes that
play an important role in the development and prognosis in
IIA stage colon cancer. After discovering this, we have come
to the conclusion that a series of experiments and further
deeply investigated molecular mechanism of those four core
genes should be designed to confirm the results of this study.
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