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summary

Understanding the impact of non-pharmaceutical interventions as well as ac-
counting for the unascertained cases remain critical challenges for epidemiolog-
ical models for understanding the transmission dynamics of COVID-19 spread.
In this paper, we propose a new epidemiological model (eSEIRD) that extends
the widely used epidemiological models such as extended Susceptible-Infected-
Removed model (eSIR) and SAPHIRE (initially developed and used for analyz-
ing data from Wuhan). We fit these models to the daily ascertained infected
(and removed) cases from March 15, 2020 to Dec 31, 2020 in South Africa that
reported the largest number of confirmed COVID-19 cases and deaths from the
WHO African region. Using the eSEIRD model, the COVID-19 transmission
dynamics in South Africa was characterized by the estimated basic reproduc-
tion number (R0) starting at 3.22 (95%CrI: [3.19, 3.23]) then dropping below 2
following a mandatory lockdown implementation and subsequently increasing to
3.27 (95%CrI: [3.27, 3.27]) by the end of 2020. The initial decrease of effective
reproduction number followed by an increase suggest the effectiveness of early in-
terventions and the combined effect of relaxing strict interventions and emergence
of a new coronavirus variant in South Africa. The low estimated ascertainment
rate was found to vary from 1.65% to 9.17% across models and time periods. The
overall infection fatality ratio (IFR) was estimated as 0.06% (95%CrI: [0.04%,
0.22%]) accounting for unascertained cases and deaths while the reported case
fatality ratio was 2.88% (95% CrI: [2.45%, 6.01%]). The models predict that
from December 31, 2020, to April 1, 2021, the predicted cumulative number of
infected would reach roughly 70% of total population in South Africa. Besides
providing insights on the COVID-19 dynamics in South Africa, we develop power-
ful forecasting tools that enable estimation of ascertainment rates and IFR while
quantifying the effect of intervention measures on COVID-19 spread.

Keywords and phrases: COVID-19; South Africa; forecasting; unascertained
cases; underreporting factors; infection fatality ratio
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1 Introduction

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), was first detected in early December 2019 in Wuhan, China

and then quickly spread to majority countries worldwide. At the end of January 2021, over

a hundred million people worldwide have been diagnosed with COVID-19 [30], yet the true

number of infections in the population remains underestimated, owing to a combination

of selection bias from unascertained cases and lack of access to tests early on during the

pandemic.

South Africa: Consider the transmission dynamics we have observed so far in South Africa,

the ‘epicenter of the outbreak in the African continent’ [29]. The first case was confirmed

in South Africa on March 5, 2020. As of February 23, 2021, there are 1,504,588 confirmed

cases of COVID-19 (cumulative total) with 49,150 deaths confirmed in Africa [30]. South

Africa remains the worst-hit African country with the largest number of confirmed cases

and deaths, by the end of 2020, contributing to 54% of the total confirmed cases and 44%

of deaths in the WHO African region, while accounting for only 5% of population [26]. A

seroprevalence survey on 4,858 blood donors in South Africa estimated the prevalence of

mid January 2021 by province as 63% in the Eastern Cape, 52% in the KwaZulu Natal,

46% in the Free State and 32% in the Northern Cape [38] while the the number of reported

cases is 1.83% of the total population at the same time, implying the possibility of a large

degree of under-reporting/undetected cases in South Africa. Thus, understanding the key

epidemiological constructs for COVID-19 outbreak is paramount for containing the spread

of COVID-19 in South Africa, as well as explaining the disparity between seroprevalence

estimates and reported number of cases. Two critical factors emerge from analyzing the

majority of available evidence of the public health crisis: (1) the unascertained cases and

deaths and (2) the role of non-pharmaceutical interventions.

Unascertained cases and deaths: Based on the clinical characteristics of COVID-19,

a majority of patients are symptomatic (roughly 84% according to a recent study [16]),

most of whom have mild symptoms [29] and tend to not seek testing and medical care.

While private hospitals have reached maximum capacity, public and field hospitals beds

have still some margin left with additional challenges due to scarcity of staff [9]. Several

recent studies [15, 32, 4] reported that a non-negligible proportion of unascertained cases

contributed to the quick spreading of COVID-19. It is suggested that only 1 in 4 mildly

ill cases would be detected in South Africa [8]. The relatively lower testing rate in South

Africa (Table 1; Figure 1) coupled with a very high test positivity rate especially in July and

August [18], suggests inadequacy of testing, as well as the possibility of a large unobserved

number of unascertained cases [27]. Thus, modeling both ascertained and unascertained

cases and deaths can measure infection fatality ratios (IFRs, the proportion of deaths among

all infected individuals [28]) of COVID-19, leading to a better understanding of the clinical

severity of the disease.

Interventions: With a universal goal to ‘flatten the curve’, a series of non-pharmaceutical

interventions were implemented by the government in South Africa, that have been gradually
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(a) (b)

Figure 1: (a) Total cases by country in the African continent; (b) The 7-day average testing
positive rate of COVID-19 in South Africa during the study period.

lifted since early May 2020 [25]. On March 27, 2020, South Africa adopted a three-week

nationwide hard-lockdown (level 5) along with closure of its international borders, which

was extended to April 30, 2020. Thereafter, to balance the positive health effects of strict

interventions against their economic costs [1], South Africa began a gradual and phased

recovery of economic activities with the lockdown restriction eased to level 4 [25], allowing

inter-provincial travel only for essential services. From June 1, national restrictions were

lowered to level 3 allowing for inter-provincial travel and school opening and eased to level

2 and level 1 from August 18 and September 21, 2020 (Table 1). Face-mask wearing was

mandatory in public places at all times, with limitations on gatherings, and sale of alcohol

and cigarettes were restricted [12]. Although these interventions implemented at an early

stage had a higher potential for pandemic containment, previous studies [12, 24, 42] reported

a consistently large value for the estimated basic reproduction number (R0) ranging from

2.2 to 3.2 in South Africa by models trained with data in relatively early time windows.

Using data observed under various intervention scenarios over a longer period of time, we

carry out a thorough investigation to assess the current COVID-19 spread and the effect

of these interventions, which will provide valuable insights into the transition dynamics of

COVID-19 and intervention deployment in South Africa, and beyond.

Epidemiological models: Since the early days of the pandemic, researchers have re-

sponded to the unprecedented public health crisis by providing forecasts and alternative

scenarios to inform decision-making, both locally and globally. This has resulted in hun-

dreds of mathematical models of varying complexity. The Susceptible-Infectious-Removed

or SIR model [20] is arguably the most commonly used epidemiological models for modeling

the trajectory of an infectious disease. A recent extension of SIR, called extended-SIR or

eSIR [35], was developed to incorporate user-specified non-pharmaceutical interventions and

quarantine protocols into a Bayesian hierarchical Beta-Dirichlet state-space model, which

was successfully applied to model COVID-19 dynamics in India [33]. One major advantage

of this Bayesian hierarchical structure is that uncertainty associated with all parameters and
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Table 1: Timeline of COVID-19 preventions and interventions in South Africa.

Date (2020) Confirmed Death Testing rate Interventions and update

5-Mar 1 0 - -

10-Mar 7 0 - Screening at ports of entry has inten-
sified and escalated.

15-Mar 51 0 - Self-quarantine for COVID-19 is rec-
ommended. Visas to visitors from
high-risk countries (Italy, Iran, South
Korea, Spain. Germany, US, UK)
are cancelled and previously granted
visas are hereby revoked. Gatherings
of more than 100 are prohibited. Mass
celebrations are canceled.

16-Mar 62 0 - Of the 53 land ports, 35 are shut down.

18-Mar 116 0 - A travel ban on foreign nationals from
high-risk countries such as Germany,
US, UK and China.

27-Mar 1170 1 - A national lockdown is implemented.
Alert level 5 is in effect from midnight
26 March to 30 April.

1-May 5951 116 0.004 A less strict lockdown is in place. Alert
level 4 is in effect from 1 to 31 May.
Borders will remain closed to inter-
national travel, no travel will be al-
lowed between provinces, except for
the transport of goods and exceptional
circumstances.

1-Jun 34,357 705 0.013 From 1 June 2020 alert level 3 will be in
effect. Restrictions on many activities,
including at workplaces and socially, to
address a high risk of transmission.

18-Aug 592,106 12,264 0.059 Alert level 2 is in effect.

21-Sep 661,898 15,992 0.07 Alert level 1 is in effect.

functions of parameters can be calculated from posterior draws without relying on large-

sample approximations [33]. Extending the simple compartment structure in eSIR model,

the SAPHIRE model [40] delineated the full transmission COVID-19 dynamics in Wuhan,

China with additional compartments by introducing unobserved categories [15].

In this article, we extended the eSIR approach to the eSEIRD model to combine the

advantages of the two existing models, using a Bayesian hierarchical structure to introduce

additional unobserved compartments and characterize uncertainty in critical epidemiological

parameters including basic reproduction number, ascertainment rate and IFR, with input

data as observed counts for cases, recoveries and deaths. Furthermore, we applied these

three models and compared the results of the eSEIRD model with two of the existing alter-
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natives, namely the eSIR and the SAPHIRE model, with the following primary objectives:

(i) characterizing the COVID-19 dynamics from March 15 to December 31, 2020 – under

different time-varying intervention scenarios; (ii) evaluating the effectiveness of the main

non-pharmaceutical interventions such as lockdown, and mandatory wearing of face-mask

in public places; (iii) capturing the uncertainty in estimating the ascertainment rate and

IFR; and (iv) forecasting the future of COVID-19 spread in South Africa.

The organization of this paper is as follows: we describe the two competing epidemiolog-

ical models and our proposed extension in §2. The study design and parameter settings for

modeling COVID-19 transmission in South Africa are described in §3, and the results and

their possible implications are described in §4. We conclude with a discussion of nuances

and limitation of the methods and sources of data used here and suggest future directions

in §5.

2 Statistical Methodology

We propose an extension of the eSIR model, called eSEIRD, and compare it against two ex-

isting epidemiological methods, the eSIR and SAPHIRE model. In this section, we describe

the dynamic systems and the hierarchical models underlying these three epidemiological

models. The schematic diagrams for the three compartmental models are shown in Fig. 2

(eSIR and SAPHIRE) and Fig 3 (eSEIRD).

2.1 eSIR model

The eSIR model assumes the true underlying probabilities of the three compartments sus-

ceptible (S), infectious (I) and removed (R) follow a latent Markov transition process and

require observed daily proportions of cumulative infected and removed cases as input [31, 35].

The observed proportions of infected and removed cases on day t are denoted by Y It /N and

Y Rt /N (the infected and removed counts Y It and Y Rt divided by total population size N)

respectively. Further, we denote the true underlying probabilities of the three compartments

on day t by θSt , θIt and θRt , respectively, and assume that for any t, θSt + θIt + θRt = 1. The

following set of differential equations describe the dynamic system for the usual SIR model

on the true proportions.

dθSt
dt

= −βπ(t)θSt θ
I
t ,

dθIt
dt

= βπ(t)θSt θ
I
t − νθIt ,

dθRt
dt

= νθIt ,

where β > 0 denotes the disease transmission rate, and ν > 0 denotes the removal rate

(see Fig. 2(a) for a schematic representation). The basic reproduction number R0 = β/γ
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indicates the expected number of cases generated by one infected case in the absence of any

intervention and assuming that the whole population is susceptible.

(a) eSIR

(b) SAPHIRE

Figure 2: Schematic diagram of the two models (a) eSIR; (b) SAPHIRE.

Hierarchical model The eSIR model works by assuming that two observed time series of

daily proportions of infected and removed cases are emitted from two Beta-Dirichlet state-

space model, independent conditionally on the underlying process governed by the Markov

SIR process:

(
Y It /N

)
| θt, τ1 ∼ Beta

(
λIθIt , λ

I
(
1− θIt

))(
Y Rt /N

)
| θt, τ1 ∼ Beta

(
λRθRt , λ

R
(
1− θRt

))
and the Markov process associated with the latent proportions is built as:

θt | θt−1, τ 1 ∼ Dirichlet(ωf1(θt−1, β, ν)),

where, θt denotes the vector the true underlying probabilities of the compartments on

day t whose mean is modeled as an unknown function of the probability vector from the
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previous time point, along with the transition parameters; τ 1 = (θT0 , β, ν,λ, ω). The func-

tion f1(·) is then solved as the mean transition probability determined by the SIR dynamic

system, using a fourth order Runge-Kutta (RK4) approximation (see supplementary §S.3

for the solution):

f1 (θt−1, β, v) =

 θSt−1 + 1/6
[
kS1t−1 + 2kS2t−1 + 2kS3t−1 + kS4t−1

]
θIt−1 + 1/6

[
kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1

]
θRt−1 + 1/6

[
kR1
t−1 + 2kR2

t−1 + 2kR3
t−1 + kR4

t−1

]
 :=

 α1(t−1)

α2(t−1)

α3(t−1)


Computational details for the eSIR model such as posterior sampling strategy using

MCMC algorithm is complemented by the R package publicly available at https://github.

com/lilywang1988/eSIR.

2.2 SAPHIRE model

The SAPHIRE model [15] is an extension of the basic SIR model with additional compart-

ments to allow for unobserved categories such as ascertained, unascertained and hospitalized

population. Specifically, in a SAPHIRE model the population is compartmentalized into sus-

ceptible (S), exposed (E), presymptomatic infectious (P), ascertained infectious (I), unascer-

tained infectious (A), isolation in hospital (H) and removed (R). Denoting the true under-

lying accounts of the S, E, P, A, I, H and R compartments on day t by St, Et, Pt, At, It, Ht

and Rt, respectively, the dynamics of these compartments across time t were described by

the following set of differential equations (see Fig. 2(b) for a schematic representation):

dSt
dt

= n− βSt (It + α (At + Pt))

N
− nSt

N
,

dEt
dt

=
βSt (It + α (At + Pt))

N
− Et
De
− nEt

N
,

dPt
dt

=
Et
De
− Pt
Dp
− nPt

N
,

dAt
dt

=
(1− r)Pt

Dp
− At
Di
− nAt

N
,

dIt
dt

=
rPt
Dp
−
(

1

Di
+

1

Dq

)
It,

dHt

dt
=

It
Dq
− Ht

Dh
,

dRt
dt

=
At + It
Di

+
Ht

Dh
− nRt

N
.

To fit the SAPHIRE model, the observed number of ascertained cases in which individu-
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als experienced symptom onset on day t, Y It , were assumed to follow a Poisson distribution:

Y It ∼ Poisson(λIt = rPt−1/Dp),

where Pt−1 denotes the underlying number of pre-symptomatic individuals and r denotes

the ascertained rate. For an observation window spanning t = 1 to t = T , the sampling

pseudo-likelihood function for the underlying prevalence parameters is given by:

L(β, r) =
T∏
t=1

e−λ
I
tλIt

Y I
t

Y It !
. (2.1)

after plugging τ 2 = (XT
0 , α,De, Dp, Dq, Di, Dh) and Xt = (St, Et, Pt, At, It, Ht, Rt). Here,

Xt denotes the vector of the underlying population counts of the compartments at time

t. With the initial values for the compartments X0 set at pre-fixed values, the pseudo-

likelihood function in (2.1) can be approximated as a function of the parameters of interest,

i.e. β and r, by the following steps:

Step 0 The transition parameters τ2 = (XT
0 , α,De, Di, Dh, Dq) and the initial values for

the compartments X0 = (S0, E0, P0, A0, I0, H0, R0) are fixed;

Step 1 Use the differential equations to generate the change of each compartment at time

t = 1, i.e. dXt/dt = (dSt/dt, dEt/dt, dPt/dt, dAt/dt, dIt/dt, dHt/dt, dRt/dt);

Step 2 Compute the state values of each compartment at time t = 1: Xt = X(t−1) + dXt−1

d(t−1)

, and the expected new ascertained cases λIt on day t;

Step 3 Repeat the step 1-3 for t = 2, 3, 4, . . . , T .

For the SAPHIRE model, the MCMC algorithm is implemented with the delayed rejec-

tion adaptive metropolis algorithm implemented in the R package BayesianTools (version

0.1.7) to collect posterior samples of the underlying parameters r and β, then calculate the

derived quantities the effective reproduction number Re based on the posterior draws. We

refer the reader to [15] for more details.

2.3 eSEIRD model

Similar to the hierarchical structure used in eSIR model, this eSEIRD model (vide Fig. 3)

works by assuming that the true underlying probabilities of the 7 compartments follow a

latent Markov transition process which fits not only the count of daily infected, but also the

recovered and death counts.

The dynamics of these 7 compartments across time t were described by the following set

of ordinary differential equations:
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Figure 3: Schematic diagram of the proposed eSEIRD model

dSt
dt

= n− βπ(t)St (It + aAt)

N
− nSt

N
dEt
dt

=
βπ(t)St (It + aAt)

N
− Et
De +Dp

− nEt
N

dAt
dt

=
(1− r)Et
De +Dp

−
(

(1− κ1)

Di
+
κ1
Di

)
At −

nAt
N

dIt
dt

=
rEt

De +Dp
−
((

(1− κ1)

Di
+
κ1
Di

)
+

1

Dq

)
It

dHt

dt
=

1

Dq
It −

(
(1− κ2)

Dh
+
κ2
Dh

)
Ht

dRt
dt

=

(
(1− κ1)

Di
It +

(1− κ1)

Di
At

)
+

(1− κ2)

Dh
Ht −

nRt
N

dDt

dt
=

(
κ1
Di
At +

κ1
Di
It

)
+
κ2
Dh

Ht

Hierarchical model: We assumed three observed time series of daily counts of infected,

recovered and death cases are emitted from Poisson state-space models, independent con-

ditionally on the underlying process, and the Markov process associated with the latent

proportions is constructed as:
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Y It |Xt, τ 3 ∼ Poisson

(
λIt =

rEt−1

De +Dp

)
Y Rt |Xt, τ 3 ∼ Poisson

(
λRt =

(1− κ1)

Di
It−1 +

(1− κ2)

Dh
Ht−1

)
Y Dt |Xt, τ 3 ∼ Poisson

(
λDt =

κ1
Di
It−1 +

κ2
Dh

Ht−1

)
Xt |Xt−1, τ 3 ∼ Poisson (f2 (Xt−1, β, r, κ1, κ2))

where Xt = (St, Et, At, It, Ht, Rt, Dt) denotes the vector of the underlying population

counts of the 7 compartments; τ 3 = (XT
0 , α, β, r,De, Dp, Dq, Di, Dh, κ1, κ2) denotes the

whole set of parameters where XT
0 denotes the prior for the initial states and κ1 and κ2

denote the IFR for non-hospitalized and hospitalized cases, respectively. The function f2(·)
is also solved using RK4 approximation as before (see the solution in Supplementary §S.4).

f2 (Xt−1, β, r, κ1, κ2) =



XS
t−1 + 1/6

[
kS1t−1 + 2kS2t−1 + 2kS3t−1 + kS4t−1

]
XE
t−1 + 1/6

[
kE1
t−1 + 2kE2

t−1 + 2kE3
t−1 + kE4

t−1

]
XA
t−1 + 1/6

[
kA1
t−1 + 2kA2

t−1 + 2kA3
t−1 + kA4

t−1

]
XI
t−1 + 1/6

[
kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1

]
XH
t−1 + 1/6

[
kH1
t−1 + 2kH2

t−1 + 2kH3
t−1 + kH4

t−1

]
XR
t−1 + 1/6

[
kR1
t−1 + 2kR2

t−1 + 2kR3
t−1 + kR4

t−1

]
XD
t−1 + 1/6

[
kD1
t−1 + 2kD2

t−1 + 2kD3
t−1 + kD4

t−1

]


:=



α1(t−1)

α2(t−1)

α3(t−1)

α4(t−1)

α5(t−1)

α6(t−1)

α7(t−1)


We implemented the MCMC algorithm to sample from the posterior distribution of the

underlying parameters r and β, and calculate the derived quantities:

R0 = β

[
α(1− r)(Di) +

r

(1/Di + 1/Dq)

]
.

We obtain the posterior mean estimates and credible intervals for the unknown parame-

ters in the model. Because of the hierarchical structure in the state-space model considered

in this model, the posterior sampling can be done in a straightforward fashion like eSIR

using the R package rjags.

3 Modeling COVID-19 transmission dynamics in South
Africa

3.1 Study Design and Data Source

COVID-19 daily time series data for South Africa were extracted from the COVID-19 Data

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
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University [39] from the onset of the first 50 confirmed case (March 15, 2020) to February

21, 2021. We fitted the models using data up to December 31, 2020 and predicted the state

of COVID-19 infection in South Africa in a time window, from January 1 to April 1, 2021.

To compare the model prediction performance of different models, we used the symmetric

mean absolute percentage error (SMAPE), given by:

SMAPE =
100%

n

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

,

where At is the observed value and Ft is the forecast value in the same time period. This

design enabled us to select an optimal modeling strategy for South Africa data and check

the robustness of prediction performance across different models.

3.1.1 Prior Specification

We describe the prior choices and where appropriate, initial values for the model hyper-

parameters in this section and a complete summary and list of notations and assumptions are

available in Supplementary Table S.1.1. To begin with, we assumed a constant population

size (N = 57, 779, 622) for all models and fixed a few transition parameters below in the

SAPHIRE and eSEIRD model. First, we set an equal number of daily inbound and outbound

travelers (n), in which n = 4 × 10−4 N from March 15 to 25, 2020 estimated by the

number of international travelers to South Africa in 2018[3], otherwise n = 0 when border

closed, i.e. after March 26. We fixed the transmissibility ratio between unascertained and

ascertained cases at α = 0.55 assuming lower transmissibility for unascertained cases [2], an

incubation period of 5.2 days, and a pre-symptomatic infectious period of Dp = 2.3 days

[23, 17], implying a latent period of De = 2.9 days. The mean of total infectious period was

Di +Dp = 5.2 days [23], assuming constant infectiousness across the pre-symptomatic and

symptomatic phases of ascertained cases [22], thus, the mean symptomatic infectious period

was Di = 2.9 days. We set the period of ascertained cases from reporting to hospitalization

Dq = 7 days, the same as the median interval from symptom onset to admission reported

[10, 13]. The period from being admitted in hospital to discharge or death was assumed

as Dh = 8.6 days [41]. We fit the SAPHIRE and eSEIRD model in six time periods

of 2020: March 15-March 26, March 27- April 30, May 1- May 31, June 1- August 17,

August 18-September 20, and September 21-December 31, separated by the change-points

of the lockdown strictness level, and denote the ascertained rate and transmission rate

in the time periods as r1, r2, r3, r4, r5,r6, β1, β2, β3, β4, β5 and β6. In addition, we

denote the IFR for non-hospitalized cases κ11, κ12, κ13, κ14, κ15, κ16 and for hospitalized

cases κ21, κ22, κ23, κ24, κ25, κ26 in eSEIRD model.

Choice of Initial states: For the eSIR model, the prior mean for the initial in-

fected/removed proportion was set at the observed infected/removed proportion on March

15, 2020, and that for the susceptible proportion was the total number of the population

minus the infected and removed proportions [35]. For the SAPHIRE model, other than

setting prior parameters for initial states, we set the number of initial latent cases E(0) was
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the sum of those ascertained and unascertained cases with onset during March 15-17, 2020

as De = 2.9 days [15] and the number of initial pre-symptomatic cases P (0) was that from

March 18-19, 2020 as Dp = 2.3 days [15]. The number of ascertained symptomatic cases

I(0) was assumed as the number of observed infected cases on March 15, 2020 excluding

H(0), R(0) and D(0) (the initial numbers for hospitalized, recovered, and deaths). The

initial ascertainment rate (r0) was assumed as 0.10 as reported in literature [4, 6], implying

A(0) = 0.90/0.10I(0), and a sensitivity analysis with r0 = 0.25 was conducted to address

weak information for r0 obtained in South Africa and variation of r0 in different scenar-

ios. H(0) was assumed as 50% of the observed ascertained cases on March 9, 2020 (by

assuming the period from reported to hospitalized was 7 days [10, 13] at the early stage of

the pandemic). In addition, we denoted R(0) as the sum of observed recovered and death

cases on March 15. The number of initial susceptible cases S(0) was calculated as the total

population (N) minus E(0), P (0), I(0), A(0) and R(0).

In the eSEIRD model, we set the prior mean of initial ascertained, unascertained and

hospitalized cases as I(0), A(0) and H(0) discussed above. However, since the latent com-

partment incorporates the pre-symptomatic cases, the mean of the initial latent cases was

set as the sum of those ascertained and unascertained cases with onset during March 15-

19, 2020 as De + Dp = 5.2 days [15].The prior mean of initial recoveries and deaths were

fixed as the number of observed recovered and death cases on March 15, 2020, respectively.

Therefore, the prior mean of initial susceptible compartment was set as the total population

excluding the mean of other compartments.

Prior distributions: In the eSIR model, the log-normal priors were used for the removed

rate ν and the basic reproduction number R0, in particular ν ∼ LogN(2.955, 0.910),with

E(ν) = 0.082 and SD(ν) = 0.1 [35], and R0(= β/ν) ∼ LogN(0.582, 0.223) with E(R0) = 3.2

and SD(R0) = 1 [33]. Flat Gamma priors were used for the scale parameters of the Beta-

Dirichlet distributions as follows [33]:

ω ∼ Gamma(2, 0.0001), λI ∼ Gamma(2, 0.0001), and λR ∼ Gamma(2, 0.0001)

In the eSEIRD model, for the six time periods, all the transmission rates β1, β2, β3,

β4, β5 and β6 were given a U(0, 2) prior, ascertained rates r1, r2, r3, r4, r5 and r6 were

given Beta(10, 90) prior [21], the IFR for non-hospitalized cases κ11, κ12, κ13, κ14, κ15, κ16 ∼
Beta(0.03, 2.93) and for hospitalized cases κ21, κ22, κ23, κ24, κ25, κ26 ∼ Beta(0.44, 1.76) with

mean equal to 0.1% and 20% , respectively [41].

In addition, to account for the effect of time-varying contact rate during the prediction

period, we set a time-varying contact rate modifier π(t) in the eSIR and eSEIRD model

where t from January 1 to April 1, 2021: π(t) was set as 0.75 since the lockdown was tuned

to level 3 after December 28, 2020. Note that the modifier π(t) is a conjectural quantity

and hence must be guided by empirical studies [33]. Using MCMC sampling method for the

eSIR and eSEIRD model, we set the adaptation number to be 104, thinned by 10 draws to

reduce auto-correlation, and set a burn-in period of 5× 104 draws under 105 iterations for

4 parallel chains.
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We fit the SAPHIRE model in six time periods as in the eSEIRD model. We used

r1 ∼ Beta(10, 90) and reparameterized r2, r3, r4, r5, and r6 by

logit (ri) = logit (ri−1) + δi−1, i = 2, . . . , 6,

where logit(r) = log(r/(1−r)), and δi ∼ N (0, 1), for i = 1, . . . , 5. We use non-informative

prior distributions for transmission rates βi ∼ U(0, 2) for i = 1, . . . , 6 to reflect lack of

information about these hyperparameters [15]. Therefore, β and r were assumed to follow

different distributions for these six time periods. Finally, the effective reproduction number

can be derived to be:

Re = β

[
αDp + α(1− r)Di +

r

(1/Di + 1/Dq)

]
.

We set a burn-in period of 105 iterations and continued to run 105 iterations with a sampling

step size of 10 iterations for the MCMC algorithm of the SAPHIRE model.

A comparison between assumptions of the three models in the Supplementary §S.2. All

analyses were conducted in R (version 4.0.0), and source codes are available at https:

//github.com/umich-cphds/south_africa_modeling. Posterior mean and corresponding

95% credible interval (95% CrI) were reported for the parameters of interests.

4 Results

Here we present the detailed results for South Africa, subdivided into estimation of key epi-

demiological parameters, short-term and long-term forecasts, and finally model evaluation

in terms prediction and quality of fit.

4.1 Reproduction number and intervention evaluation

The estimated posterior mean of R0 was 1.18 (95%CrI: [1.09, 1.28]) in the eSIR model

throughout the training period while in the eSEIRD model, the value of R0 started at 3.22

(95%CrI: [3.19, 3.23]) then dropped though still significantly above 1 after the lockdown

implementation and increased to 3.27 (95%CrI: [3.27, 3.27]) during the last three months of

2020 (Table 2). It suggests that the effective contact rate decreased by more than 50% over

the lockdown time period and attained the lowest point in its trajectory during August to

September, 2020 though the lockdown was eased to a relatively less strict level. On the other

hand, the effective reproduction number (Re) in different lockdown periods estimated by

the SAPHIRE model demonstrates that a similar trend but the magnitude of the estimated

Re decreased dramatically when r0 increases from 0.10 to 0.25 (Table 2; Fig. 4), possibly

suggesting lack of robustness with respect to the choice of initial r0.
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4.2 Short-term and long-term forecasts

We forecast the total cumulative number of infections, including unascertained cases, in

the SAPHIRE model up to February 28, 2021 depending on the time-period considered for

estimating the trend. The estimated cumulative number of infections are: (a) 43.3 million if

the trend of the least strict lockdown (level 1) was assumed, (b) 36.9-37.8 million if the trend

of the lockdown level 2-4 was assumed, and (c) 29.3 million if the trend of strict lockdown

was assumed (r0 = 0.10). However, the short-term forecasts in SAPHIRE model exhibits

lack of robustness under different r0 settings, for example, when r0 = 0.25 the estimated

cumulative number of infections was 10.6 million if the trend of the least strict lockdown

(level 1) was assumed and 0.9 million if the trend of the lockdown level 2 was assumed. In

the eSEIRD model, the predicted total cumulative number of cases reach 41.2 million under

r0 = 0.10, and 41.6 million under r0 = 0.25, along with estimated total deaths counts as 35

or 37 thousand when r0 = 0.10 or 0.25, respectively, by February 28, 2021. Furthermore,

we used the eSEIRD model to forecast the epidemic trajectory for a relatively longer time

period, where we found that by April 1, the cumulative number of total infected and deaths

would reach roughly 41.3 million (which is around 70% of the total population in South

Africa) and 35 thousand, respectively.

4.3 Fitting and prediction performance

All the three candidate models were applied to the COVID-19 data in South Africa with high

accuracy as the estimated daily new cases were close to the observed numbers from March

to October, 2020 (Fig. 4 (a)-(c)). However, the eSEIRD model showed a poorer fit during

the second pandemic wave in South Africa from November to December 2020, compared to

the other two models. The eSIR model performed best in terms of fitting the cumulative

ascertained cases with the smallest SMAPE (2.43% when r0=0.10) while the SAPHIRE

model had the second smallest training SMAPE (Table 4). In terms of predictive accuracy,

the SAPHIRE model performed best with the smallest SMAPE (4.41% for 15 days and

5.92% for 31 days when r0=0.10) while the eSIR model had the second smallest SMAPE

(6.90% for 15 days and 10.78% for 31 days when r0=0.10) (Table 4). We note that for a few

selected important time points, the estimated number of cumulative ascertained infected

cases for the eSEIRD model was closest to the observed on December 31, 2020, while the

predicted number of cases in the eSIR and SAPHIRE model are closer to the observed on

January 31, 2021 (Table 3). The predictive performances for the three competing models

substantiate their credibility in terms of capturing the transmission dynamics for the time-

period considered in this study.

4.4 Unascertained cases and deaths

As demonstrated by SAPHIRE modeling results in Figure 4 (d), the large number of unascer-

tained and pre-symptomatic cases contributed to the rapid spread of disease.The estimated

ascertained rates were very low, starting at 8.99% (95% CrI: [8.20%, 9.80%]), decreasing
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to below 2 during level 5 to level 3 lockdown and then increasing to 15.48% (95% CrI:

[15.24%, 15.73%]) during the second pandemic wave in South Africa, respectively (Table

2; Fig. 4 (f)). Similarly, in the eSEIRD model, the estimated ascertained rates were also

at a very low level (1.65% to 9.17%) and had a similar trend as in SAPHIRE model (vide

Table 2). As mentioned before, the estimated ascertained rates were robust with respect to

choices for r0 in eSEIRD model, but changes drastically in SAPHIRE model with r0 changed

to 0.25: 95.58% (95%CrI: [76.20%, 99.50%]) before lockdown, between 30.18% to 35.93%

during level 5 and 4 lockdown, 95.53% (95%CrI: [81.09%, 99.58%]) in level 3 lockdown, and

then decreasing form 33.23% to 18.80% in level 2 to level 1 lockdown.

By the eSEIRD model, the overall IFR was estimated as 0.06% (95%CrI: [0.04%, 0.22%])

throughout the whole time period taking the reported and unreported cases and deaths into

account while the observed overall case fatality ratio was estimated as 2.88% (95% CrI:

[2.45%, 6.01%]) (Fig. 5). Furthermore, the eSEIRD model provided Bayesian estimates

for IFR and deaths among hospitalized and non-hospitalized cases. The estimated IFR for

hospitalized cases was 15.28% (95%CrI: [0.01%, 69.10%]) before lockdown and increased to

65.86% (95%CrI: [51.00%, 82.91%]) in the first time period of lockdown. After that, the IFR

for hospitalized cases decreased from 22.9% (95%CrI: [20.75%, 25.18%]) to 7.46% (95%CrI:

[7.46%, 7.71%]) during May to September. By the end of 2020, it again increased to 19.25%

(95%CrI: [18.82%, 19.69%]). The IFR of hospitalized cases was much larger than that of

non-hospitalized cases (less than 0.01%),and these estimates were robust to the choice of r0.

5 Discussion

In this paper, we propose a new infectious disease forecasting model that incorporates the

unascertained cases, population movement over different time periods, and the effect of

intervention strategies in a unified way and use it to investigate the spread of COVID-19 in

South Africa, the hardest hit country on the African continent. The methodological tools

developed here can be used to estimate the IFR as well as estimate actual COVID-19 deaths

from the reported death counts.

The lockdown intervention and mandatory face-mask wearing in public places employed

in South Africa seemed to contain the spread of COVID-19 effectively as the Re decreased

dramatically initially but increased later following the relaxation of lockdown stringency

afterwards. However, the Re was consistently above 1 throughout the whole period analyzed,

which implies the interventions failed to dampen the transmission fully, further substantiated

by the basic reproduction number estimates in the eSEIRD model as well. This agrees with

the public health experts advice of carefully implemented intervention policies while taking

account their potential economic costs [37].

We also found that the estimated ascertainment rate is very low in South Africa compared

to that reported for many other countries [15, 4, 32], also implied by the low testing rate

and high testing positive rate in South Africa. As of February 21, the number of total

tests conducted is 8.9 million, suggesting that about 15.4% population were tested [18].
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a)-(c) Daily new number of ascertained infections cases estimated by the mod-
els compared with observed data: (a) eSIR, (b) SAPHIRE, and (c) eSEIRD; (d) Current
pre-symptomatic/unascertained/ascertained infectious in the SAPHIRE model; (e)-(f) Esti-
mated effective reproduction number (Re) and ascertained rate (r) in the SAPHIRE model
in four time periods. (Assume initial ascertained rate (r0) equal to 0.10.)

Furthermore, the estimated ascertainment rate is consistent with that in other multiple

global epicenters under severe pandemic of COVID-19, such as France, the United States,

Italy and Spain in March [21]. The large number of unascertained cases is likely to contribute

significantly to the continuing spread of COVID-19 [23, 7, 19]. Our findings suggest that

there are around 70% of the total population in South Africa infected by December 31, 2020,
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Figure 5: Case fatality ratio (CFR) and estimated infection fatality ratio (IFR) in the
eSEIRD model. CFR =(Number of reported deaths)/(Number of reported deaths and
recovered) ; IFR1 = (Number of reported deaths)/(Number of of reported and unreported
cases); and IFR2 = (Number of reported and unreported deaths)/(Number of of reported
and unreported cases)[20].

which is roughly consistent with the seroprevalence survey conducted in South Africa that

the estimated prevalence is around 63% in the Eastern Cape, one of the pandemic centers

in South Africa [38]. Despite the potential high prevalence of COVID, the second wave of

pandemic appeared in South Africa and other pandemic centers like Brazil, which may due

to the waning immunity against infection with the time to the first wave increasing, and

the coronavirus lineages might have higher inherent transmissibility than the pre-existing

lineages and be able to evade the immunity generated in response to previous infection

[34]. To prevent potential resurgence in the future, addition to the strict interventions,

more surveillance testing and effective testing strategies under conditions of limited test

availability, such as contact tracing of the contacts and confirmed cases, will be helpful to

curtail the pandemic in South Africa [12].

Although highly transmissible and poorly ascertained, the COVID-19 IFR is estimated

as 0.06% taking account of unreported cases and deaths in South Africa, comparable to the

estimates in other locations with similar low mortality rate based on serological data [19].

The low IFR may be due to the South African population being relatively young which

lessens the fatal impact on general population to some extent [36]. Our estimates of the

IFR of hospitalized cases are much higher than that for non-hospitalized cases, suggesting

that the most severe cases may have been admitted to hospitals despite the relatively lack

of the testing arrangements. The very low estimated IFR for the non-hospitalized cases also

imply that the degree of under-reporting for death by the model is very low (0.24% by April

1, 2021), and likely to be affected by the same factors.

Comparison of the models: The eSIR and the SAPHIRE model have been successfully

applied to the data in India and Wuhan, China, separately [35, 13]. Although SAPHIRE

model exhibits superior prediction performance on COVID-19 cases, the estimates of un-
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Table 2: The posterior mean and credible intervals of the basic/effective reproduction num-
ber (R0 or Re) and ascertained rate (r) obtained from different models and settings.

Model r0

R0 or Re r(%)

Mean 95%CrI Mean 95%CrI

eSIR 0.1 1.18 [1.09,1.28] - -

0.25 1.18 [1.09,1.28] - -

SAPHIRE

0.1

Mar 15-26 3.6 [3.46,3.74] 8.99 [8.20,9.80]

Mar 27-Apr 30 1.39 [1.37,1.41] 1.67 [1.57,1.78]

May 1-31 1.44 [1.43,1.45] 1.98 [1.93,2.02]

Jun 1-Aug 17 1.62 [1.62,1.62] 1.67 [1.65,1.65]

Aug 18- Sept 20 1.14 [1.13,1.15] 4.01 [3.96,4.06]

Sept 21-Dec 31 3.43 [3.43,3.46] 15.48 [15.24,15.73]

0.25

Mar 15-26 1.44 [1.28,1.72] 95.58 [76.20,99.50]

Mar 27-Apr 30 1.4 [1.35,1.47] 30.18 [23.92,33.17]

May 1-31 1.39 [1.37,1.41] 35.93 [28.99,38.41]

Jun 1-Aug 17 1.07 [1.07,1.07] 94.53 [81.09,99.58]

Aug 18- Sept 20 0.8 [0.79,0.80] 33.23 [28.76,34.99]

Sept 21-Dec 31 1.25 [1.24,1.25] 18.8 [16.47,20.01]

eSEIRD

0.1

Mar 15-26 3.22 [3.19,3.23] 4.7 [4.27,5.17]

Mar 27-Apr 30 1.48 [1.46,1.51] 1.85 [1.77,1.94]

May 1-31 1.52 [1.51,1.54] 2.02 [1.99,2.06]

Jun 1-Aug 17 1.68 [1.67,1.68] 1.65 [1.64,1.66]

Aug 18- Sept 20 1.38 [1.36,1.39] 2.23 [2.21,2.25]

Sept 21-Dec 31 3.27 [3.27,3.27] 9.17 [9.01,9.34]

0.25

Mar 15-26 3.25 [3.23,3.26] 7.2 [6.50,7.95]

Mar 27-Apr 30 1.57 [1.54,1.59] 2.17 [2.05,2.28]

May 1-31 1.54 [1.53,1.56] 2.07 [2.03,2.11]

Jun 1-Aug 17 1.68 [1.67,1.68] 1.65 [1.64,1.65]

Aug 18- Sept 20 1.38 [1.36,1.39] 2.23 [2.20,2.25]

Sept 21-Dec 31 3.27 [3.27,3.27] 9.14 [8.95,9.31]

derlying paratemters and unascertained cases showed lack of robustness to the change of

initial ascertainment rate r0. On the other hand, the eSIR model has the best estimation

capability in terms of the ascertained cases but a relatively poor predictive capacity for

capturing the change in the trend of the epidemic in time for neglecting some important
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Table 3: Comparison of the models regarding the cumulative ascertained infected and death
with the observed (in thousands). Bold-faced entries indicate column winners regarding the
closeness to the observed.

Model r0

Infected Death

Estimation Prediction Estimation Prediction

31-Dec Jan 31 28-Feb 31-Dec 31-Jan 28-Feb

2020 2021 2021 2020 2021 2021

eSIR 0.1 1052 1256 1403 - - -

0.25 1052 1256 1402 - - -

SAPHIRE 0.1 1058 1379 1624 - - -

0.25 1055 1576 2320 - - -

eSEIRD 0.1 878 917 928 31 34 35

0.25 924 966 977 33 36 37

Observed - 931 1381 - 25 40 -

Table 4: Symmetric mean absolute percentage error (SMAPE) of short-term forecasting.
Bold-faced entries indicate column winners regarding prediction performance.

Cumulative ascertained cases Cumulative ascertained deaths

Model

Training

Testing

Training

Testing

Jan 1-Jan 15 Jan1–Jan 31 Jan1-Jan15 Jan1–Jan31

eSIR 0.1 2.43% 6.90% 10.78% - - -

0.25 2.41% 6.90% 10.78% - - -

SAPHIRE 0.1 3.17% 4.41% 5.92% - - -

0.25 3.17% 2.40% 2.74% - - -

eSEIRD 0.1 13.17% 28.37% 35.50% 66.80% 26.67% 12.90%

0.25 6.03% 23.31% 30.49% 60.30% 20.41% 9.87%

clinical characteristics. The eSEIRD model also has a good fitting performance but a rela-

tively poor prediction capacity. Table 2 also suggests that the estimates in eSEIRD model

are robust estimated compared to the SAPHIRE model, probably an artifact of the Bayesian

hierarchical model used.

Strengths and Limitations: The key methodological innovation for the proposed method

is revealed by a quick comparison between the schematic diagrams for eSEIRD model (Fig.

3) and SAPHIRE model (Fig. 2(b)). Broadly speaking, eSEIRD incorporates π(t), the
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transmission rate modifier as well as splits the ‘removed’ compartment into ‘recovered’ and

‘deaths’ while accounting for separate rates for ascertained, unascertained and hospitalized

cases.

Despite the superior performance and robustness exhibited by the models examined

here, there are some important limitations. First, the model assumptions were elicited

from previous reports from other countries because of the lack of such information for

South Africa, especially the fixed values for hyper-parameters. Though the estimation of

parameters and prediction of infections seem to be robust to these assumptions to some

extent, the inference and prediction would be much more convincing when based on accurate

information specific to South Africa.

Second, the ascertained rate was assumed to follow the same distribution in a long time

period in the eSEIRD model although in reality it might be time-varying depending on the

accumulating knowledge and deployment of clinical resources for COVID-19, given the spa-

tial variation within South Africa regarding the population density and movement, as well

as regarding location of COVID-19 hotspots and hospital resources. Further, the population

density is highly heterogeneous in different regions in South Africa with higher concentra-

tion near high-density economic hub cities, such as Cape Town and Durban. COVID-19

cases are also diversely spread. For instant, Gauteng Province is a very small, highly dense

province with roughly 30% of total cases in the nation, and 49% of confirmed cases cluster in

KwaZulu-Natal, Eastern Cape and Western Cape Province. In addition, the seroprevalence

study also suggested that the prevalence may vary from city to city: 63% in the Eastern

Cape, 52% in the KwaZulu Natal and 32% in the Northern Cape [38]. Without considering

these heterogeneities and potential confounding factors in individual region, the conclusion

on the national data might be biased. The burden of HIV and tuberculosis comorbidity, par-

ticularly among the less privileged socio-economic population, also adds to the complexity

of analyzing the COVID-19 data from South Africa [5].

Third, in this paper we implicitly assumed that the recovered cases would not be infected

again but it is still inconclusive based on extant research for COVID-19 [14]. It might

lead to a resurgence if this assumption is not valid and the interventions are totally lifted.

Thus, it might be necessary to conduct more national serological surveys on COVID-19

among the general population in South Africa to confirm the national, as well as provincial,

seroprevalence. Such large-scale studies will also provide more powerful evidence to examine

the evolving benefits of non-pharmaceutical interventions decisions and provide guidance to

manage provincial level disparity.

Finally, from the early stage of this pandemic to now, there has been an explosive devel-

opment in COVID-19 forecasting models but systematic comparison between the available

models in terms of out-of-sample prediction and inference has been rare (see e.g. [11]) as

are carefully done simulation studies where the ‘ground truth’ is known. Lack of simulation

studies comparing the candidate methods is also a limiting feature of this paper, and we

hope to pursue this in a future endeavor.
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