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The United Nations Educational, Scientific and Cultural Organization 
(UNESCO) states that the ultimate mission of the education targets in 
Sustainable Development Goal (SDG) 4 is to “ensure inclusive and equi-
table quality education and promote lifelong learning opportunities for 
all”1–3. This is important, because it has been shown that increasing the 
number of years of schooling that are completed (educational attain-
ment), can lead to higher capital, greater social mobility and increased 
equity among men and women, in these and other socio-economic 
outcomes1,2,4–8. Educational attainment for women of reproductive age 
is also among the leading social determinants of health, with higher 
attainment being strongly associated with improved reproductive 
health and decreased child mortality9–14. The causal pathway between 
education and health is difficult to study, because randomized control 
trial methods are logistically challenging and ethically problematic. 
Observational studies controlling for other predictors of health status, 
such as age and income, however, indicate that even small gains in 
educational attainment may improve health outcomes across a wide 
variety of low-income contexts. Studies across diverse settings have 
found that increased education for women of reproductive age is asso-
ciated with improved child nutrition and decreased child mortality, 
and this effect is consistently stronger than increases in income15,16. 
Importantly, a comprehensive multi-level study found that increases 
in average attainment in communities are associated with improved 
survival for infants born to all women in that community, regardless 
of their own educational attainment or income17. This is consistent 
with research on health behaviours, showing that less-educated women 
model health behaviours on those of their broader community18. These 
improved health outcomes have also been shown through increased use 
of prenatal care, greater adherence to treatment regimens and increased 
contraception use9,12,19,20. Despite these clear benefits, international aid 
for basic education has been deprioritized as a proportion of total aid 
expenditure every year since 201021.

Precision public health and education
SDG 4 focuses on the reduction of inequalities in education on the 
basis of factors such as wealth, sex and location1,2,22. In addition, 
UNESCO’s agenda for reforming education access in developing 
countries is itself centred around equity22,23. Global health efforts 
have included substantial investments in the use of data to guide 
interventions that will benefit populations more efficiently and 
increase equity in outcomes, a strategy that has been termed precision 
public health24. The same paradigm should be extended to the social 
determinants of health that must be addressed for progress to be 
sustained. Therefore, although comparable indicators of educational 
attainment exist at the national level, it is increasingly important to 
measure subnational variation.

While past studies have assessed subnational variation in attain-
ment for specific African countries25,26, to our knowledge no com-
prehensive and comparable set of estimates exist for the continent. 
Here we build a precisely geolocated database of 173 unique census 
and  survey sources containing information on educational attainment 
(see Supplementary Figs 1–4 and Supplementary Table 2 for infor-
mation on data type, coverage and source). We estimate the average 
number of years of attainment for women of reproductive age (15–49) 
across a grid of 5 × 5 km across 51 countries in Africa from 2000 to 
2015. We also estimate attainment for 20–24-year-old women to more 
closely identify changes over time. Finally, we construct equivalent 
models for men to examine differences between the sexes at the same 
local level. We use recently developed Bayesian spatiotemporal meth-
ods27–29 for the analysis of this dataset, leveraging the high-resolution 
spatial and temporal information from these data. The estimates pro-
duced by these models enable comparisons of subnational regions. 
We focus on geographical inequality at the 5 ×  5-km or local level to 
explore the subnational distribution of educational attainment, for the 
following reasons. First, data are increasingly geolocated to specific 
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that will be necessary to deliver progress during the era of the Sustainable Development Goals.
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communities, and advances in Bayesian model-based geostatistics 
enable the modelling of these precise space–time covariance struc-
tures. Second, through the increasing availability of satellite imagery 
and other geospatial modelling endeavours, we have built a collection 
of covariates at the 5 ×  5-km scale that are included in this predictive 
modelling framework. These are mostly available at only the commu-
nity level, but allow us to predict outside of our data to estimate mean 
educational attainment and its uncertainty across all of Africa as a 
guide for policy formulation and intervention targeting. The utility 
of community-level and individual-level measurements is discussed 
in the Supplementary Discussion.

Persistent differences in educational attainment
We used various validation strategies to assess the fit of our models. 
Across Africa, we use out-of-sample cross-validation to demonstrate 
that our models have low root mean square errors, low absolute errors, 
well-calibrated coverages and high concordance with existing small-area 
estimates (see Supplementary Figs 12–28, Supplementary Tables 8–23).  

Estimates of mean years of educational attainment for men and 
women aged 15–49 and 20–24 are shown in Fig. 1a–d and Fig. 2a–d, 
 respectively. These summaries show geographical disparities across 
Africa, with persistently low levels of attainment across the Sahel 
region, particularly in northern Nigeria, South Sudan and north-
ern Kenya. In 2015, Ekiti state had the highest mean attainment in 
Nigeria among women of reproductive age, 11.3 years (95% uncer-
tainty interval, 10.7–11.9) years, whereas many states in the north-
ern region had averages below two years: Kebbi, 1.6 years (1.0–2.1); 
Yobe, 1.7 years (1.2–2.3); Sokoto, 1.5 years (1.0–2.1); and Zamfara, 
1.6 years (1.1–2.2). For the same age range in Kenya, Nairobi province 
had the highest average attainment, 11.4 years (10.5–12.4), whereas 
the more rural North Eastern province had an average of 2.1 years 
(1.3–3.0). The lowest four regions across all of Africa had averages 
of less than 0.5 years, and all were rural regions in Chad: Daraba 
(0.5; 0.1–1.2), Kanem (0.4; 0.1–0.9), Barl El Gazal (0.4; 0.1–0.8) and 
Lac (0.4; 0.1–0.9). All outputs of these  analyses at the national, first 
administrative subdivision (for example, state), second administrative 
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Figure 1 | Average educational attainment for and absolute difference 
between women and men aged 15–49 in 2000 and 2015. a–d, Average 
educational attainment for women (a, b) and men (c, d) aged 15–49 
in 2000 (a, c) and 2015 (b, d). e, f, The absolute difference in average 

educational attainment between men and women aged 15–49 in 2000 (e) 
and 2015 (f). Maps reflect administrative boundaries, land cover, lakes and 
population; pixels with fewer than ten people per 1 ×  1 km and classified as 
‘barren or sparsely vegetated’ are coloured in grey32,36–40.
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subdivision (for example, district) and 5 ×  5-km levels are  publicly 
 available from the Global Health Data Exchange (http://ghdx.health-
data.org/record/africa-educational-attainment-geospatial-estimates- 
2000-2015) and via bespoke data visualization tools (https://vizhub.
healthdata.org/lbd/education).

Marked changes were observed over time when focusing on the 
20–24 age range (Fig. 2a–d), with particular improvement observed in 
urban centres between 2000 and 2015 in Nigeria, Kenya, Ghana, Sudan 
and South Africa. Several populous urban states in Nigeria showed 
significant gains in average attainment for women since 2000, such as 
Abuja state, where attainment increased from 6.0 (4.7–7.2) to 9.7 years 
(9.0–10.5). In Ghana, the most highly educated urban regions in the 
southern part of the country demonstrated  moderate increases in 
average attainment for women aged 20–24, such as Ashanti region, 
where attainment improved from 7.4 (6.9–7.9) to 9.9 years (9.5–10.4). 
Additionally, Ghana stands out in Western Africa for its improvements 
in more rural regions, for example, in the Northern region attainment 
improved from 1.8 (1.4–2.2) to 5.2 years (4.8–5.7) since 2000.

Implications for international goals
An explicit goal of SDG 4 is to eliminate sex-associated disparities 
across all levels of education by 203030. We illustrate the gap in mean 
years of attainment between men and women for both age ranges  
(Figs 1e, f and 2e, f). Average attainment for men was significantly 
higher across the Sahel and Central Africa, particularly in the  northern 
regions of Nigeria and Kenya that had very low levels of education 
in women of reproductive age (see Fig. 3). Here we use ‘significantly’ 
to refer to areas where 95% of the difference between Bayesian 
 posterior predictive distributions was above zero (see Supplementary 
Information). These regions showed even stronger differences in the 
20–24 age range, for which in some regions attainment in males was 
more than four years higher than in females (see Extended Data Fig. 1). 
Across states in 2015, we observed the largest difference in attainment 
by sex in the Kabia state of Chad, where men had achieved 5.8 more 
years (4.0–7.8) than women. In terms of statistical significance, 64 out 
of 77 states in Benin (representing 86% of the national population) had 
higher levels of attainment in males than females. The same was true for 
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Figure 2 | Average educational attainment for and absolute difference 
between women and men aged 20–24 in 2000 and 2015. a–d, Average 
educational attainment for women (a, b) and men (c, d) aged 20–24 
in 2000 (a, c) and 2015 (b, d). e, f, The absolute difference in average 

educational attainment between men and women aged 20–24 in 2000 (e) 
and 2015 (f). Maps reflect administrative boundaries, land cover, lakes and 
population; pixels with fewer than ten people per 1 ×  1 km and classified as 
‘barren or sparsely vegetated’ are coloured in grey32,36–40.
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all districts within Sierra Leone, Guinea, Guinea-Bissau and Togo. By 
contrast, average attainment trended towards higher levels for women 
across much of southern Africa in 2015; however, this difference was 
never significant. We observed no significant differences by sex for any 
district within South Africa, Botswana, Zimbabwe, Rwanda and others.

We further examined these trends in educational opportunity by 
applying a threshold for attainment. UNESCO defines basic education 
as completing the first nine years of formal schooling, including primary 
education (1–6 years of schooling) and lower secondary (7–9 years of 
schooling)31. The mean of 1,000 realizations of our full model is shown 
in Figs 1, 2. The Bayesian modelling framework that we used enables 
probabilistic inferences to be made about the likelihood that such targets 
have been met, on the basis of the confidence of the predictions (see 
Supplementary Information). In Figure 4, we illustrate the probabil-
ity of average attainment being above six years in 2015 for women of 
reproductive age, or the equivalent of completing primary education 
(see Extended Data Fig. 2 for women aged 20–24). Despite SDG 4 not 
containing specific targets on years of attainment, this threshold was 
selected to highlight how substantial work remains in order to achieve 
even basic levels of education in many subnational regions within Africa.

We use high-resolution population data to aggregate these prob-
abilities to different administrative levels for increased use in policy 
development and targeted intervention strategies, as well as to demon-
strate the value of geospatial estimation for showing disparities within 
countries32. For instance, at the national level, the average woman of 
reproductive age in Nigeria has completed primary school in 2015. 
At lower geographical levels, however, these probabilities ranged from 
almost 0 to 100% of the population depending on the district or grid 
cells within the district (Fig. 3). Across Africa, many areas had averages 

that we could reasonably conclude were less than primary school com-
pletion (less than 5% probability of being greater than six years), but 
others were less certain. These regions may be less certain because our 
estimates were very close to six years, or because our estimates had 
wide uncertainty intervals (see Supplementary Information). Using the 
precision public health paradigm, these results have important impli-
cations for investment in education. Areas that were very unlikely (less 
than 5%) to be achieving primary school completion in 2015 should 
have investment aimed at improved access to basic education (examples  
of such measures are discussed in the Supplementary Discussion). 
Many areas with higher uncertainties probably not only have very low 
averages, but also require increased data collection efforts. This echoes 
the call in precision public health to invest in quality data at the local 
level to target interventions most equitably and efficiently24.

Discussion, limitations and future work
This study represents a notable application of Bayesian geostatistical 
methods in a comprehensive, geolocated dataset to model educational 
attainment with refined spatial and temporal resolution. Our estimates 
show that although attainment has generally improved for women of 
reproductive age in Africa since 2000, these gains have now stagnated 
in many subnational regions. We also demonstrate that in 2015, gaps 
remain in attainment between the sexes in many areas across Africa; 
these gaps were relatively stable over time. These findings suggest that 
both men and women are experiencing progress in educational attain-
ment, but the achievement of greater equity by sex remains out of reach 
for much of Africa.

Geographical inequality is only one form of inequality that can 
be used to investigate disparities below the national level. While our 
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Figure 3 | Probability that male educational attainment is greater than 
female educational attainment for men and women aged 15–49 in 2015. 
a–d, Probabilities at the pixel level (d) were aggregated using 5 ×  5-km 
resolution population data to the district level (c), province level (b) and 

national level (a). Maps reflect administrative boundaries, land cover, 
lakes and population; pixels with fewer than ten people per 1 ×  1 km and 
classified as ‘barren or sparsely vegetated’ are coloured in grey32,36–40.
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framework allows us to explore geographical differences at a refined 
spatial level, there are many other dimensions that contribute to 
observed population inequities, such as social stratification by race, 
ethnicity or wealth (see Supplementary Discussion for limitations). 
Although further work is needed to explore additional forms of 
 inequality, this predictive analysis has immediate relevance for policy 
development. First, our analysis maps a human capital indicator across 
Africa that is particularly relevant for the evolving global development 
agenda33. Second, and even more importantly, we are specifically con-
sidering educational attainment in women of reproductive age (and 
gender disparities in education) as a critical social determinant of 
maternal and thus child health9–14.

Given the intersection between educational attainment for women 
of reproductive age and maternal and child health targets34,35, these 
results have important implications for targeted investment to improve 
entrenched geographical and sex disparities. Communities with low 
education levels for women may be more likely to fail in public health 
interventions aimed at increasing prenatal care utilization, treatment 
adherence or contraception use9,12,19,20. Targeting precision health 
interventions without considering the landscape of human capital 
indexed by educational attainment poses sustainability risks, such as 
unrealistic assumptions about care-seeking behaviour and retention. In 
addition to the implications for health intervention, the global health 
agenda must also consider education and improved attainment as a 
goal itself in building sustainable, healthy populations.

Clearly the ultimate goal of SDG 4 extends beyond attainment to the 
quality of education. Nevertheless, as the global policy dialogue shifts 
to focusing on learning outcomes (see Supplementary Discussion), our 
results directly identify where gaps in basic education persist. These 

results can be used to improve accountability in need-based investment 
strategies from the national to local level. For communities which we 
have identified as having very low attainment, localized information 
can help to elucidate the drivers of low attendance and inform effective 
investment strategies.

Improving educational attainment among women of reproductive 
age has cross-cutting benefits for the SDG targets related to maternal 
and child health. This approach demonstrates the benefits of leveraging 
spatial information for modelling of human capital indicators in which 
data are correlated across space and time. This study emphasizes how 
documenting national-level trends in attainment masks pronounced 
variation across subnational areas. Despite progress, these findings  
suggest that large areas in sub-Saharan Africa still lag in meeting basic 
education targets, especially for women. In order to deliver on the 
promise of inclusive and equitable education for all3, it is critical for 
investments in education to be informed by locally relevant information 
so that no community is left behind.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MEthOdS
Overview. Our study follows the Guidelines for Accurate and Transparent Health 
Estimates Reporting (GATHER). Using a Bayesian model-based geostatistical 
framework and synthesizing geolocated data from 173 household and census 
datasets, this analysis provides 5 ×  5-km estimates of mean years of education for 
women of reproductive age (15–49), women aged 20–24, and equivalent male age-
bins between 2000–2015 in Africa. This includes 48 countries in mainland Africa, 
as well as islands for which we had survey data, including Madagascar, Comoros, 
and São Tomé and Príncipe. We did not estimate for Mauritius, Seychelles or Cape 
Verde, as no available survey data could be sourced. Analytical steps are described 
below and additional detail can be found in the Supplementary Information.
Data. We compiled a database of 173 survey and census datasets in Africa that con-
tained geocoding of subnational administrative boundaries or precise coordinates 
for sampled clusters. These included datasets from the Demographic and Health 
Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Integrated Public 
Use Microdata Series (IPUMS)41–43 (see Supplementary Table 2). We extracted 
demographic, education and sample design variables. The coding of educational 
attainment varies across survey families. In many surveys, respondents can indicate 
their level of attainment on a continuous year scale. In others, respondents may 
only have several aggregate categories such as ‘Secondary completion’, ‘Primary 
completion’, or ‘less than primary’. When all that is known is that an individual 
completed a particular level of education, but it is not known if they continued onto 
the next level, a theoretical level of completion must be assigned to the individual 
in order to estimate summary statistics for the population such as mean years of 
educational attainment. For example, if the option ‘Primary completion’ (6 years) is 
followed by ‘Secondary completion’ (12 years), it can be assumed that an individual 
who only selects the former has attained between 6 and 12 years of education. In 
previous literature examining trends in mean years of education, the assumption 
is made that all of these individuals have 6 years, or sometimes the midpoint of 
the feasible range (9)44,45. Trends in the single-year data demonstrate that this 
assumption introduces compositional bias in the estimation of attainment trends 
over time and space, as differences in true drop-out patterns or binning schema 
could lead to biased mean estimates.

For this analysis, we used a recently developed method that selects a training 
subset of similar surveys across time and space to estimate the true single-year 
distribution of binned datasets (J.F., N.G. & E.G., manuscript in preparation). 
This algorithmic approach markedly reduces bias in summary statistics estimated 
from datasets with binned coding schemes. The years in all coding schemes were 
mapped to the country- and year-specific references in the UNESCO International 
Standard Classification of Education (ISCED) for comparability46. We used a top 
coding of 18 years on all data; this is a common threshold in many surveys that have 
a cap and it is reasonable to assume that the importance of education for health 
outcomes (and other related SDGs) greatly decreases after what is the equivalent 
of 2 to 3 years of graduate education in most systems.

Data were aggregated to mean years for women of reproductive age (15–49) 
to measure progress towards the SDG 4 target2. A subset of the data for a smaller 
age range of women aged 20–24 was also examined to track temporal shifts as 
well as the effects of large educational initiatives in Africa since 2000. Equivalent 
age-bins were aggregated for males in order to examine differences in mean years 
of attainment by sex. Where precise coordinates were available, data were aggre-
gated to mean years at a specific latitude and longitude assuming a simple random 
 sample, as the cluster is the primary sampling unit for the stratified design of all 
DHS and MICS surveys. Where only geography information was available at the 
level of administrative units, data were aggregated according to their sample design. 
For aggregation to administrative units for which the survey was not sampled to 
be representative, design effects were re-estimated using a package for analysing 
complex survey data in R47.
Spatial covariates. In order to leverage strength from locations with observations 
to the entire spatiotemporal domain, we compiled several 5 ×  5-km raster layers 
of possible socio-economic and environmental correlates of education in Africa 
(see Supplementary Table 3 and Supplementary Fig. 5). Acquisition of temporally 
dynamic datasets, where possible, was prioritized in order to best match our obser-
vations and thus predict the changing dynamics of educational attainment. Of the 
29 covariates included, 23 were temporally dynamic. The remaining six covariate 
layers were temporally static, and were applied uniformly across all modelling 
years. More information, including plots of all covariates, can be found in the 
Supplementary Information.

Our primary goal is to provide educational attainment predictions across 
the African continent at a high resolution and we have used methods to  provide 
the best out-of-sample predictive performance at the expense of inferential 
 understanding. In order to select covariates and capture possible nonlinear effects 
and complex interactions between them, an ensemble covariate modelling method 
was implemented48. For each region three sub-models were fit to our dataset using 

all of our covariate data as explanatory predictors: generalized additive models, 
boosted regression trees and lasso regression. Each sub-model was fit using fivefold 
cross-validation to avoid overfitting and the out-of-sample predictions from across 
the five holdouts are compiled into a single comprehensive set of predictions from 
that model. Additionally, the same sub-models were also run using 100% of the 
data and a full set of in-sample predictions were created. The five sets of out-of-
sample sub-model predictions were fed into the full geostatistical model as the 
explanatory covariates when performing the model fit. The in-sample predictions 
from the sub-models were used as the covariates when generating predictions using 
the fitted full geostatistical model. This methodology maximizes out-of-sample 
predictive performance at the expense of no longer being able to provide statistical 
inferences on causality. A recent study has shown that this ensemble approach can 
improve predictive validity by up to 25% over an individual model48. More details 
on this approach can be found in the Supplementary Information.
Analysis. Geostatistical model. Gaussian data are modelled within a Bayesian 
 hierarchical modelling framework using a spatially and temporally explicit 
 hierarchical generalized linear regression model to fit mean years of education 
attainment in five regions in Africa as defined in the Global Burden of Diseases, 
Injuries, and Risk Factors (GBD) study49 (‘Northern’, ‘Western’, ‘Southern’, ‘Central’ 
and ‘Eastern’; see Extended Data Fig. 3). GBD study design sought to create 
regions on the basis of two primary criteria: epidemiological homogeneity and 
 geographical  contiguity49. For each GBD region, we approximated the posterior 
distribution of our Bayesian model:
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We model the mean years of attainment at cluster i as Gaussian data given pre-
cision τ and a fixed scaling parameter si. We use the sample size in each cluster as 
our scaling parameter. We have suppressed the notation, but the means (edui), 
scaling parameters (si), predictions from the three submodels (Xi), and residual 
terms ( ⁎ε ) are all indexed at a space–time coordinate. The means (edui) represent 
an  individual’s expected educational attainment given that they live at that particu-
lar location. Mean attainment was modelled as a linear combination of the three 
sub-models (GAM, BRT and lasso), Xi, a correlated spatiotemporal error term, 
ε iGP , and an independent nugget effect, εi. Coefficients, β, on the sub-models 
 represent their respective predictive weighting on the mean, while the joint error 
term, εGP, accounts for residual spatiotemporal autocorrelation between individ-
ual data points that remains after accounting for the predictive effect of the sub-
model covariates and the nugget, εi, is an independent error term. The residuals, 
εGP, are modelled as three-dimensional Gaussian processes in space–time centred 
at zero and with a covariance matrix constructed from a Kroenecker product of 
spatial and temporal covariance kernels. The spatial covariance, Σspace, is modelled 
using an isotropic and stationary Matérn function50, and temporal covariance, 
Σtime, as an annual autoregressive (AR1) function over the 16 years represented in 
the model. This approach leveraged the data’s residual correlation structure to more 
accurately predict attainment estimates for locations with no data, while also prop-
agating the dependence in the data through to uncertainty estimates51. The pos-
terior distributions were fit using computationally efficient and accurate 
approximations in R INLA (integrated nested Laplace approximation) with the 
stochastic partial differential equations approximation to the Gaussian process 
residuals52. Pixel-level uncertainty intervals were generated from 1,000 draws (that 
is, statistically plausible candidate maps)53 created from the posterior-estimated 
distributions of modelled parameters.

To transform pixel level estimates into a range of information useful to a 
wide constituency of potential users, these estimates were aggregated from 
the 1,000  candidate maps up to district, provincial and national levels using 

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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5 ×  5-km  population data32. This aggregation also enabled the calibration of 
estimates to national GBD estimates for 2000, 2005, 2010 and 2015. This was 
achieved by calculating the ratio of the posterior mean national-level esti-
mate from each candidate map draw in the analysis to the posterior mean 
national estimates from GBD, and then multiplying each cell in the posterior 
sample by this ratio. This method also enabled the incorporation of the cali-
bration into the pixel level uncertainties and thus to the uncertainties at the 
different levels of aggregation. The median raking factors for women aged 
15–49, men aged 15–49, women aged 20–24 and men aged 20–24 were 0.926 
(interquartile range (IQR): 0.794–1.084), 0.895 (IQR: 0.761–1.012), 1.036 
(IQR: 0.798–1.031) and 1.053 (IQR: 0.861–1.233), respectively,  indicating 
close agreement with GBD estimates. Scatter plots comparing national level  
estimates from this analysis with GBD estimates can be found in Supplementary 
Figs 24–27.

Although the model can predict at all locations covered by available raster 
covariates, all final model outputs for which land cover was classified as ‘barren or 
sparsely vegetated’ were masked, on the basis of the most recently available MODIS 
satellite data (2013), as well as areas where the total population density was less 
than ten individuals per 1 ×  1-km pixel in 2015. This step has led to improved 
understanding when communicating with data specialists and policy makers.
Model validation. Models were validated using spatially stratified fivefold out-of-
sample cross-validation. In order to offer a more stringent analysis by respecting 
some of the spatial correlations in the data, holdout sets were created by com-
bining sets of spatially contiguous data. Validation was performed by calculating 
bias (mean error), total variance (root-mean-square error) and 95% data coverage 
within prediction intervals, and correlation between observed data and  predictions. 
All validation metrics were calculated on the out-of-sample predictions from the 
fivefold cross-validation. Where possible, estimates from these models were com-
pared against other existing estimates. Furthermore, measurements of spatial and 
temporal autocorrelation pre- and post-modelling were examined to verify correct 
recognition, fitting and accounting for the complex spatiotemporal correlation 
structure of the data. All validation procedures and corresponding results are 
 provided in the Supplementary Information.
Code availability. All code used for these analyses is available online at http://
ghdx.healthdata.org/record/africa-educational-attainment-geospatial-estimates- 
2000-2015.
Data availability. The findings of this study are supported by data that are available 
from public online repositories, data that are publicly available upon request of 
the data provider and data that are not publicly available because of restrictions 

by the data provider, which were used under license for the current study, but 
may be available from the authors upon reasonable request and permission of 
the data provider. A detailed table of data sources and availability can be found in 
Supplementary Table 2.

Administrative boundaries were retrieved from the Global Administrative 
Unit Layers (GAUL) dataset, implemented by FAO within the CountrySTAT 
and Agricultural Market Information System (AMIS) projects36. Land cover 
was retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land 
Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 
Observation and Science (EROS) Center, Sioux Falls, South Dakota37. Lakes were 
retrieved from the Global Lakes and Wetlands Database (GLWD), courtesy of 
the World Wildlife Fund and the Center for Environmental Systems Research, 
University of Kassel38,39. Populations were retrieved from WorldPop32,40.
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NBER Working Paper No. 4349 (NBER, 1993).
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2014).
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(2016).
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Extended Data Figure 1 | Probability that educational attainment in 
men is greater than attainment in women for men and women aged 
20–24 in 2015. a–d, Probabilities at the pixel level (d) were aggregated 
using 5 ×  5-km resolution population data to the district level (c), province 

level (b) and national level (A). Maps reflect administrative boundaries, 
land cover, lakes and population; pixels with fewer than ten people per 
1 ×  1 km and classified as ‘barren or sparsely vegetated’ are coloured in 
grey32,36–40.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Probability that average educational 
attainment is greater than six years in 2015 among women aged 
20–24. Probabilities at the pixel level (d) were aggregated using 5 × 5-km 
resolution population data to the district level (c), province level (b) and 

national level (A). Maps reflect administrative boundaries, land cover, 
lakes and population; pixels with fewer than ten people per 1 ×  1 km and 
classified as ‘barren or sparsely vegetated’ are coloured in grey32,36–40.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Region
Central
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North
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West

Extended Data Figure 3 | Map of modelling regions. Modelling regions 
were defined as the five GBD regions of Central (central sub-Saharan 
Africa), East (eastern sub-Saharan Africa), North (North Africa and the 
Middle East), South (Southern sub-Saharan Africa) and West Africa 
(Western sub-Saharan Africa)54. As this study was limited to mainland 
Africa and African island nations, select countries were excluded from 

the North Africa and Middle East region (Afghanistan, Bahrain, Iran, 
Iraq, Jordan, Kuwait, Lebanon, Oman, Palestinian territories, Qatar, Saudi 
Arabia, Syria, Turkey, United Arab Emirates and Yemen). Western Sahara 
was included as part of the North region. Several countries were moved 
to East (Lesotho and Swaziland from South, Sudan from North) to make 
high-income status more similar in the North and South regions.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was calculated by survey/census source and was taken to be the sum 
of those sampled, after cleaning the data. The number of latitude-longitude 
referenced point data clusters, the number of areal polygons, and the total 
number of individuals from each source may be found in Supplementary Table 2.

2.   Data exclusions

Describe any data exclusions. Select data sources that were identified to contain years of education within the 
geographic area of interest were excluded for the following reasons: missing 
survey weights for areal data, missing gender variable, incomplete sampling (e.g., 
only a specific age range), or untrustworthy data (as determined by the survey 
administrator or by inspection). Within each source, administrative units with a 
sample size of one were excluded.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

This is an observational study using many years of survey data and could be 
replicated.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The data in our study predominantly comes from surveys with randomized survey 
designs. As an observational mapping project, there were no experimental groups.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not relevant to this study, as it was an observational study using 
survey data. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The models were all fit using R version 3.3.2. The main statistical space-time 
Gaussian process regression models were fit using R-INLA version 0.0-1440400394.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used. 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used. 

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used. 

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used. 

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used. 

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used. 
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants, as all data was obtained 
from secondary sources. 
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