REVIEW

WILEY

CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis

Dongjian Zhu¹ | Jingwen Yin¹ | Chunmei Liang^{2,3} | Xudong Luo¹ | Dong Lv¹ | Zhun Dai¹ | Susu Xiong¹ | Jiawu Fu² | You Li^{2,3} | Juda Lin¹ | Zhixiong Lin¹ | Yajun Wang⁴ | Guoda Ma^{2,3}

¹Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

²Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

³Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China

⁴Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

Correspondence

Zhixiong Lin, Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. Email: zhixionglinzj@163.com

Yajun Wang, Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. Email: wangyajuny1977@aliyun.com

Guoda Ma, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. Email: sihan1107@126.com

Funding information

The National Nature Science Foundation of China, Grant/Award Number: 81670252, 81571157, 81471294 and 81770034; the Science and technology research project of Zhanjiang City, Grant/Award Number: 2016A01008; the Nature Science Foundation of Guangdong Province, Grant/Award Number: 2015A030313523; the 2016 Talent Assistance Project of Guangdong, Grant/Award Number: 4YF17006G; Medical Scientific Research Foundation of Guangdong Province, Grant/ Award Number: A2017480; the third session of the China-Serbia Committee for scientific and technological cooperation. Grant/Award Number: 3-13: Scientific research fund of Guangdong Medical University, Grant/ Award Number: M2016010

Abstract

Introduction: Schizophrenia is a serious mental illness with a genetic predisposition. Genome-wide association studies (GWAS) have identified the α -1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene as a significant risk gene for schizophrenia. However, there are inconsistent conclusions in case-control studies.

Methods: We performed a comprehensive meta-analysis of all available samples from existing studies under four different genetic models (recessive model, dominant model, additive model and allele model) to further confirm whether *CACNA1C* rs1006737 is an authentic risk single nucleotide polymorphism (SNP) for schizophrenia.

Results: A statistically significant difference under the four models (all p < 0.05) was observed by pooling nine Asian and European studies, including a total of 12,744 cases and 16,460 controls. For European-decent samples, a significant difference was identified between patients and controls for the four models (all p < 0.05). We observed a significant difference between patients and controls for the recessive model and allele model (GG vs. GA + AA: p < 0.00001; G vs. A: p < 0.00001) using a fixed effect model, but the dominant model (GG + GA vs. AA: OR: p = 0.15) and additive model (GG vs. AA: p = 0.11) showed no significant difference between patients and controls in the Asian samples.

Conclusion: Our findings provide important evidence for the establishment of *CACNA1C* as a susceptibility gene for schizophrenia across world populations, but its roles in the pathogenesis of schizophrenia need to be further investigated.

KEYWORDS

CACNA1C, meta-analysis, rs1006737, schizophrenia

Dongjian Zhu, Jingwen Yin and Chunmei Liang contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

 $\ensuremath{\mathbb C}$ 2019 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

1 | INTRODUCTION

Schizophrenia is a severe psychiatric disease that has a serious adverse impact on society, families, and patients, affecting approximately 1% of the worldwide population (Sukanta, David, Joy, & John, 2005). According to research, its heritability is as high as 80% (Sullivan, Kendler, & Neale, 2003). Recently, GWAS have identified the α -1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene as a significant risk gene for schizophrenia (Gurung & Prata, 2015). Although CACNA1C was strongly associated with schizophrenia in previous studies, it is still unclear how it affects the onset of schizophrenia.

The CACNA1C gene, located on chromosome 12p13.3, encodes an α -1 subunit of the L-type voltage-dependent gated calcium channel. This channel transiently increases the membrane permeability for calcium-mediated cell membrane depolarization, playing an essential role in dendritic development, neuronal survival, synaptic plasticity, memory formation, learning, and behavior (Bhat et al., 2012). According to the neurodevelopmental hypothesis of schizophrenia (Fatemi & Folsom, 2009), any factor that can affect the development of the nervous system may be the cause of schizophrenia; thus, the CACNA1C gene may be involved in schizophrenia by regulating the development of the nervous system. In addition, *CACNA1C* rs1006737 has also shown significant associations with other mental illnesses, such as bipolar disorder and major depressive disorder (Ferreira et al., 2008; Green et al., 2010; Liu et al., 2011).

Based on the potential possibility of shared risk variants in schizophrenia, studies from Europe reported a significant association of the A-allele of SNP rs1006737 with schizophrenia in a Danish cohort (Nyegaard et al., 2010), a British cohort (Green et al., 2010), and a Spanish cohort (Ivorra et al., 2014). These results were successfully replicated in some Asian studies (Guan et al., 2014; Guanchen, Zhang, Fuquan, Zhiqiang, & Wei, 2017; Kuanjun et al., 2014; Porcelli et al., 2015; Zheng et al., 2014). However, several studies from Pakistan, Japan and Shanghai, China, have failed to replicate the above results (Fatima et al., 2017; Hori et al., 2012; Zhang et al., 2012). Given the inconsistent association results, whether CACNA1C rs1006737 is associated with schizophrenia remains to be elucidated.

Meta-analysis is a method for collecting, merging, and statistically analyzing different research results. Recently, Jiang et al. (2015), Zheng et al. (2014), and Nie, Wang, Zhao, Zhang, and Ma (2015) have conducted meta-analysis combining Asian and European studies on the association between schizophrenia and rs1006737. However, the studies involved only one genetic model (allelic model). We therefore conducted a meta-analysis integrating nine studies under four different genetic models to evaluate the association of rs1006737 in the CACNA1C gene with schizophrenia.

2 | MATERIALS AND METHODS

2.1 | Literature search

The PubMed, Web of Science, Cochrane Central Register of Controlled Trials, Science Direct, Wiley Online Library, Chinese

2.2 | Inclusion and exclusion criteria

Eligible studies in the meta-analysis had to fulfill the following criteria: (a) evaluate the CACNA1C rs1006737 polymorphism in relation to schizophrenia; (b) consist of a human case-control study; (c) include patients meeting the diagnostic criteria for schizophrenia according to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) or the International Classification of Diseases-10 (ICD-10), with control participants having no history of mental disorders, other neurological disorders, and alcohol or drug abuse; (d) provide sufficient data for calculating the genotypic odds ratio (OR) with a 95% confidence interval (95% Cl); (e) no overlap of samples with the other identified references; and (f) published before November 2018.

Studies with the following criteria were excluded from the current analysis: (a) not a case-control study; (b) duplicates of previous publications; (c) abstracts, comments, reviews, posters, and editorials; and (d) reports lacking detailed genotype data.

2.3 | Data extraction

Data for this meta-analysis were extracted using a standardized data extraction form independently by the authors. The following data were extracted from the eligible study: first author's name, year of publication, country of origin, ethnicity, sample techniques, number of cases and controls, Hardy-Weinberg equilibrium (HWE) score, and allele and genotype frequencies, among other information. If the authors did not provide additional information, the studies were excluded.

2.4 | Statistical analysis

HWE was assessed for each study using the chi-squared test. p > 0.05 was considered to be consistent with HWE. Meta-analysis was performed using RevMan 5.3 software (RRID:SCR_00358, Cochrane). Pooled ORs (odds ratio) and their 95% CIs (95% confidence intervals) were calculated to assess the association between CACNA1C rs1006737 and susceptibility to schizophrenia for the recessive model (GG vs. AG + AA), dominant model (GG + AG vs. AA), additive model (GG vs. AA), and allele model (G vs. A). Pooled ORs with Z-test p < 0.05 were considered statistically significant. Statistical heterogeneity among studies was assessed by Cochran's Q-test and the l^2 metric. Cochran's Q-test approximately follows a distribution with k-1 degrees of freedom (k stands for the number of studies in the analysis). The l^2 metric was used and ranges from 0% to 100%. Low, moderate, large, and extreme heterogeneity corresponded to 0%-25%, 25%-50%, 50%-75% and 75%-100%,

-WILEY

respectively. p < 0.05 and $l^2 > 50\%$ were deemed to indicate significant heterogeneity. A fixed effect model (Mantel-Haenszel method, M–H) was used in the absence of heterogeneity; otherwise, a random effect model (using the DerSimonian and Laird's method) was applied. Sensitivity analysis was performed to evaluate the influence of each study on the overall pooled result by sequentially excluding each individual study. A funnel plot was generated to evaluate the potential publication bias using Stata 15.1 software (RRID:SCR_007244, Stata Corp). Furthermore, power analysis was performed by Power and Sample Size Calculation software (RRID:SCR_004943, Dupont and Plummer).

3 | RESULTS

3.1 | Study inclusion and characteristics

A flow chart of the literature search and selection process is shown in Figure 1. A total of 190 potentially relevant articles were identified in the initial search. After screening the title and summary, 164 records were excluded. Thus, 26 published articles were retained. We then assessed the full texts and nine were excluded, among them two were not case-control studies, three were duplicates, and four were irrelevant to schizophrenia or rs1006737. Hence, 17 articles were included in the systematic review, but when data were extracted, eight studies lacked detailed genotype data and were excluded. Thus, nine studies (Fatima et al., 2017; Green et al., 2010; Guan et al., 2014; Guanchen et al., 2017; He et al., 2014; Hori et al., 2012; Nyegaard et al., 2010; Zhang et al., 2012; Zheng et al., 2014) were considered eligible for the present meta-analysis.

The characteristics of each study are shown in Table 1. A total of 12,744 schizophrenia cases and 16,460 healthy controls were included in the present study. All the genotype distributions in each group were consistent with HWE.

We conducted a power analysis for detecting significant allelic associations; our total sample size and Asian sample size revealed a 100% power using OR values for the risk allele of 1.20, but the power for the European sample size was 83.1%.

3.2 | Results of the overall meta-analysis

We conducted a meta-analysis of Asian populations, European populations, and total populations. ORs with corresponding 95% Cls for the association between the rs1006737 polymorphism in the CACNA1C gene and the risk for schizophrenia in the different populations that were studied are detailed in Figures 2–4, respectively. In each meta-analysis, the recessive model (GG vs. GA + AA), dominant model (GG + GA vs. AA), additive model (GG vs. AA), and allele model (G vs. A) were tested.

FIGURE 1 Flow diagram of the literature search and selection

	AA MAF	9 0.121	336 0.324	16 0.050	20 0.117	4 0.041	3 0.059	9 0.075	158 0.333	2 0.057
sl	GA	54	1,233	597	327	80	127	166	675	42
Contro	00	235	1,367	5,706	1,223	1,003	1,002	1,053	656	357
	MAF	0.119	0.355	0.057	0.138	0.053	0.067	0.101	0.361	0.061
	AA	17	99	19	26	ო	7	14	130	4
	GA	84	208	635	343	140	70	220	444	37
Cases	00	393	205	5,239	1,061	1,229	480	966	402	280
HWF	(H)	>0.05	>0.05	>0.05	>0.05	>0.05	>0.05	>0.05	>0.05	>0.05
z	(cases/controls)	494/298	479/2936	5,893/6319	1,430/1570	1,372/1087	552/1132	1,230/1228	976/1489	318/401
	Sample techniques	ABI 3130XL genetic analyzer	Affymetrix assay	TaqMan SNP genotyping assay	The Sequenom MassARRAY	Unknown	TaqMan 59-exonuclease allelic discrimination assay	TaqMan SNP Genotyping Assays	the Sequenom MassARRAY	Taqman allele-specific assays
	Ethnicity	Pakistani	European	Chinese	Chinese	Chinese	Japanese	Chinese	European	Chinese
	Country	Pakistan/ Denmark	NK	China	China	China	Japan	China	Denmark	China
Duhliched	Year	2017	2010	2014	2014	2017	2012	2013	2010	2012
	First author,	Ambrin Fatima	EK Green	Fanfan Zheng	Fanglin Guan	Gai Guanche	Hiroaki Hori	Kuanjun He 2013)	M Nyegaard	Qiumei Zhang

Characteristics of the studies included in the meta-analysis

TABLE 1

Nine studies including two European-decent samples and seven Asian cohorts contributed 12,744 cases and 16,460 controls for the analysis of CACNA1C rs1006737 and schizophrenia. As no heterogeneity was detected under any genetic model (p > 0.05 and $l^2 < 50\%$), the fixed effect model was applied to all the models. As shown in Figure 2, a statistically significant difference under four models (GG vs. GA + AA: OR: 0.84, 95% CI: 0.79–0.90 p < 0.00001; GG + GA vs. AA: OR: 0.79, 95% CI: 0.67–0.93 p = 0.004; GG vs. AA: OR: 0.76, 95% CI: 0.64–0.90, p = 0.001; and G vs. A: OR: 0.85, 95% CI: 0.81–0.90, p < 0.00001) were observed by pooling the night included studies.

For European-decent samples, only two studies including 1,455 cases and 4,425 controls were included. Using a fixed effect model, a significant difference was identified between patients and controls for the four models (GG vs. GA + AA: OR: 0.88, 95% CI: 0.77–0.99 p = 0.04; GG + GA vs. AA: OR: 0.79, 95% CI: 0.65–0.95 p = 0.01; GG vs. AA: OR: 0.76, 95% CI: 0.59–0.97, p = 0.03; and G vs. A: OR: 0.88, 95% CI: 0.80–0.96, p = 0.006).

For Asian samples, seven studies were included in the metaanalysis. We observed a significant difference between patients and controls for the recessive model and allele model (GG vs. GA + AA: OR: 0.83, 95% CI: 0.77–0.89, p < 0.00001; G vs. A: OR: 0.84, 95% CI: 0. 78–0.90, p < 0.00001) using a fixed effect model but the dominant model (GG + GA vs. AA: OR: 0.78, 95% CI: 0.56– 1.09 p = 0.15) and additive model (GG vs. AA: OR: 0.76, 95% CI: 0.55–1.06, p = 0.11) showed no significant difference between patients and controls.

3.3 | Sensitivity analysis

As no severe heterogeneity was observed and eligible studies were limited, sensitivity analysis was not performed.

3.4 | Publication bias

The results of the publication bias test for the rs1006737 polymorphism are presented in Supplement Figures S1–S3 and Supplement Table S1. No publication bias was found in the group when assessed with the Egger test or Begg's funnel plot.

4 | DISCUSSION

The potential role of neurodevelopmental disorder in schizophrenia has been suggested but is still ambiguous. A recent review has detailed a pivotal role of neurodevelopmental disorder in the pathogenesis of schizophrenia (Rund, 2018). CACNA1C is a known marker of neurodevelopment that plays an important role in schizophrenic pathophysiology (Bhat et al., 2012; Blake et al., 2010; Yin et al., 2014). In the current study, we investigated CACNA1C rs1006737 in patients with schizophrenia.

As we expected, the p value of the four models in the combined population (European and Asian population) were all <0.05. The results were replicated in the European population. As for

5 of 8

ZHU et al.							_Brain and Behavior	-WILEY 5 of 8
Study or Subgroup	Experin Events	nental Total	Cont Events	rol Total	Weight	Odds Ratio M-H, Fixed, 95% Cl	Odds Ra M-H, Fixed, S	tio 95% Cl
1.1.1 GG VS GA+AA								
Ambrin Fatima et al.(2017)	393	494	235	298	1.2%	1.04 [0.73, 1.49]	+-	
EK Green et al. (2010)	205	479	1367	2936	4.3%	0.86 [0.71, 1.04]		
Fanfan Zheng(2014)	5239	5893	5706	6319	12.0%	0.86 [0.77, 0.97]	-	
Fanglin Guan et al.(2014)	1061	1430	1223	1570	5.9%	0.82 [0.69, 0.97]	-	
Gai Guanchen et al. (2017)	1229	1372	1003	1087	2.3%	0.72 [0.54, 0.95]		
Hiroaki Hori et al. (2012)	480	552	1002	1132	1.7%	0.86 [0.64, 1.18]		
Kuanjun He et al.(2013)	996	1230	1053	1228	3.9%	0.71 [0.57, 0.88]		
M Nyegaard et al. (2010)	402	976	656	1489	6.0%	0.89 [0.76, 1.05]		
Qiumei Zhang et al. (2012) Subtotal (95% CI)	280	318 12744	357	401 16460	0.7% 37.9%	0.91 [0.57, 1.44] 0.84 [0.79, 0.90]	+	
Total events	10285		12602					
Heterogeneity: Chi ² = 6.01, df =	8 (P = 0.6	5); l² = 0'	%					
Test for overall effect: Z = 5.18 (F	° < 0.0001	01)						
1.1.2 GG+GA VS AA								
Ambrin Fatima et al.(2017)	477	494	289	298	0.2%	0.87 [0.38, 1.99]		-
EK Green et al. (2010)	413	479	2600	2936	2.0%	0.81 [0.61, 1.07]		
Fanfan Zheng(2014)	5874	5893	6303	6319	0.4%	0.78 [0.40, 1.53]		
Fanglin Guan et al.(2014)	1404	1430	1550	1570	0.5%	0.70 [0.39, 1.25]		
Gai Guanchen et al. (2017)	1369	1372	1083	1087	0.1%	1.69 [0.38, 7.55]		
Hiroaki Hori et al. (2012)	550	552	1129	1132	0.1%	0.73 [0.12, 4.39]		
Kuanjun He et al.(2013)	1216	1230	1219	1228	0.3%	0.64 [0.28, 1.49]		
M Nyegaard et al. (2010)	846	976	1331	1489	2.7%	0.77 [0.60, 0.99]		
Qiumei Zhang et al. (2012) Subtotal (95% CI)	317	318 12744	399	401 16460	0.0% 6.3%	1.59 [0.14, 17.60] 0.79 [0.67, 0.93]	•	
Total events	12466		15903					
Heterogeneity: Chi ² = 1.84, df = 1 Test for overall effect: Z = 2.90 (f	8 (P = 0.9 P = 0.004)	9); I² = 0'	%					
1.1.3 GG VS AA								
Ambrin Fatima et al.(2017)	393	410	235	244	0.2%	0.89 (0.39, 2.02)		-
EK Green et al. (2010)	205	271	1367	1703	1.8%	0.76 [0.56, 1.03]		
Fanfan Zheng(2014)	5239	5258	5706	5722	0.4%	0.77 [0.40, 1.51]		
Fanglin Guan et al.(2014)	1061	1087	1223	1243	0.5%	0.67 [0.37, 1.20]		
Gai Guanchen et al. (2017)	1229	1232	1003	1007	0.1%	1.63 [0.36, 7.32]		
Hiroaki Hori et al. (2012)	480	482	1002	1005	0.1%	0.72 [0.12, 4.31]		
Kuanjun He et al.(2013)	996	1010	1053	1062	0.3%	0.61 [0.26, 1.41]		
M Nyegaard et al. (2010)	402	532	656	814	2.5%	0.74 [0.57, 0.97]		
Qiumei Zhang et al. (2012)	280	281	357	359	0.0%	1.57 [0.14, 17.39]		
Subtotal (95% CI)		10563		13159	5.8%	0.76 [0.64, 0.90]	•	
Total events	10285	0.17.0	12602					
Test for overall effect: Z = 3.23 (F	8 (P = 0.9 P = 0.001)	8); I* = U	%					
1.1.4 G VS A								
Ambrin Fatima et al.(2017)	870	988	524	596	1.5%	1.01 [0.74, 1.38]	+	
EK Green et al. (2010)	618	958	3967	5872	7.7%	0.87 [0.76, 1.01]	-	
Fanfan Zheng(2014)	11113	11786	12009	12638	12.9%	0.86 [0.77, 0.97]	-	
Fanglin Guan et al.(2014)	2465	2860	2773	3140	7.1%	0.83 [0.71, 0.96]		
Gai Guanchen et al. (2017)	2598	2744	2086	2174	2.4%	0.75 [0.57, 0.98]		
Hiroaki Hori et al. (2012)	1030	1104	2131	2264	1.8%	0.87 [0.65, 1.17]	-	
Number of al. (2013)	1240	2400	1007	2450	4.5%	0.72 [0.59, 0.88]		
Minyeyaanu etal. (2010) Ainmei Zhang etal. (2012)	607	1922	1907	2010	11.170 N 204	0.00 [0.70, 1.00]		
Subtotal (95% CI)	097	25488	700	32920	50.0%	0.85 [0.00, 1.45]	•	
Total events	22751	20400	28505	02020	50.070	0.00 [0.01, 0.30]	1	
Heterogeneity: Chi ² = 5.53 df = 1	8 (P = 0 7	()). <u>s</u> = 0.	×0000					
Test for overall effect: Z = 5.50 (F	P < 0.0001	01)	~					
Total (95% CI)		61539		78999	100.0%	0.84 [0.80, 0.87]	•	
Total events	55787		69612					
Heterogeneity: Chi ² = 17.71, df =	= 35 (P = 0	0.99); l² =	0%					10 100
Test for overall effect: Z = 8.56 (F Test for subαroup differences: C	² < 0.0000 2hi² = 2.3€	01) 5. df = 3 (P = 0.50)). I² = 0%			Favours [experimental] Fa	avours [control]

FIGURE 2 Meta-analysis for the association of rs1006737 with schizophrenia in the European population and Asian population

			Open Access							
	Experime	ental	Cont	rol		Odds Ratio	Odds	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixe	ed, 95% CI		
1.2.1 GG VS GA+AA										
EK Green et al. (2010)	205	479	1367	2936	11.7%	0.86 [0.71, 1.04]		ł		
M Nyegaard et al. (2010)	402	976	656	1489	16.4%	0.89 [0.76, 1.05]	-	+		
Subtotal (95% CI)		1455		4425	28.1%	0.88 [0.77, 0.99]	•	•		
Total events	607		2023							
Heterogeneity: Chi ² = 0.07, d	f = 1 (P = 0)	79); l ² =	0%							
Test for overall effect: Z = 2.0	16 (P = 0.04))								
1.2.2 GG+GA VS AA										
EK Green et al. (2010)	413	479	2600	2936	5.4%	0.81 [0.61, 1.07]		t		
M Nyegaard et al. (2010)	846	976	1331	1489	7.5%	0.77 [0.60, 0.99]		4		
Subtotal (95% CI)		1455		4425	12.9%	0.79 [0.65, 0.95]	•			
Total events	1259		3931							
Heterogeneity: Chi ² = 0.06, d	f = 1 (P = 0)	81); l ² =	0%							
Test for overall effect: Z = 2.5	1 (P = 0.01))								
1.2.3 GG VS AA										
EK Green et al. (2010)	393	410	235	244	0.7%	0.89 [0.39, 2.02]		<u> </u>		
M Nyegaard et al. (2010)	402	532	656	814	6.8%	0.74 [0.57, 0.97]		•		
Subtotal (95% CI)		942		1058	7.4%	0.76 [0.59, 0.97]	•			
Total events	795		891							
Heterogeneity: Chi ² = 0.15, d	f = 1 (P = 0)	70); 1=	0%							
Test for overall effect: Z = 2.1	7 (P = 0.03))								
1.2.4 G VS A										
EK Green et al. (2010)	618	958	3967	5872	21.2%	0.87 [0.76, 1.01]	-	1		
M Nyegaard et al. (2010)	1248	1952	1987	2978	30.4%	0.88 [0.78, 1.00]		H		
Subtotal (95% CI)		2910		8850	51.5%	0.88 [0.80, 0.96]	•			
Total events	1866		5954							
Heterogeneity: Chi ² = 0.02, df = 1 (P = 0.89); i ² = 0%										
Test for overall effect: Z = 2.74 (P = 0.006)										
Total (95% CI)		6762		18758	100.0%	0.86 [0.80, 0.92]	•			
Total events	4527		12799							
Heterogeneity: Chi ² = 2.45, df = 7 (P = 0.93); i ² = 0%										
Test for overall effect: Z = 4.5	53 (P < 0.00	001)					Eavours (experimental)	Favours [control]		
Test for subaroup differences: Chi ² = 2.15. df = 3 (P = 0.54). I ² = 0%										

FIGURE 3 Meta-analysis for the association of rs1006737 with schizophrenia in the European population

the Asian population, only two models (GG vs. GA + AA and G vs. A) showed a significant difference with schizophrenia. Therefore, the overall meta-analysis proves that there is a significant association between rs1006737 and schizophrenia, and allele A of rs1006737 is associated with the risk for schizophrenia at a comparable power within both populations. Our results are consistent with most previous studies (Jiang et al., 2015; Nie et al., 2015; Zheng et al., 2014).

6 of 8

WILEY_Brain and Behavior

Considering the difference in the minimum allele frequencies (MAF) in each study, ranging from 0.041 in Han Chinese populations to 0.333 in European populations, we conducted heterogeneity analysis. To our surprise, no heterogeneity was found in our meta-analysis between European and East Asian ancestries. Similarly, heterogeneity analysis was performed on Asian and European populations separately, and the same results were obtained. In addition, our meta-analysis showed no publication bias.

There are, however, limitations to the interpretation of our results. First, there are few studies included. Due to insufficient information provided in the original literature, several articles were not included in the meta-analysis. Future research should include as much information as possible for more realistic results. Second, because the current research is only in Europe and Asia, the relationship between rs1006737 and schizophrenia in other ethnic groups cannot be determined. Therefore, there is an urgent need to conduct research on American, Oceanian, and African populations to understand the relationship between CACNA1C rs1006737 and schizophrenia in the world's populations.

Our findings contributed important evidence for the establishment of CACNA1C as a susceptibility gene for schizophrenia across world populations, but further investigations on its role in the pathogenesis of schizophrenia are warranted.

ACKNOWLEDGMENTS

This work was supported by the National Nature Science Foundation of China (81670252, 81571157, 81471294 and 81770034), the Nature Science Foundation of Guangdong Province (2015A030313523), the third session of the China-Serbia Committee for scientific and technological cooperation (3-13), the 2016 Talent Assistance Project of Guangdong (4YF17006G) and the Science and technology research project of Zhanjiang City (2016A01008), Medical Scientific Research

```
Brain and Behavior
```

7 of 8

WILEY

	Experin	nental	Cont	rol		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl			
1.3.1 GG VS GA+AA										
Ambrin Fatima et al.(2017)	393	494	235	298	1.9%	1.04 [0.73, 1.49]				
Fanfan Zheng(2014)	5239	5893	5706	6319	19.3%	0.86 [0.77, 0.97]	*			
Fanglin Guan et al.(2014)	1061	1430	1223	1570	9.5%	0.82 [0.69, 0.97]	-			
Gai Guanchen et al. (2017)	1229	1372	1003	1087	3.7%	0.72 [0.54, 0.95]				
Hiroaki Hori et al. (2012)	480	552	1002	1132	2.7%	0.86 [0.64, 1.18]				
Kuanjun He et al.(2013)	996	1230	1053	1228	6.3%	0.71 [0.57, 0.88]				
Qiumei Zhang et al. (2012)	280	318	357	401	1.2%	0.91 [0.57, 1.44]				
Subtotal (95% CI)		11289		12035	44.6%	0.83 [0.77, 0.89]	♦			
Total events	9678		10579							
Heterogeneity: Chi ² = 5.35, df =	6 (P = 0.5	0): $ ^2 = 0^9$	%							
Test for overall effect: Z = 4.81 (P < 0.0000	01)								
		,								
1.3.2 GG+GA VS AA										
Amhrin Fatima et al (2017)	477	494	289	298	0.4%	0.87 (0.38.1.99)				
Fanfan 7heng(2014)	5874	5803	6202	6310	0.4%	0.78 (0.40, 1.53)				
Fanalin Guan et al (2014)	1/0/	1/20	1660	1670	0.070	0.70 [0.40, 1.33]				
Coi Cuonchon et al. (2014)	1909	1930	1000	1007	0.0%	1 60 10 20 7 65				
Uiveeld Leviet et al. (2017)	1309	552	1400	1007	0.1%	1.09 [0.36, 7.33]				
Hiroaki Hori et al. (2012)	550	552	1129	1132	0.1%	0.73 [0.12, 4.39]				
Kuanjun He et al.(2013)	1216	1230	1219	1228	0.4%	0.64 [0.28, 1.49]				
Qiumei Zhang et al. (2012)	317	318	399	401	0.0%	1.59 [0.14, 17.60]				
Subtotal (95% CI)		11289		12035	2.5%	0.78 [0.56, 1.09]				
Total events	11207		11972							
Heterogeneity: Chi ² = 1.78, df =	6 (P = 0.9	4); l² = 0°	%							
Test for overall effect: Z = 1.44 ((P = 0.15)									
1.3.3 GG VS AA										
Ambrin Fatima et al.(2017)	393	410	235	244	0.4%	0.89 [0.39, 2.02]				
Fanfan Zheng(2014)	5239	5258	5706	5722	0.6%	0.77 [0.40, 1.51]				
Fanglin Guan et al.(2014)	1061	1087	1223	1243	0.9%	0.67 [0.37, 1.20]				
Gai Guanchen et al. (2017)	1229	1232	1003	1007	0.1%	1.63 [0.36, 7.32]				
Hiroaki Hori et al. (2012)	480	482	1002	1005	0.1%	0.72 [0.12, 4.31]				
Kuaniun He et al.(2013)	996	1010	1053	1062	0.4%	0.61 (0.26, 1.41)				
Qiumei Zhang et al. (2012)	280	281	357	359	0.0%	1.57 [0.14, 17, 39]				
Subtotal (95% CI)	200	9760	001	10642	2.5%	0.76 [0.55, 1.06]	•			
Total events	9678		10579							
Heterogeneitr Chi ² = 1.94 df =	6 (P = 0.9	2)· I ² = Ω ⁰	%							
Test for overall effect: 7 = 1.59 (P = 0.11	27,1 = 0								
	0.117									
1.3.4 G VS A										
Amhrin Fatima et al (2017)	870	988	524	596	2.5%	1 01 0 74 1 381				
Fanfan Zheng(2014)	11113	11786	12009	12638	2.0 %		-			
Fandin Guan at al (2014)	2466	11700	2772	2140	11 5%	0.00 [0.77, 0.97]				
Coi Cuonchon et al. (2014)	2400	2000	2006	2174	2.000					
Uiroold Llori et al. (2017)	2000	2744	2000	2174	3.9%	0.75 [0.57, 0.96]				
Hiruaki Huri et al. (2012)	1030	1104	2131	2204	3.0%	0.87 [0.05, 1.17]	-			
Ruanjun He et al.(2013)	2212	2460	2212	2450	1.2%	0.72 [0.59, 0.88]				
Qiumei Zhang et al. (2012)	597	636	756	802	1.3%	0.93 [0.60, 1.45]				
Subtotal (95% CI)		22578		24070	50.3%	0.84 [0.78, 0.90]	Y			
Total events	20885		22551							
Heterogeneity: Chi ² = 4.80, df =	6 (P = 0.5	7); $I^2 = 0^9$	%							
Test for overall effect: Z = 4.84 (P < 0.00001)										
7. 1. 1. 0.521. 011					100					
lotal (95% CI)		54916		58782	100.0%	0.83 [0.79, 0.87]	'			
Total events	51448		55681							
Heterogeneity: Chi ² = 14.28, df	= 27 (P = 0	0.98); I ^z =	0%							
Test for overall effect: Z = 7.13 ((P < 0.0000	01)					Favours [experimental] Favours [control]			
Test for subgroup differences: Chi ² = 0.40. df = 3 (P = 0.94). I ² = 0% Favours [experimental] Favours [control]										

FIGURE 4 Meta-analysis for the association of rs1006737 with schizophrenia in the Asian population

Foundation of Guangdong Province (Grant No. A2017480) and Scientific research fund of Guangdong Medical University (Grant No. M2016010).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Dongjian Zhu, Jingwen Yin, and Chunmei Liang were responsible for the study design, statistical analysis, and manuscript preparation. Xudong Luo, Dong Lv, Zhun Dai, and Susu Xiong managed the literature searches and analyses. Jiawu Fu, You Li, and Juda Lin were involved in evolving the ideas. The study was supervised by Zhixiong Lin, Yajun Wang, and Guoda Ma. VILEY_Brain and Behavior

DATA AVAILABILITY STATEMENT

The data that support the findings of this study were derived from the following resources available in the public domain: Science Direct at https://www.sciencedirect.com/, Wiley Online Library at https://onlin elibrary.wiley.com/, PubMed at https://www.ncbi.nlm.nih.gov/pubmed, Cochrane Library at https://www.cochranelibrary.com/, and Wanfang data resource database at http://www.wanfangdata.com.cn/index.html. Additional datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

ORCID

Guoda Ma ^(D) https://orcid.org/0000-0001-8962-6007

REFERENCES

- Bhat, S., Dao, D. T., Terrillion, C. E., Arad, M., Smith, R. J., Soldatov, N. M., & Gould, T. D. (2012). CACNA1C (Ca v 1.2) in the pathophysiology of psychiatric disease. *Progress in Neurobiology*, 99(1), 1–14.
- Blake, D. J., Marc, F., Chapman, R. M., Tinsley, C. L., O'Donovan, M. C., & Owen, M. J. (2010). TCF4, schizophrenia, and Pitt-Hopkins syndrome. *Schizophrenia Bulletin*, 36(3), 443–447. https://doi.org/10.1093/ schbul/sbq035
- Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. *Schizophrenia Bulletin*, 35(3), 528–548. https://doi.org/10.1093/schbul/sbn187
- Fatima, A., Farooq, M., Abdullah, U., Tariq, M., Mustafa, T., Iqbal, M., ... Farooq, M. (2017). Genome-wide supported risk variants in MIR137, CACNA1C, CSMD1, DRD2, and GRM3 contribute to schizophrenia susceptibility in Pakistani population. *Psychiatry Investigation*, 14(5), 687-692.
- Ferreira, M. A. R., O'Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., ... Craddock, N. (2008). Collaborative genomewide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. *Nature Genetics*, 40(9), 1056–1058. https://doi. org/10.1038/ng.209
- Green, E. K., Grozeva, D., Jones, I., Jones, L., Kirov, G., Caesar, S., ... Craddock, N. (2010). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. *Molecular Psychiatry*, 15(10), 1016–1022. https://doi.org/10.1038/ mp.2009.49
- Guan, F., Zhang, B. O., Yan, T., Li, L. U., Liu, F., Li, T., ... Li, S. (2014). MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. *Schizophrenia Research*, 152(1), 97–104. https://doi.org/10.1016/j.schres.2013.11.004
- Guanchen, G., Zhang, F., Zhiqiang, W., & Wei, Z. (2017). An association study of CACNAIC gene polymorphism with schizophrenia. *Chinese Journal of Behavioral Medicine and Brain Science*, 26(10), 895–898.
- Gurung, R., & Prata, D. P. (2015). What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. *Psychological Medicine*, 45(12), 2461–2480. https://doi.org/10.1017/S0033291715000537
- He, K., An, Z., Wang, Q., Li, T., Li, Z., Chen, J., ... Shi, Y. (2014). CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population. British Journal of Psychiatry the Journal of Mental Science, 204(1), 36–39. https://doi.org/10.1192/bjp.bp.113.126979
- Hori, H., Yamamoto, N., Fujii, T., Teraishi, T., Sasayama, D., Matsuo, J., ... Kunugi, H. (2012). Effects of the CACNA1C risk allele on neurocognition in patients with schizophrenia and healthy individuals. *Scientific Reports*, 2(10), 634. https://doi.org/10.1038/srep00634

- Ivorra, J. L., Rivero, O., Costas, J., Iniesta, R., Arrojo, M., Ramos-Ríos, R., ... Sanjuán, J. (2014). Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample from Spain. *Schizophrenia Research*, 159(1), 107–113. https:// doi.org/10.1016/j.schres.2014.07.004
- Jiang, H., Qiao, F., Li, Z., Zhang, Y., Cheng, Y., Xu, X., & Yu, L. (2015). Evaluating the association between CACNA1C rs1006737 and schizophrenia risk: A meta-analysis. Asia-Pacific Psychiatry: Official Journal of the Pacific Rim College of Psychiatrists, 7(3), 260–267.
- Liu, Y., Blackwood, D. H., Caesar, S., de Geus, E. J. C., Farmer, A., Ferreira, M. A. R., ... Sullivan, P. F. (2011). Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. *Molecular Psychiatry*, 16(1), 2–4. https://doi.org/10.1038/ mp.2009.107
- Nie, F., Wang, X., Zhao, P., Zhang, R., & Ma, J. (2015). Genetic analysis of SNPs in CACNA1C and ANK3 gene with schizophrenia: A comprehensive meta-analysis. *Paper Presented at the Genetic Diversity: Frontiers and Challenges - Genetic Studies in China*, 168(8), 637–648.
- Nyegaard, M., Demontis, D., Foldager, L., Hedemand, A., Flint, T. J., Sørensen, K. M., ... Børglum, A. D. (2010). CACNA1C (rs1006737) is associated with schizophrenia. *Molecular Psychiatry*, 15(2), 119–121. https://doi.org/10.1038/mp.2009.69
- Porcelli, S., Lee, S. J., Han, C., Patkar, A. A., Serretti, A., & Pae, C. U. (2015). P.1.a.006 CACNA1C gene and schizophrenia: A case-control and pharmacogenetic study. *European Neuropsychopharmacology*, 25(4), S162–S162.
- Rund, B. R. (2018). The research evidence for schizophrenia as a neurodevelopmental disorder. Scandinavian Journal of Psychology, 59(1), 49–58. https://doi.org/10.1111/sjop.12414
- Sukanta, S., David, C., Joy, W., & John, M. (2005). A systematic review of the prevalence of schizophrenia. PLoS Medicine, 2(5), e141.
- Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187–1192. https://doi.org/10.1001/ archpsyc.60.12.1187
- Yin, J., Lin, J., Luo, X., Chen, Y., Li, Z., Ma, G., & Li, K. (2014). miR-137: A new player in schizophrenia. *International Journal of Molecular Sciences*, 15(2), 3262–3271. https://doi.org/10.3390/ijms15023262
- Zhang, Q., Shen, Q., Xu, Z., Chen, M., Cheng, L., Zhai, J., ... Chen, C. (2012). The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. *Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology*, 37(3), 677-684. https://doi.org/10.1038/npp.2011.242
- Zheng, F., Zhang, Y., Xie, W., Li, W., Jin, C., Mi, W., ... Yue, W. (2014). Further evidence for genetic association of CACNA1C and schizophrenia: New risk loci in a Han Chinese population and a metaanalysis. *Schizophrenia Research*, 152(1), 105–110. https://doi. org/10.1016/j.schres.2013.12.003

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Zhu D, Yin J, Liang C, et al. CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis. *Brain Behav*. 2019;9:e01292. https://doi.org/10.1002/brb3.1292