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Abstract
Objective

To examine temporal visual resolution assessed as critical flicker frequency (CFF) in patients
with MS and to investigate associations with visual system damage and general disability and
cognitive function.

Methods

Thirty-nine patients with MS and 31 healthy controls (HCs) were enrolled in this cross-
sectional study and underwent CFF testing, high- and low-contrast visual acuity, alertness and
information processing speed using the paced auditory serial addition task (PASAT), and
retinal optical coherence tomography (OCT). In patients with MS, visual evoked potentials
(VEPs) and Expanded Disability Status Scale (EDSS) scores were assessed.

Results

CFF in patients with MS (mean + SD: 40.9 + 4.4 Hz) was lower than in HCs (44.8 + 4.4 Hz, p <
0.001). There was no significant CFF difference between eyes with and without previous optic
neuritis (ON). CFF was not associated with visual acuity, VEP latency, the peripapillary retinal
nerve fiber layer thickness, and the combined ganglion cell and inner plexiform layer volume.
Instead, reduced CFF was associated with worse EDSS scores (r* = 0.26, p < 0.001) and
alertness (r* = 0.42, p = 0.00042) but not with PASAT (p = 0.33).

Conclusion

CFF reduction in MS occurs independently of ON and structural visual system damage. Its
association with the EDSS score and alertness suggests that CFF reflects global disease pro-
cesses and higher cortical processing rather than focal optic nerve or retinal damage.
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Glossary

ART = automatic real-time; CFF = critical flicker frequency; EDSS = Expanded Disability Status Scale; GCIP = ganglion cell
and inner plexiform layer; GEE = Generalized estimating equation; HC = healthy control; HCVA = high-contrast visual acuity;
ICC =intraclass correlation coeflicient; INL = inner nuclear layer; LCLA = Low-contrast letter acuity; OCT = optical coherence
tomography; ON = optic neuritis; PASAT = paced auditory serial addition task; pRNFL = Peripapillary retinal nerve fiber layer
thickness; RRMS = relapsing-remitting MS; RT = reaction time; SE = standard error; TAP = Test of Attentional Performance;

TMYV = total macular volume; VEP = visual evoked potential.

Afferent visual pathway damage in MS results from acute focal
damage, ie., by optic neuritis (ON) or chronic diffuse
damage,' ™ which leads to visual dysfunction and has a rele-
vant impact on the quality of life of patients.4 Thus, clinical
assessment of the visual pathway by means of high-contrast
visual acuity (HCVA), functional assessment by means of
visual evoked potentials (VEP),” and more recently also
structural assessment by optical coherence tomography
(OCT) have become integral in diagnosing and monitoring
patients with MS.°

An intriguing aspect of visual function is the visual tem-
poral resolution, commonly assessed as the critical flicker
frequency (CFF).” CFF represents the frequency of
a pulsed light source, from which an individual perceives
the signal as flickering. Braunstein already reported in 1903
that CFF was decreased in optic atrophy and other oph-
thalmologic conditions.”® From the 1950s onward, CFF
was investigated in MS,’ and decreased CFF was found to
relate to ON,”™'! but independence from ON was also
mported.lz’13 Furthermore, higher cortical processes had
an impact on CFF in patients with cerebral injuries14

hepatic encephalopathy.15

and

Despite these early studies suggesting CFF as a potentially
important marker for visual function, it remains unclear how
CFF could serve as a marker for monitoring disease severity in
MS. Our study is thus aimed at evaluating the potential of
CFF measurements by investigating its association with
clinical and cognitive assessments and structural visual system

damage assessed by OCT.

Methods

Patients and controls

Forty-two patients with relapsing-remitting MS (RRMS) and
31 healthy controls (HCs) were enrolled in this prospective,
cross-sectional pilot study. Inclusion criteria were diagnosis of
RRMS according to the 2010 revised McDonald criteria’® (or
HC) and age between 18 and 70 years. Exclusion criteria were
any comorbidity (e.g, glaucoma, retinal disease, diabetes
mellitus, ophthalmologic surgery), which could influence vi-
sion or the retina. Patients with MS were recruited consecu-
tively over S years (2012-2017) from the NeuroCure Clinical
Research Center, Berlin. HCs were recruited from volunteers.

To match the groups for sex and age, the 3 oldest female
patients with MS were excluded before analysis, leading to
a final number of 39 patients included in the analysis.

All patients with MS underwent clinical assessment and were
scored using the Expanded Disability Status Scale (EDSS)."”
A demographic and clinical overview is given in table 1.

Standard protocol approvals, registrations,
and patient consents

This study was conducted in line with the strengthening the
reporting of observational studies in epidemiology state-
ment'® and was approved by the local ethics committee
(EA1/216/11). It was conducted in accordance with the
Declaration of Helsinki in its applicable version and ap-
plicable German laws. All participants provided written
informed consent.

Table 1 Cohort description

MS HC p Value
Participants, N 39 31
Sex, male/female (N) 13/26 12/19 0.6 (Xz)
Age/years, mean + SD (range) 459 + 8.4 (27-66) 45.0 + 16.1 (20-70) 0.6 (MWU)
Eyes with previous ON, yes/no (N) 28/50
Time since diagnosis, mo, mean + SD (range) 156.8 + 92.3 (24-446)
EDSS, median (range) 2.5 (0-6)
Abbreviations: EDSS = Expanded Disability Status Scale; HC = healthy control; MWU = Mann-Whitney U test; ON = optic neuritis.
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Critical flicker frequency

CFF measurement was performed monocularly using
a HEPAtonorm analyzer (nevoLAB GmbH, Maierhéfen,
Germany) in a quiet and semidarkened room. The device
includes a headset that shields any external light from the
participant’s eyes and that features intrafoveal visual stimu-
lation with a red luminous diode. The initial light signal of 60
Hz is perceived as continuous by the participant. Participants
were instructed to press a stop button as soon as they perceive
a flickering signal. When the operator starts the measurement
on a hand-held controller, the pulse frequency decreases until
it is perceived as flickering. The corresponding pulse fre-
quency is defined as CFF and recorded by the hand-held
controlling unit. CFF thresholds were determined monocu-
larly, where each eye was tested 8 times, and the mean CFF
(mCFF) value was calculated. All participants underwent
a training session with S measurements before each initial
measurement session.'>"”

Visual function parameters

HCVA was assessed with the Functional Vision Analyzer
Optec 6500P system (Stereo Optical Co, Chicago, IL), as
described previously.”® Testing was performed monocularly
under habitual correction and photopic conditions (85 cd/
m®) with Early Treatment of Diabetic Retinopathy Study
charts in a simulated distance of 20 ft.** Low-contrast letter
acuity (LCLA) was assessed binoculary with 2.5% contrast
Sloan charts in 2 m distance.”!

Visual evoked potentials (VEP) were tested using the Dantec
Keypoint VEP system (Natus Europe GmbH, Planegg, Ger-
many). The P100 latency was measured using a standard
black-and-white checkerboard stimulation (15’/50-60’, at 1
m) and were recorded from the Oz electrode against a Cz
reference electrode according to the 10-20 International
System. The P100 amplitude was not analyzed.

Alertness and cognitive parameters

Because of time constraints, denial by participants and tech-
nical issues, only a subset of 17 patients with MS and 20 HCs
underwent a selected task from the computerized test of at-
tentional performance (TAP) battery for alertness testing.”
The tasks consist of a simple visual reaction time (RT) task
without an acoustic warning signal, called tonic alertness task
(part A) and a visual RT task preceded by an acoustic warning
signal, phasic alertness (part B). To measure alertness, several
trials were undertaken by alternating part A and part B. The
participant was then asked to respond as fast as possible by
pushing a button whenever a cross is displayed.””> Mean RTs
from tests without acoustic warning signal were considered
a measure of alertness.

Also because of time constrains, only a subset of 29 patients
with MS were tested with the 3-second version of the paced
auditory serial addition task (PASAT), a measure of in-
formation processing speed.”® For 14 patients, both alertness
and PASAT testing were available.
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OCT and intraretinal segmentation

All participants underwent retinal examination using a spec-
tral domain OCT (Spectralis SD-OCT; Heidelberg Engi-
neering, Heidelberg, Germany) using Eye Explorer 1.9.10.0
and automatic real-time (ART) image averaging.”* Peri-
papillary retinal nerve fiber layer thickness (pRNFL) was
derived from a standard ring scan around the optic nerve head
(12°, 1536 A-scans, 16 < ART < 100) using segmentation by
the device’s software with viewing module 6.0.14.0. A macular
volume scan (25° x 30° 61 B-scans, 768 A-scans per B-scan,
12 < ART < 15) was acquired for total macular volume
(TMV) including all retinal layers from the inner limiting
membrane and Bruch membrane, as determined by the
device’s segmentation software within a 6-mm diameter cyl-
inder around the fovea.

Intraretinal segmentation of combined ganglion cell and inner
plexiform layer (GCIP) volume and inner nuclear layer (INL)
volume was performed on macular scans with the Johns
Hopkins OCT layer segmentation method (AURA Tools

Figure 1 Critical flicker frequency measurements in healthy

controls
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Comparison of CFF measurements between female and male HCs (A) and
association of CFF measurements with age (B). HC = healthy control; mCFF =
mean critical flicker frequency.
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version 1.2)>° combined with in-house pre-processing
(cropping of volume scans to 6 x 6 mm) and postprocess-
ing tools (graphical user interface for manual correction of
segmentation results). All OCT scans were carefully checked
for retinal changes unrelated to MS, sufficient quality,”**”
segmentation errors, and were manually corrected by a blin-
ded experienced grader if necessary.

Statistical analysis

Statistical analyses were performed with R version 3.1.2 in-
cluding geepack package 1.2-0. For demographic comparisons
between patients and HCs, the Pearson x” test for sex and
nonparametric Mann-Whitney U test for age were used.
Generalized estimating equation (GEE) models with working
correlation matrix “exchangeable” and corrected for age and
sex were used for group comparisons and associations in-
volving eye-related measurements to account for within-
subject intereye effects. GEE results are given with regression
coefficient (B) and standard error (SE). All measurements
were treated as continuous variables, and groups were strati-
fied within patients with MS in ON and non-ON eyes. For the
assessment of the test-retest reliability, the intraclass correla-
tion coefficient (ICC) and its 95% confidence intervals were
estimated using the R ICC package.”® As suggested in a pre-
vious study, we considered an ICC greater than 0.9 as high
and as moderate if between 0.8 and 0.9.>° Statistical signifi-
cance was established at p < 0.0S. A correction for multiple
comparisons with the Bonferroni-Holm method was per-
formed for all correlation analyses.*

Data availability
All data of this study will be shared by request from any
qualified investigator.

Results

CFF in HC

HC had an mCFF of 44.8 + 4.4 Hz. There was no mCFF
difference between female and male HCs (43.70 + 3.24 vs 46.6
+5.3 Hz, B =1.7188, SE =4.06, p = 0.67) (figure 1A), but lower
mCFF was associated with higher age (B = —0.090, SE = 0.043,
p = 0.036)(figure 1B) in HC. Also, in HC, there was no asso-
ciation between mCFF and HCVA (B = 2.30, SE = 1.99, p =
0.34), mCFF and LCLA (B = 0.029, SE = 0.078, p = 0.71), or
VEP P100 latency (B = 0.044, SE = 0.042, p = 0.29). Likewise,
alertness did not correlate with mCFF (B = —0.011, SE =
0.0093, p = 0.25). Mean results are presented in a supplemental
file (table e-1, links.lww.com/NXI/A65). The test-retest re-
liability in HC was high, with an ICC value of 0.91 (0.87-0.94).

CFF in MS

mCFF in patients with MS was lower than in HC (40.9 + 4.72
Hz, p < 0.001). There was no difference between ON and
non-ON eyes (39.7 + 5.22 vs 41.5 £ 4.33 Hz, p = 0.094)
(figure 2). mCFF was also not associated with visual function
as determined by HCVA, LCLA, VEP latencies, and retinal
OCT parameters pRNFL (global and papillomacular bundle),
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Figure 2 Critical flicker frequency measurements
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Comparison of CFF measurements between HCs and patients with MS (A) and
comparison of CFF measurements between eyes with optic neuritis (ON) and
eyes without ON (NON) in patients with MS (B). HC = healthy control; mCFF =
mean critical flicker frequency.

GCIP, INL, and TMV (figure 3). Mean results are presented
in a supplemental file (table e-1, links.lww.com/NXI/A6S).
The test-retest reliability was moderate, with an ICC value of
0.89 (0.85-0.92).

CFF and disability

We then investigated whether CFF was associated with
overall disability, alertness, and information processing speed
in MS patients. Here, overall disability was found as higher
EDSS scores, which was inversely correlated with lower

Neurology.org/NN
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Figure 3 Critical flicker frequency measurements and visual function in MS
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Association of CFF measurements with structural and visual functional parameters: pRNFL (A), GCIP (B), INL (C), TMV (D), HCVA (E), LCLA (F), P100 (G). After Bonferroni-
Holm correction, no p value remained significant. GCIP = ganglion cell/inner plexiform layer; HCVA = high-contrast visual acuity; INL = inner nuclear layer; LCLA = low-
contrast letter acuity; mCFF = mean critical flicker frequency; pRNFL = peripheral retinal nerve fiber layer; TMV = total macular volume; VEP = visual evoked potential.

mCFF (r* = 0.26, B = -1.77, SE = 0.50, p = 0.00036) (figure
4A). Moreover, lower mCFF was associated with worse
alertness (r* = 0.42, B = —0.048, SE = 0.014, p = 0.00042)
(figure 4B), but not with information processing speed,
assessed by PASAT (B = 0.063, SE = 0.06S, p = 0.33). After
Bonferroni-Holm correction, the associations between mCFF
and alertness and between mCFF and EDSS remained sig-
nificant. The SD of the CFF measurements was not associated
with alertness (B = 0.0015, SE = 0.0035, p = 0.68).

Discussion

In this study, we investigated the visual temporal resolution by
means of CFF assessment in patients with MS. Key findings
are as follows: (1) CFF is reduced in MS compared with HC;
(2) CFF is not or only weakly associated with structural and
functional measures of afferent visual system damage in MS;
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and (3) by contrast, CFF is associated with alertness and
clinical disability.

Previous studies consistently reported impaired CFF in MS
and ON.”'*"? Some investigators interpreted these results as
support for cortical damage causing impairment at the central
perceptual-discriminative level”>! Thus, they recommended
CFF as a general measure of cortical processing capacity.>> On
the other hand, neuroaxonal degeneration in the retina and
the visual pathway of patients with MS could affect CFF as
well.”

Perception of high-frequency stimuli has been suggested to be
influenced by retinal ganglion cells.** Furthermore, cells of
the magnocellular system are confirmed to be more sensitive
to higher temporal frequency stimulation than cells of the
parvocellular system.> Thus, we postulated that CFF could
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Figure 4 Critical flicker frequency measurements in
patients with MS
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in MS (B). EDSS = Expanded Disability Status Scale; mCFF = mean critical
flicker frequency.

reflect integrity of the magnocellular retinal cells’ ability to
detect higher frequency stimuli,** and damage of magnocel-
lular retinal ganglion cells might specifically cause decreased
CFF. However, our results show no significant association of
CFF with any afferent visual system marker, indicating that
retinal neuroaxonal retinal damage had no or only negligible
influence to CFF in patients with MS.**** These findings
could be explained by effects being small and masked by other
associations. However, neuroaxonal retinal damage and de-
myelination of our MS cohort seem to be comparable to other
MS cohorts regarding OCT and VEP measurements.>*>’

By contrast, our results showed that lower CFF values are
associated with longer RT's in a test of alertness, whereas there
is no association with CFF SD. This suggests that the asso-
ciation of CFF with alertness is not caused by impaired
alertness reducing the ability to comply with the CFF as-
sessment. Tonic alertness refers to a cognitive control of
wakefulness and arousal in the absence of a warning and is
part of the domain of attention.>® It is based on the activation
of frontoparietal and partly thalamic regions of the right
hemisphere.”® Alertness was shown to be impaired after

Neurology: Neuroimmunology & Neuroinflammation
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appearance of right hemispheric lesions,®® and we could re-
port an association with MS-related fatigue in an earlier
study.” This suggests that impaired CFF reflects damage to
higher cognitive areas involved in alertness and cognition.
Contrarily, the PASAT, which focuses on information pro-
cessing speed, the cognitive domain most commonly affected
in MS, showed no association with CFF in our study.

CFF also correlated with overall disability as represented by
the EDSS score. Studies from the 1950/1960s already sug-
gested an association of CFF with general disease disability,
but did not investigate this systematically.”*’

CFF measurements from our HC are in line with previous
studies regarding the mean CFF and an increase of CFF with
age.41 However, although 1 study found sex differences in
CFF, this difference was not significant in our study.42 The
ICC values for CFF measurements in HC and MS showed
that this method produces reliable results.

Our study has several limitations. Sample sizes of <40 in both
MS and control groups might have been insufficient to detect
small effects. This is particularly important for a potential
effect of a previous ON on the CFF, which was not significant
in our study, but gave a low p value indicative of a potential
power issue. Moreover, the subsets with available TAP and
PASAT tests were even smaller, and differences in sample size
due to some technical problems and time restrictions in the
assessment of the measurements may have resulted in a selec-
tion bias potentially weakening our conclusions. We therefore
might have missed an association of CFF to information pro-
cessing as assessed by PASAT. It should also be noted that
exclusion of the 3 oldest patients has to be regarded critically
because higher age is associated with decreased CFF and im-
paired visual parameters potentially influencing our findings in
regard of the absence of associations between CFF and visual
parameters. All visual parameters were measured monocularly
except the LCLA because of unavailability at the beginning of
the study, potentially reducing the validity of its comparison to
monocularly measured CFF values. We did not perform MRI
in our study, so we have no information on the association of
radiologic disease activity and CFF. Likewise, we have only
cross-sectional measurements, so the dynamics of CFF in
context of the disease course and any causal inferences remain
unclear. It is important to note that most previous studies on
CFF in ON and MS were published in the 1950-1970s.''~*3
Thus, test procedures regarding CFF and other parameters
might differ, making comparison of our results to these pre-
vious ones difficult. The interpretation of the findings of this
study is mostly based on the absence of association with
functional and visual parameters. Therefore, we believe that
adding MRI and conducting longitudinal observations would
be the next step in validating CFF measurements in MS.

Our study showed that visual temporal resolution as assessed
by CFF is impaired in patients with MS independent of
visual and structural visual system damage. Whether CFF
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can serve as a marker for overall disease activity warrants
further investigation.
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