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Background: Cachexia is a frequent syndrome in pancreatic and non-small cell lung
(NSCL) cancer patients. The storm of cancer-induced inflammatory cytokines, in particular
TNF-a, is a crucial pathogenic mechanism. Among the molecular alterations accused of
cancer-induced cachexia, TNF-a 308 G/A (rs1800629) and −1031T/C (rs1799964) are
single-nucleotide polymorphisms (SNPs) within the gene encoding this pro-inflammatory
cytokine. Recent studies have demonstrated the crucial role of non-coding microRNAs
(miRNAs) in pathogenesis of different diseases including cachexia. Moreover, the
mechanistic cytokine signaling pathway of miR-155, as a TNF-a regulator, supports the
involvement of SOCS1, TAB2, and Foxp3, which are direct targets of TNF-a gene.

Aim: A case–control study (NCT04131478) was conducted primarily to determine the
incidence of TNF-a 308 G/A (rs1800629) and −1031T/C (rs1799964) gene
polymorphisms in adult Egyptian patients with local/advanced or metastatic pancreatic
or NSCL cancer and investigate both as cachexia risk factors. The association of gene
polymorphism with cachexia severity and the expression ofmiR-155 in cachectic patients
were analyzed. A mechanistic investigation of the cytokine signaling pathway, involving
SOCS1, TAB2, and Foxp3, was also performed.

Results: In both pancreatic and NSCL cancer cohorts, the mutant TNF-a variant of 308 G/
A was positively associated with cachexia; on the contrary, that of 1031T/C was negatively
associated with cachexia in the NSCL cancer patients.MiR-155was higher in cachexia and
in alignment with its severity in the cachectic group as compared with the non-cachectic
group in both the pancreatic and NSCL cancer patients. Though TAB2 did not change to
any significant extent in cachectic patients, the levels of SOCS1 and Foxp3 were
significantly lower in the cachectic group as compared with the non-cachectic group.

Conclusion: Carriers of the A allele 308 G/A gene and highmiR-155 are at greater risk of
cachexia in both the pancreatic and NSCL cancer patients; however, the mutant variant of
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Abbreviations: Foxp3, Forkhead box P
signaling 1; TAB2, TAK1-associated Bindi
alpha subunit gene.
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1031T/C gene is protective against cachexia in the NSCL cancer patients. Finally, high
levels of miR-155 in the cachectic group lead to negative feedback inhibition of both
SOCS1 and Foxp3 in both the pancreatic and NSCL cancer patients.
Keywords: pancreatic and NSCL cancer, cachexia, single-nucleotide polymorphism, TNF-a gene,miR-155, SOCS1,
Foxp3, TAB2
INTRODUCTION

Cachexia is a devastating, multifactorial syndrome that is observed
in the majority of end-stage cancer patients (1–3). It is more acute
in certain incurable malignancies, such as pancreatic and NSCL
cancers (4–6). The current understanding of cancer cachexia
indicates that factors secreted by tumors together with factors
secreted as a result of the tumor–host interaction initiate systemic
inflammation and metabolic disturbances, which in turn trigger
muscle wasting. Thus, systemic inflammation is thought to be a
major mediator of cancer cachexia (7). TNF-a is probably the
most characterized cytokine in cachexia, as it promotes anorexia
and skeletal muscle wasting mainly through the NF-kB pathway
(8). In a feedforward loop, this cytokine functions in controlling
the transcription factor nuclear factor kappa light chain enhancer
of activated B cells (NF-kB), which helps in adjusting immune and
inflammatory responses and consequently leads to the generation
of specific cytokines that have a role in proteolysis and breakdown
of myofibrillar proteins (9). Accordingly, TNF-a-mediated NF-kB
activation promotes wasting of muscle that leads to bodyweight
loss ending with cancer cachexia (10).

In the last few years, several functional single-nucleotide
polymorphisms (SNPs) within cytokines’ genes have been
identified and described as cancer-related genetic alterations.
The most important ones seem to be SNPs located within the
promoter of TNF-a because of their ability to regulate gene
expression and, consequently, the expression of the TNF-a
protein. Among frequently investigated SNPs, the 308 G/A
(rs1800629) and −238 G/A (rs361525) are potentially involved
in tumor aggressiveness, prognosis, and risk of malnutrition (11,
12). Notably, there are only few data concerning the role of TNF-
a −1031T/C SNP (rs1799964) in the regulation of systemic
inflammatory response; however, the latest studies have
demonstrated the role of this SNP as cachexia-related genetic
alteration (13, 14). Accordingly, the significant role of the
systemic inflammatory response mediated by TNF-a in the
etiopathology of cachexia encourages investigating SNPs of
TNF-a as cachexia-related risk factors.

MicroRNAs (miRNAs) represent another class of molecules
that may be involved in muscle wasting (15). Altered expression of
microRNAs has been shown to be involved in skeletal muscle
homeostasis in health and disease (16–19). Moreover, several lines
of evidence demonstrate that miR-155 is overexpressed in a
number of neoplastic diseases (20), where altered miRNA
expression has been found in hematological malignancies,
3; SOCS1, Suppressor of cytokine
ng Protein 2; TNF-a, Tumor necrosis

2

thyroid carcinoma breast and colon cancer (21); thus, it is
considered to be a marker of poor prognosis (22). Additionally,
many studies have highlighted the role of miRNAs in the
pathophysiology of cancer cachexia (23) particularlyMir-155 (24).

Noteworthy, Jiang et al. (25) identified SOCS1 as a novel
target of miR-155 in breast cancer cells (25). The suppressors of
cytokine signaling (SOCS) protein family are described as direct
regulators of janus kinase (JAK)/signal transducer and activator
of transcription (STAT) signaling pathway in cancer.
Overexpression of SOCS gene and consequently the SOCS
proteins were observed in breast cancer; and a higher
expression level was significantly associated with high-grade
tumors (26). These data provide further evidence for the
proto-oncogenic contribution of SOCS protein in cancer.
Furthermore, the forkhead transcription factor is an immune
regulator where the Foxp3 member is mainly expressed in CD4+
cells, which directly suppress the immune system through
suppressing nuclear transcript abundant transcript 1 (NEAT1)
and NF-kB and consequently repress interleukin-2 (IL-2) and T-
cell cytokines (27). Recently, high expression levels of Foxp3, at
genetic and protein levels, are significantly associated with tumor
invasion in pancreatic ductal adenocarcinoma (PDAC) and lung
adenocarcinoma (28). Moreover, transforming growth factor b
binding activated kinase 1 protein 2 (TAB2) is an inflammatory
mediator in cancer pathogenesis. Aberrant expression of TAB2
protein is significantly associated with cancer progression
through activation of mitogen-activated protein kinase
(MAPK) and NF-kB signaling pathway. A higher expression
level of TAB2 was observed in ovarian cancer (29).

Genetic studies on cancer-associated cachexia remain highly
controversial. Thus, the present study focused on two types of
solid cancers with different pathological entities, pancreatic
cancer “digestive system cancer” and lung cancer “respiratory
system cancer.” Cumulative evidences have proven that TNF-a
is a pro-cachectic protein; therefore, two SNPs of TNF-a gene, as
well as miR-155 expression, have been investigated and
correlated the gene genotype with risk of cancer-associated
cachexia. The selection of SNPs was based on the global and
European minor allele frequency (MAF): TNF-a 308 G/A
(rs1800629) and −1031T/C (rs1799964) SNP. Finally, the
involvement of SOCS1, TAB2, and Foxp3 as direct targets for
TNF-a gene in both cancer types was assessed.
PATIENTS AND METHODS

Study Design and Population
This case–control study was conducted at the Oncology
Department, Faculty of Medicine, Ain Shams University
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(Cairo, Egypt). Pancreatic and NSCL cancer patients (n = 203)
were recruited in this study; their mean age was 51.45 ± 9.7 and
ranged at 20–77 years. They were divided into two subgroups
according to the degree of depletion of energy stores, body mass
index (BMI), and ongoing weight loss; the first subgroup
includes 94 patients who represent the comparative control
non-cachectic group. The second subgroup includes 109
cachectic cancer patients who were then classified into pre-
cachexia, cachexia, and refractory cachexia according to the
cachexia severity index (30) by comparing their current weight
with their actual one recorded on first admission. Pre-cachexia is
defined as a ≤5% weight loss with anorexia and metabolic
change; cachectic patients present with weight loss of >5%,
BMI < 20, and weight loss of >2% or sarcopenia and weight
loss of >2%; they also often had reduced food intake and systemic
inflammation. In refractory cachexia, the cancer is pro-catabolic
and not responsive to treatment (1). According to the type of
cancer, patients were additionally classified into two groups: 71%
of cases were subclassified into cachectic (n = 69) and non-
cachectic (n = 76) groups who received Xeloda (pancreatic
cancer; n = 145), and 29% were also subclassified into
cachectic (n = 40) and non-cachectic (n = 18) groups treated
with Gem/Cis (lung cancer).

Approval and Ethical Considerations
The current study was approved by the Research Ethics
Committee of Faculty of Pharmacy, Cairo University (Cairo,
Egypt; PT-2387), as well as the Ethical Committee of the
Oncology Department, Ain Shams University, and registered
in ClinicalTrials.gov (trial registration number NCT04131478).
The recruited patients provide the required informed consent.

Inclusion and Exclusion Criteria
Inclusion criteria were based on a thorough history taking, and
clinical and pathological examinations. Patients were considered
eligible if they meet the following criteria: a medical diagnosis of
cancer (e.g., lung or pancreatic), locally, advanced, or metastatic
cancer scheduled for first-line cytotoxic chemotherapy; starting or
continuing chemotherapy at the time of screening for participants
where the duration was set based on standard period of first-line
chemotherapy; and age between 18 and 80 years.

On the other hand, patients with the following criteria were
excluded from the study: if they planned to have surgical
procedures at the time of recruitment, have underwent surgery
during the study or in the month prior to the study, and did not
have chemotherapy scheduled post-surgery. Also, patients with
comorbidities that could affect the interpretation of study
findings were excluded, e.g., HIV, Alzheimer’s disease,
movement disorder, acute myocardial infarction within the last
3 months, hepatitis, open burn sites or infected wounds,
esophageal cancer with a swallowing difficulty in mechanical
nature, or an uncorrected mechanical digestive obstruction.
Pregnant, nursing women or patients with disorders associated
with change in miR-155 level (rheumatic arthritis, osteoarthritis,
atopic eczema, Down’s syndrome, breast cancer, endometrioid
adenocarcinoma, acute myeloid leukemia (AML), chronic
lymphocytic leukemia (CLL), and papillary carcinoma thyroid
Frontiers in Oncology | www.frontiersin.org 3
tumors) were excluded too; and finally, patients with
inflammatory and autoimmune diseases (multiple sclerosis,
psoriasis, and systemic lupus erythematous) were excluded.

Study Outcomes
Primary outcomes: to detect the incidence of TNF-a 308 G/A
(rs1800629) and −1031T/C (rs1799964) gene polymorphism and
investigate both as cachexia risk factors in local/advanced/
metastatic pancreatic or NSCL cancer in adult Egyptian
patients; to determine the association of gene polymorphism
with cachexia severity; to assess the expression of miR-155 in
cachectic patients and its association with cachexia severity; and
to verify the involvement of the cytokines SOCS1, TAB2, and
Foxp3 signaling pathway in pancreatic and NSCL cancers.

Secondary outcomes: to measure the association between
TNF-a 308 G/A (rs1800629) and −1031T/C (rs1799964) gene
polymorphism in the selected patient groups and the
development of cancer cachexia; and to analyze the correlation
between miR-155 gene expression and SOCS1, TAB2, or Foxp3
in cachectic pancreatic or NSCL cancer patients.

Sample Collection and Genotyping
Procedure
A venous blood sample (5 ml) was withdrawn from each
participant under complete aseptic conditions and divided into
two portions, as follows: 2 ml of blood was placed in an EDTA-
containing tube for DNA extraction used for genotyping of the
TNF-a gene polymorphism, and 3 ml of blood was left at room
temperature for 30 min for spontaneous clotting, and then serum
was separated by centrifugation at 3,000 rpm for 10 min. The
serum samples were used for RNA extraction and for ELISA
technique. Both samples were stored at −80°C until analysis.

Clinicopathological Assessments
Blood urea nitrogen (BUN), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total serum bilirubin, and
direct serum bilirubin were analyzed by spectrophotometric
assay on fully automated clinical chemistry analyzer (Synchron
LX® Systems; Beckman Coulter, CA, USA); and hemoglobin,
platelets, and total leukocytic count are also measured by the AcT
5diff Cap Pierce hematology analyzer (Beckman Coulter
hematology analyzer; CA, USA).

TNF-a Gene Polymorphism by
Pharmacogenetics Analysis/Genotyping
Genomic DNA was extracted from peripheral blood leukocytes
using the automated QIAcube device (Qiagen, Hilden, Germany)
according to the manufacturer’s guidelines. The selected
polymorphisms were then genotyped by TaqMan allelic
discrimination method according to the manufacturer’s
recommendations (Applied Biosystems, Thermo Fisher
Scientific, MA, USA).

Amplification of MiR-155 Using
qRT-PCR Technique
Total miRNA was isolated from patients’ sera by using the
“miRNeasySerum/Plasma Kit” (Qiagen). MiR-155 was
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reversibly transcribed using miScript II RT Kit (Qiagen). In a
reverse transcription reaction with miScript HiSpec Buffer,
mature miRNAs are polyadenylated by poly(A) polymerase
and converted into cDNA by reverse transcriptase with oligo-
dT priming; and the cDNA was then used for real-time PCR
quantification of mature miRNA expression. Relative miRNA
expression levels for the candidate miR-155 were analyzed by
miScript SYBR Green PCR Kit (Qiagen) and specific primers
(Hs_miR-155_2 miScript Primer Assay [cat#: 218300], which
target mature miR-155 (cat#: MS00031486; Qiagen) and
Hs_SNORD68_11 miScript Primer Assay cat#: 218300) as
housekeeper gene (HK), which targets SNORD68 small
nucleolar RNA, C/D box 68 (cat#: MS000337). The
amplification was done using 5 Plex Rotor Gene RealTime
PCR Analyzer (Qiagen). The relative quantitation of miR-155
was calculated using the equation 2−DDCt test control.

Quantification of SOCS1, TAB2, and Foxp3
Serum Levels Using ELISA Technique
Serum SOCS1 (cat#: SL3093Hu), TAB2 (cat#: SL3094Hu), and
Foxp3 (cat#: SL2462Hu) were measured in patients’ sera using
the corresponding human ELISA Kit (SunLong Biotech Co.,
Hangzhou, China).

Statistical Analysis
The sample size was calculated using G* program, version
3.1.9.4, setting alpha error at 5% and power at 95% and the
allocation ratio for N1/N2 = 1. So assuming an effect size of 0.5
(Cohen’s f) between two groups produced a total sample size of
not less than 184 subjects. Parametric data were presented as
mean ± SD and range, while non-parametric data were presented
as median and range; categorical variables were given as numbers
(percentage). Data were checked for normality using the
Kolmogorov–Smirnov test and homogeneity with chi-squared
test, as appropriate. For parametric data, the comparison
between the two groups was done by Student’s t-test, whereas
for multiple comparisons, one-way ANOVA followed by
Bonferroni’s post-hoc test was performed. For non-parametric
variables, the Mann–Whitney test was adopted to compare the
two groups, whereas the Wilcoxon Signed Rank test assessed the
statistical significance differences between two dependent
samples. Logistic regression analysis was used for the
association between two SNPs and susceptibility to cancer-
associated cachexia and was given as odds ratios (ORs) and
corresponding 95% CI. TheHardy–Weinberg equilibrium (HWE)
and the association between TNF-a gene polymorphisms and
risk of cancer-related cachexia were calculated by SNPstats
online software (http://www.snpstats.net/start.htm), which
assessed the frequency distribution between cachectic and non-
cachectic Egyptian adult cancer patients of four genetic models:
codominant, dominant, recessive, and overdominant (31).
Spearman’s correlation analysis was used between miR-155
gene expression and serum levels of SOCS1, TAB2, and Foxp3
in cachexia-related with pancreatic and NSCL cancers. The
collected data were revised, coded, and tabulated using SPSS
version 24 (IL, USA). All graphs were plotted by GraphPad Prism
Frontiers in Oncology | www.frontiersin.org 4
Software 8.4.2 (CA, USA). The level of significance is taken at a p-
value of <0.05.

Bioinformatics Analysis of TNF-a Gene
In order to infer interrelationships among the TNF-a gene and
cancer cachexia, the SNPs, and TNF-a (rs1800629) and
(rs1799964), selection was based on global and European MAF
published on the National Center for Biotechnology Information
in collaboration with the National Human Genome Research
Institute (dbSNP) accessed from https://www.ncbi.nlm.nih.gov/
snp. The frequency of selected SNPs was double-checked from
Pharmacogenomics Knowledgebase (Pharm GKB) accessed from
https://www.pharmgkb.org.
RESULTS

Clinical and Biochemical Features of
Pancreatic and Non-Small Cell Lung
Cancer Patients
The current study was conducted on 203 adult Egyptian cancer
patients who were sub-classified into two main groups: the
cachectic group (n = 109) and non-cachectic group (n = 94)
where their baseline characteristics are given in Table 1. There
was no difference between the cachectic and non-cachectic
patients regarding the mean of age, distribution of gender,
presence, and number of comorbidities with the majority
having only one comorbid disease; the only difference was the
type of cancer/chemotherapy. Significant associations existed
between cachexia and non-cachexia subgroups for BUN and
TLC in the pancreatic cancer patients (Table S1) and direct
serum bilirubin in the NSCL cancer patients (Table S2).

Distribution of TNF-a 308G/A or −1031T/C
Polymorphisms and Genotypes Among
Pancreatic and Non-Small Cell Lung
Cancer Patients
In the pancreatic cancer group, 69 out of 145 patients were
cachectic, whereas in the NSCL cancer group, 40 out of 58 were
cachectic. According to the present allele frequency distribution
data of all cancer patients, only 27 patients of 203 (13%) had the
TNF-a 308G/A (rs1800629) mutation, whereas approximately
seven times more patients carried the wild-type allele (176
patients, i.e., 87% of the total number). Of the 14 pancreatic
cancer patients carrying the mutant TNF-a 308G/A (rs1800629)
gene, 10 patients were cachectic (15%), and four patients were
non-cachectic (5%), showing a significant positive association
between TNF-a 308G/A gene mutation and cachexia
(Figure 1A). In the NSCL cancer group, in a total of 13
patients, 11 patients who were cachectic (28%) and only two
patients who were non-cachectic (11%) carried this allele,
revealing also a significant positive association (Figure 1B). No
significant association was observed between the polymorphism
of TNF-a 1031T/C (rs1799964) in pancreatic cancer subgroups
(Figure 1C), whereas a significant negative association
November 2021 | Volume 11 | Article 783231
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(Figure 1D) was found between TNF-a 1031T/C gene mutation
and cachexia in the NSCL cancer group. As expected, for an
admixed population from Egypt, the frequency of the TNF-a
308G/A (c2: 5.2, p = 0.001) and TNF-a 1031T/C (c2: 3.8, p =
0.15) gene polymorphisms were higher than in Africans, Latin
Americans, Asians, and Europeans (Table S3).

The genotype distribution of TNF-a 308G/A polymorphism
in each cancer type is presented in Figure 2. In the cachectic
pancreatic cancer, the heterozygous GA genotype (49%)
showed the highest frequency among the three, whereas the
homozygous GG genotype (62%) was the most frequently
distributed among the non-cachectic group; and the
homozygous AA genotype was more frequently distributed in
cachectic (15%) than non-cachectic (5%) patients (Figure 2A).
In the cachectic NSCL cancer patients, the heterozygous GA
genotype (55%) showed the highest frequency among the three,
whereas the homozygous GG genotype (61%) was the most
frequently distributed among the non-cachectic group; and the
homozygous AA genotype was more frequently distributed in
cachectic (28%) compared with non-cachectic (11%) patients
(Figure 2B). Similarly the genotype distribution of TNF-a
1031T/C is presented also in Figure 2. However, the TNF-a
1031T/C genotype was not associated with cancer-related
cachexia in pancreatic cancer patients (Figure 2C). In contrast,
in the cachectic NSCL cancer patients, the homozygous CC
genotype (45%) showed the highest frequency among the
three, whereas the homozygous TT genotype (61%) was
the most frequently distributed among the non-cachectic
group; and the heterozygous TC genotype was more frequently
distributed in cachectic (33%) than non-cachectic (17%)
patients (Figure 2D).
Frontiers in Oncology | www.frontiersin.org 5
Impact of TNF-a 308G/A or −1031T/C
Gene Mutation Frequency on Cachexia
Severity Score Among Pancreatic and/or
Non-Small Cell Lung Cancer Patients
In both pancreatic (Tables 2 and S4) and NSCL (Tables 3 and
S5) cancer patients, no significant association existed between
TNF-a 308G/A or TNF-a 1031T/C mutant alleles as well as their
allelic genotypes and the severity of cachexia. Similarly, no
significant association was reached between TNF-a 308G/A or
TNF-a 1031T/C allelic genotypes and the cachexia severity,
regardless of the cancer type (Table S6).

Impact of TNF-a 308G/A or −1031T/C
Single-Nucleotide Polymorphisms on
Susceptibility to Cancer-Associated
Cachexia
After correction for multiple comparisons, both rs1799964 and
rs1800629 showed a significant association with cachexia
regardless of cancer type. In the unconditional logistic
regression analysis, individuals with TNF-a 308G/A mutant
genotypes had a significantly increased risk of cachexia as
compared with those with the wild genotype. On the other
hand, individuals with TNF-a −1031T/C mutant genotypes
had a significantly decreased risk of cachexia as compared with
those with the wild genotype. Moreover, the dominant and
recessive models were analyzed, and the genotypic models for
both SNPs were tested as follows (GG vs. GA and AA) for the
SNP rs1800629 and (CC versus TC and TT) for the rs1799964:
significant associations with both pancreatic cancer and NSCL
cancer-associated cachexia were reached (Table 4).
TABLE 1 | Demographic characteristics in non-cachectic and cachectic cancer patients.

Variable Cancer patients F/c2

Total Non-cachectic Cachectic

Number of patients 203 94 109

Age in years
Mean ± SD 51.45 ± 9.7 52.0 ± 8.8 50.98 ± 10.4 F = 2.9
Median (Range) 51 (20–77) 52 (30–77) 50 (20–75) p = 0.46

Gender [n (%)]
Male 107 (53) 45 (48) 62 (57) c2 = 1.6
Female 96 (47) 49 (52) 47 (43) p = 0.208

Cancer type [n (%)]
Pancreatic cancer 145 (71) 76 (81) 69 (63) c2 = 7.6
NSCL cancer 58 (29) 18 (19) 40 (37) p = 0.008**

Comorbidities [n (%)]
Negative 100 (49) 50 (54) 50 (46) c2 = 1.2
Positive 103 (51) 44 (46) 59 (54) p = 0.32

No. of comorbidities [n (%)]
One 77 (75) 34 (77) 43 (73) c2 = 0.26
>One 26 (25) 10 (23) 16 (27) p = 0.65

Type of chemotherapy [n (%)]
Xeloda 145 (71) 76 (81) 69 (63) c2 = 7.6
Gem/Cis 58 (29) 18 (19) 40 (37) p = 0.008**
November 2021 | Volume 11 | Art
Data are given as mean ± SD, median (minimum–maximum), or n (%). Statistical analysis was carried out using the independent t-test and chi-square test; p ≤ 0.05.
Cis, cisplatin; F, independent t-test value; Gem, gemcitabine; n (%), number of cases within the group (percentage); NSCL, non-small cell lung; c2, chi-square value.
**Significant difference at p ≤ 0.01.
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Serum MiRNA-155 Is Associated With
Cachexia and Its Severity in Patients With
Pancreatic or Non-Small Cell Lung Cancer
Circulating miRNAs have recently emerged in cancer cachexia
and are a promising class of biomarkers. In the present study, a
significant positive association of serummiR-155 expression level
between cachectic and non-cachectic patients existed, where
miR-155 is increased by 424-fold in the cachectic patients
compared with the non-cachectic group in pancreatic cancer
(Figure 3A); and also in NSCL cancer, miR-155 was upregulated
to 4.5-fold with cancer-associated cachexia (Figure 3B). This
means that patients with cancer who have high miR-155 have an
increased likelihood of developing cancer cachexia than those
with lowmiR-155. Overexpression ofmiR-155 was even higher in
cachectic patients with increasing phases (pre-cachexia, cachexia,
refractory cachexia) in both pancreatic (Figure 3C) and NSCL
(Figure 3D) cancers.
Frontiers in Oncology | www.frontiersin.org 6
Serum Level of SOCS1, TAB2, and Foxp3
in Patients With Pancreatic and Non-Small
Cell Lung Cancer
In pancreatic cancer patients, a significant negative association
was recorded between serum SOCS1 and Foxp3 with the
presence of cachexia. Lower levels of SOCS1 (Table 5) and
Foxp3 (Table 5) were observed in the cachectic group as
compared with the non-cachectic one. On the other hand,
there was no association between TAB2 and the presence of
cachexia (Table 5). Regarding the association between the
SOCS1, TAB2, and Foxp3 with the severity of cachexia, no
significant association was detected except for Foxp3, where
lower levels were significantly associated with higher severity of
cachexia in patients with pancreatic cancer (Table 5).

Regarding the NSCL cancer patients, significantly lower
serum levels of SOCS1 and Foxp3 were noted in cachexia as
compared with non-cachexia. The median serum level for
A

B
D

C

FIGURE 1 | Frequencies of TNF-a 308 G/A (rs1800629) wild and mutant alleles among (A) pancreatic (B) NSCL cancer patients and TNF-a T/C 1031 (rs1799964)
wild and mutant alleles among (C) pancreatic and (D) NSCL cancer patients. Comparison between wild and mutant alleles as performed by chi-square test at
*p < 0.05. **Significant difference at p ≤ 0.01. NSCL, non-small cell lung.
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TABLE 2 | Distribution of TNF-a gene alleles among cachectic pancreatic cancer patients considering the cachexia severity.

Variable TNF-a 308G/A (rs1800629) TNF-a 1031T/C (rs1799964)

Wild Mutant Wild Mutant

Cachexia severity
Pre-cachexia (n = 20) 17 (85) 3 (15) 8 (40) 12 (60)
Cachexia (n = 32) 29 (91) 3 (9) 10 (31) 22 (69)
Refractory (n = 17) 13 (77) 4 (23) 8 (47) 9 (53)
c2 1.8

p = 0.42
0.19

p = 0.90
Frontiers in Oncology | www.frontiersin.org
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Data are given as n (%). Statistical analysis was carried out using the chi-square test; p ≤ 0.05.
n (%), number (percentage); rs, referred sequence; TNF-a, tumor necrosis alpha subunit gene; c2, chi-square value.
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FIGURE 2 | Frequencies of TNF-a 308 G/A genotypes among (A) pancreatic and (B) NSCL cancer patients and TNF-a 1031 T/C genotypes among (C) pancreatic
and (D) NSCL cancer patients. Comparison between all genotypes was performed by chi-square test at *p ≤ 0.05. *Significant difference at p ≤ 0.05. **Significant
difference at p ≤ 0.01 and *** at p ≤ 0.001. NSCL, non-small cell lung.
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SOCS1 was 10.9 in the non-cachectic patients and nearly half this
value at 5.8 in cachectic patients (Table 5). Similarly, Foxp3 was
8.8 in the non-cachectic patients compared with 6.8 in the
cachectic patients (Table 5). In contrast, no significant
association was detected between the TAB2 and the presence
of cachexia in the NSCL cancer patients (Table 5). Moreover,
there was no association between SOCS1, TAB2, and Foxp3 with
the cachexia severity in NSCL cancer (Table 5).

SOCS1 Correlates Positively With
Foxp3 in Cachexia Associated With
Pancreatic Cancer
Correlation analyses (Table 6) revealed a strong positive
correlation between SOCS1 and Foxp3 in the cachectic
pancreatic cancer patients. On the other hand, no significant
correlation was detected between serum miR-155 and any of the
targeted proteins (SOCS1, TAB2, and Foxp3) or between TAB2
and Foxp3 levels. Similarly, for the NSCL cancer patients with
cachexia, no significant correlation was detected among the serum
miR-155 and any of the three targeted proteins (Table 6).

Serum MiRNA-155 Is Associated With the
Severity of Cachexia in Cancer Patients
Regardless of the Type of Cancer But Not
With SOCS1, TAB2, and Foxp3
A significant positive association was detected between serum
miR-155 level and the severity of cachexia in cancer patients
Frontiers in Oncology | www.frontiersin.org 8
regardless of the type of cancer where miR-155 was increased by
approximately sixfold in patients with refractory cachexia
compared with cachectic patients, and it was also upregulated
to around ninefold in cachectic patients compared with pre-
cachectic patients (Table 7). In contrast, the severity of cachexia
was not associated with the expression of SOCS1, TAB2, and
Foxp3 (Table 7).
DISCUSSION

Cancer cachexia is a polygenic complex syndrome in which a
dysregulated inflammatory response partakes in its development
(32). In this study, we first identified the genetic variants of TNF-
a 308G/A (rs1800629) and TNF-a 1031T/C (rs1799964) and
their association with cachexia in pancreatic and lung cancer
Egyptian patients. To the best of the authors’ knowledge, the
genotypic and allelic associations of TNF-a 308G/A and TNF-a
1031T/C gene polymorphisms with cachexia in pancreatic and
NSCL cancers have not been unveiled before, especially in the
Egyptian population. TNF-a 308G/A (rs1800629) gene
polymorphism was a significant predictor for cachexia in both
the lung and pancreatic cancer patients rather than that of TNF-
a 1031T/C (rs1799964) gene, which was associated with lower
risk of cachexia in the NSCL cancer patients. Of note, the
homozygous GG genotype (wild) was mainly distributed
among the non-cachectic group, and the homozygous AA
TABLE 4 | Risk factors for cachexia associated with cancer by binary logistic regression analysis.

Risk factor b0 p-Value Odds ratio 95% CI for Exp(B)

TNF-a 308G/A, rs1800629
Wild/mutant regardless of cancer type −0.355 0.04* 0.701 0.28–1.705
Wild/mutant for pancreatic cancer −0.215 0.014* 0.414 0.203–0.845
Wild/mutant for NSCL cancer −0.548 0.0001*** 0.5 0.345–0.724
TNF-a 1031T/C, rs1799964
Wild/mutant regardless of cancer type 0.706 0.02* 2.02 1.12–3.673
Wild/mutant for pancreatic cancer 0.881 0.012* 1.605 1.07–2.39
Wild/mutant for NSCLC 0.916 0.004** 2.5 1.67–751
November 2021 | Volume
For rs1800629, GA and AA are coded as 0, while GG carriers are coded as 1. For rs1799964, TC and TT are coded as 0, while CC carriers are coded as 1. Data are presented as odd ratio
and 95% CI. p ≤ 0.05.
*Significant difference at p ≤ 0.05.
**Significant difference at p ≤ 0.01.
***Significant difference at p ≤ 0.001.
TABLE 3 | Distribution of TNF-a gene genotype among cachectic NSCL cancer patients considering the cachexia severity.

Variable TNF-a 308G/A (rs1800629) TNF-a 1031T/C (rs1799964)

Wild Mutant Wild Mutant

Cachexia severity
Pre-cachexia (n = 10) 9 (75) 3 (25) 7 (70) 3 (30)
Cachexia (n = 23) 8 (67) 4 (33) 20 (87) 3 (13)
Refractory (n = 7) 12 (75) 4 (25) 4 (57) 3 (43)
c2 2.0

p = 0.38
3.2

p = 0.2
11 | Art
Data are given as n (%). Statistical analysis was carried out using the chi-square test; p ≤ 0.05.
n (%), number (percentage); rs, referred sequence; TNF-a, tumor necrosis alpha subunit gene; c2, chi-square value; NSCL, non-small cell lung.
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(mutant) genotype was more frequently distributed in the
cachectic than non-cachectic patients with pancreatic cancer.
Regarding TNF-a 308G/A gene polymorphism in the NSCL
cancer group, the heterozygous GA genotype was frequently
detected in patients of the cachectic group, followed by the
homozygous AA genotype with the least percent carrying the
homozygous GG genotype. Secondly, we attempted to examine
the involvement of miR-155/SOCS1/Foxp3/TNF-a signaling and
TAB2 in the pathogenesis of cachectic cancer patients. In this
context, higher serum miR-155 expressions were correlated with
susceptibility to cachexia and were in parallel with its severity in
both cancer types. Meanwhile, lower protein expression of
SOCS1 and Foxp3 was only evident in both cachectic cancer
groups without any association between TAB2 protein
expression and the presence of cachexia. Moreover, lower
Frontiers in Oncology | www.frontiersin.org 9
protein expression of Foxp3 was significantly associated with
higher severity of cachexia in patients with pancreatic cancer.

Cancer cachexia is a devastating multifactorial and often
irreversible syndrome that affects approximately 50%–80% of
cancer patients, depending on tumor type. It leads to substantial
weight loss, primarily from loss of skeletal muscle and body fat
(32, 33). Genetic variations are likely to contribute to the
susceptibility or resistance to developing cancer cachexia. The
role of TNF-a, one of the important genetic variants of genes
encoding pro-inflammatory cytokines, has been reported in
cancer cachexia (34). More than 100 gene variants that are
linked to development of cachexia in cancer patients have been
identified (35). SNPs, the most common type of heritable and
evolutionarily stable genetic variations in the population, seem to
be an attractive option for the selection of patients with high risk
A B

DC

FIGURE 3 | Serum expression of miR-155 in (A) pancreatic and (B) NSCL non-cachectic and cachectic cancer patients and its expression in different grades of
cachexia severity in (C) pancreatic and (D) NSCL cancer patients. Comparison between cachectic and non-cachectic groups was performed by chi-square test at
*p < 0.05. **Significant difference at p ≤ 0.01 and *** at p ≤ 0.001. Comparison between all cachexia grades was performed by ANOVA test followed by Bonferroni’s
post-hoc test; at *p < 0.05. **Significant difference at p ≤ 0.01 and *** at p ≤ 0.001. NSCL, non-small cell lung.
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of cachexia (35). The TNF-a 308 G/A polymorphisms is one of
the most frequently related with risk of malnutrition and tumor
aggressiveness (33). A study on Tunisian population
demonstrated a positive association between the TNF-a (-308
Frontiers in Oncology | www.frontiersin.org 10
G/A) polymorphism and breast cancer susceptibility (36).
Results of the study of Ahmad et al. (37) among an Indian
population, suggest that TNF-a-308G/A polymorphism
showed significant association with breast cancer patients (37).
TABLE 5 | Serum SOCS1, TAB2, and Foxp3 level in cachectic and non-cachectic pancreatic and NSCL cancer patients and cachexia severity.

Variable SOCS1 (ng/ml) TAB2 (ng/ml) Foxp3 (ng/ml)

Pancreatic cancer patients
Non-cachectic (n = 20) 9.3 (7–26) 6.3 (2.0–8.4) 16 (5–30)

Cachectic (n = 48) 5.6 (3.3–8.6) 6.2 (4.8–13.0) 8.9 (6.5–96.0)

Statistics U: 185
p = 0.002**

U: 262
p = 0.06

U: 49
p = 0.0001***

Cachexia severity

Pre-cachexia (n = 14) 5.6 (3.2–6.5) 6.5 (5.2–8.4) 16 (7–35)

Cachexia (n = 17) 5.2 (4.2–8.6) 6.3 (5.9–8.4) 14.5 (6–33)

Refractory (n = 17) 5.8 (3.7–7.4) 5.6 (2.6–7.8) 11.3 (5.6–30)

Statistics F: 1.1
p = 0.34

F: 0.2
p = 0.8

F: 5.3
p = 0.008**

NSCL cancer patients
Non-cachectic (n = 10) 10.9 (4.0–14) 9.2 (7.0–20) 8.8 (6.0.11)

Cachectic (n = 18) 5.8 (4.0–9.2) 8.0 (5.6 –29) 6.8 (4.6–9.7)

Statistics U: 39
p = 0.01**

U: 57
p = 0.12

U: 35
p = 0.03*

Cachexia severity score

Pre-cachexia (n = 9) 7.2 (4.2–9.2) 10 (5.6–29) 7.4 (4.6–9.7)

Cachexia (n = 7) 5.5 (4.5–6.8) 7.5 (7.0–9.0) 6.9 (4.9–7.8)

Refractory (n = 2) 5.2 (4.8–5.4) 6.4 (6.0–6.8) NA

Statistics F: 2.3
p = 0.12

F: 1.2
p = 0.34

F: 1.2
p = 0.33
November 2021 | Volu
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Data are given as median (minimum–maximum). Statistical analysis was carried out using the Mann–Whitney test and ANOVA test followed by Bonferroni’s post-hoc test; p ≤ 0.05.
F, ANOVA test value; Foxp3, forkhead box P3; n, number; SOCS1, suppressor of cytokine signaling 1; TAB2, TAK1-associated Binding Protein 2; U, Mann-Whitney; NSCL, non-small cell lung.
*Significant difference at p < 0.05.
**Significant difference at p ≤ 0.01.
***Significant difference at p ≤ 0.001.
TABLE 6 | Correlation analysis between miR-155 gene expression and SOCS1, TAB2, and Foxp3 in cachectic pancreatic or NSCL cancer patients (Spearman’s correlation).

miR-155 (FC) SOCS1 (ng/ml) TAB2 (ng/ml)

Cachectic pancreatic cancer patients
miR-155 (FC)
SOCS1 (ng/ml) 0.17

p = 0.3
TAB2 (ng/ml) 0.002

p = 0.9
−0.17
p = 0.2

Foxp3 (ng/ml) 0.1
p = 0.56

0.69
p = 0.001***

0.08
p = 0.4

Cachectic NSCL cancer patients
miR-155 (FC)
SOCS1 (ng/ml) −0.3

p = 0.2
TAB2 (ng/ml) −0.4

p = 0.09
−0.2

p = 0.1
Foxp3 (ng/ml) −0.2

p = 0.3
−0.2

p = 0.6
0.08

p = 0.4
Data are given as r. Statistical analysis was carried out using Spearman’s correlation analysis; p ≤ 0.05.
FC, fold change; Foxp3, forkhead box P3;miR-155, microRNA-155; n, number; r, Spearman’s correlation coefficient; SOCS1, suppressor of cytokine signaling 1; TAB2, TAK1-associated
Binding Protein 2; NSCL, non-small cell lung.
***Significant difference at p ≤ 0.001.
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Our results show that the mutant TNF-a variant of 308 G/A was
significantly associated with increased risk of cachexia in both
the pancreatic and NSCL cancer patients. On the contrary, that
of 1031T/C was significantly associated with reduced risk of
cachexia in the NSCL cancer patients. Notably, Barber et al. (38)
have demonstrated that the A allele positivity in 308 gene loci
confers approximately to a 3.0-fold increased susceptibility to
malnutrition and cachexia in patients with end-stage renal
disease (38), to consolidate the present data regarding TNF-a
308G/A gene polymorphism in both the pancreatic and NSCL
cancer patients. Actually, the findings of the present study
showed that the heterozygous GA genotype was detected in
55% of the lung cancer patients of the cachectic group, followed
by the homozygous AA genotype (28%) with only 17% carrying
the homozygous GG genotype. As for TNF-a 308G/A gene
polymorphism in pancreatic cancer patients, the heterozygous
GA genotype was frequently distributed (49%) in the cachectic
group, whereas the wild homozygous GG genotype was
frequently distributed (62%) among the non-cachectic group,
and the homozygous AA genotype was more frequently
distributed in cachectic (15%) than non-cachectic (5%)
patients with pancreatic cancer.

Few data are available regarding the association of TNF-a −
1031T/C genotype variant with cancer-related cachexia or
inflammation. Nourian et al. (39), one of the recent studies,
studying the role of genetics in Iranian patients with
inflammatory bowel diseases (IBDs), reported that CC
haplotype was associated with genetic risk of IBD (14). A
previous study, however, found no association between the
TNF-a polymorphisms at position −1031 and susceptibility to
IBD (39). Moreover, in a study conducted on head and neck
cancer patients, Powrózek et al. (35), investigating the potential
role of TNF-a 1031T/C SNP as a risk factor for cachexia after
radiotherapy, demonstrated that the C allele represents the
unfavorable allele that is significantly associated with higher
risk of cachexia, lower BMI, and shorter overall survival as
compared with the TT or TC genotype carriers. Besides, the
CC genotype carriers had a 9.7- to 13.2-fold higher risk of
cachexia with the highest level of plasma TNF-a that directly
reflects the alternation in patients’ nutritional status due to the
underlying inflammatory response (35). In alignment, our results
revealed that in the NSCL cancer patients, the homozygous CC
genotype of TNF-a 1031T/C constitutes 45% of the cachectic
patients, 33% for the heterozygous TC, and 22% for the
homozygous TT genotype, contrary to pancreatic cancer
patients where the homozygous TT is the most frequent
Frontiers in Oncology | www.frontiersin.org 11
genotype constituting 63% of the cachectic patients, followed
by the homozygous CC genotype constituting 20% of cachectic
patients and 17% for the heterozygous TC.

Our finding on the frequency of genetic polymorphisms in
Egyptian pancreatic and NSCL cancer patients reported herein
does not match that of Africans, Latin Americans, Asians, or
Europeans (Table S3). This supports previous reported data
related to Egyptians and non-Egyptians (40–43). Indeed,
previous studies also revealed such a discrepancy among Asian
and non-Asian ethnicity regarding the TNF-308 G/A
polymorphisms in hepatocellular carcinoma risk (12). This
could be explained by different factors attributed to the
unmatched ethnic population and different pathological nature
of the disease.

Skeletal muscle metabolism plays a crucial role in the
pathogenesis of cachexia in cancer patients (44), where
miRNAs are abundantly expressed in skeletal muscles and are
involved in cancer cachexia. Numerous miRNAs are known to
modulate skeletal muscle and adipose tissue turnover; therefore,
the potential of miRNAs as predictor biomarkers and their
clinical relevance in cachexia have been previously suggested
(45). Indeed, their aberrant expression is associated with
impaired myogenesis , consequent ly promoting the
development of cachexia (13, 46). MiRNAs are also involved in
the pathogenesis of different diseases including cancers and
autoimmune diseases (47). MiR-155 gene was found to be
overexpressed in several solid tumors, such as thyroid
carcinoma as well as breast and colon cancer (21). Moreover,
altered miRNA expression has been found in several types of
lymphoma and leukemia (19), and their role in cancer-associated
cachexia has been earlier documented (47). In the current study,
the levels of miR-155 were significantly higher in the cachectic
groups as compared with the non-cachectic groups, which
was in alignment with the cachexia severity in both the
pancreatic and NSCL cancer patients. This is in accordance
with the observations that higher expression of miR-155 was
significantly associated with cancer progression and accelerates
the development of cachexia in breast cancer patients (32, 48,
49). Consistent with our results, Wu et al. (50) have
demonstrated that tumor-originated exosomal miR-155
promotes the differentiation and remodels the metabolism of
adipocytes in breast cancer (50).

The findings of the present study show lower levels of SOCS1
and Foxp3 together with higher expression of miR-155 in the
cachectic patients of both pancreatic and NSCL cancers in
contrast to non-cachectic patients. Of note, the oncogenic role
TABLE 7 | Expression level of miR-155, SOCS1, TAB2, and Foxp3 in cancer cachectic patients considering the cachexia severity, regardless of the cancer type.

Cachexia severity MiR-155 (FC) SOCS1 (ng/ml) TAB2 (ng/ml) Foxp3 (ng/ml)

Pre-cachexia 46.2 (1.4–151) 5.8 (3.3–9.2) 10 (5.6–29) 6.3 (5.2–8.4)
Cachexia 431 (5.1–2348) 5.4 (4.2–8.6) 12 (7–25) 6.6 (4.8–8.4)
Refractory 2688 (16.5–7316) 5.8 (3.7–7.4) 16 (5.2–30) 6 (2.6–10)
Statistics F: 29

p = 0.0001***
F: 1.2
p = 0.3

F: 0.2
p = 0.8

F: 1.3
p = 0.3
November 2021 | Volume 11 |
Data are given as median (minimum–maximum). Statistical analysis was carried out using the ANOVA test followed by Bonferroni’s post-hoc test; p ≤ 0.05.
F, ANOVA test value; FC, fold change; Foxp3, forkhead box P3; miR-155, microRNA-155; SOCS1, suppressor of cytokine signaling 1; TAB2, TAK1-associated Binding Protein 2.
***Significant difference at p ≤ 0.001.
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ofmiR-155 in several cancer types has been previously addressed
(51, 52). Regarding signaling pathway of miR-155, SOCS1 has
been identified as a direct functional target of miR-155 (53) by
enhancing TNF-a expression via SOCS1 suppression (54), hence
elevating TNF-a cellular levels (55, 56). Therefore, these data
delineate SOCS1 reduction in cachectic cancer patients in the
present study.

Since miRNAs can often feedback to inhibit the transcription
factor required for its induction (57), they might function as
important epigenetic switches required for the functional
maintenance of the cell type (58, 59). In this context, Foxp3, a
transcription factor that is required for the maintenance of
regulatory T cells (Treg), was shown to drive the high level of
miR-155 expression found in these cells to be followed by miR-
155-mediated feedback inhibition of its target Foxp3 (58) via an
indirect mechanism (60). This can afford a reasonable
explanation for the low levels of Foxp3 with a high expression
of miRNA-155 in cachectic patients of the present study.
Additionally, Foxp3 serum level indirectly correlates with
cachexia severity only in the pancreatic cancer patients. Such
an effect is in alignment with Gerriets et al. (61) who showed that
conditions such as inflammation resulting from cachexia provide
signals that increase glycolysis and expression of glucose
transporter 1 (Glut1) levels in Treg. These metabolic changes
directly modify Treg-cell function to downregulate the
transcription factor Foxp3 (61). Moreover, there is a significant
correlation among SOCS1 and Foxp3 protein in cachectic
patients with pancreatic cancer. Similarly, the results of Collins
et al. (62) results strongly suggest that SOCS1 contributes to the
stability of the Foxp3+ Treg peripheral population under
conditions of strong pro-inflammatory environments (62).

Apart from SOCS1 and Foxp3 involved in the oncogenic
inflammatory machinery, TAB2 is a signaling molecule
downstream of TNF receptor-associated factor 6 (TRAF6) that
activates MAPKs (63). Intriguingly, Ceppi et al. (64) supported
that TAB2 is considered a direct protein target of miRNAs in
TLR signaling pathway (64). On the contrary, our results showed
no significant association between the TAB2 protein and the
presence of higher serum levels of miR-155 or cachexia in both
cancer groups. Since SOCS1, Foxp3, and TAB2 are components
of several other TLR signaling pathways, hence, once one TLR is
triggered, miRNA-mediated targeting of common signaling
proteins could silence signaling through multiple TLRs (54, 58).

The authors are aware that the study was conducted on small
scale of population that represents the main limitation. Another
limitation was the lack of non-treated groups; the current study
Frontiers in Oncology | www.frontiersin.org 12
was also not longitudinal, and it was therefore not possible to
follow up the progression of cachexia in the patients. Despite
these limitations, this case study shows that carriers of the A
allele 308 G/A gene and high miR-155 are at greater risk of
cachexia in both the pancreatic and NSCL cancer patients;
however, the mutant variant of 1031T/C gene is protective
against cachexia in the NSCL cancer patients. Nonetheless,
further studies should be carried out on the two TNF-a SNPs
on larger scale of patients in order to confirm their predictive/
prognostic significance. Finally, high levels of miR-155 in the
cachectic group lead to negative feedback inhibition of both
SOCS1 and Foxp3 in both the pancreatic and NSCL
cancer patients.
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35. Powrózek T, Mlak R, Brzozowska A, Mazurek M, Gołębiowski P, Małecka-
Massalska T. Relationship Between TNF-a– 1031t/C Gene Polymorphism,
Plasma Level of TNF-a, and Risk of Cachexia in Head and Neck Cancer
Patients. J Cancer Res Clin Oncol (2018) 144(8):1423–34. doi: 10.1007/s00432-
018-2679-4

36. Chouchane L, Ahmed SB, Baccouche S, Remadi S. Polymorphism in the
Tumor Necrosis Factor-a Promotor Region and in the Heat Shock Protein 70
Genes Associated With Malignant Tumors. Cancer (1997) 80(8):1489–96.
doi: 10.1002/(SICI)1097-0142(19971015)80:8<1489::AID-CNCR17>3.0.
CO;2-1

37. Ahmad MM, Farah Parveen NA, Siddiqui JA, Shukla NK, Husain SA. Genetic
Polymorphism in TNF-a-308 G/a and TNF-b+ 252 a/G, as Prognostic
Biomarker in Breast Cancer Patients Among Indian Population. Asian Pac J
Cancer Prev (2020) 21(2):301. doi: 10.31557/APJCP.2020.21.2.301

38. Barber RC, Aragaki CC, Rivera-Chavez FA, Purdue GF, Hunt JL, Horton JW.
TLR4 and TNF-a Polymorphisms Are Associated With an Increased Risk for
Severe Sepsis Following Burn Injury. J Med Genet (2004) 41(11):808–13.
doi: 10.1136/jmg.2004.021600

39. Nourian M, Asgharian AM, Asadzadeh Aghdaei H. Lack of Association
Between Tumor Necrosis Factor Alpha (Tnfa) Gene-1031C/T
Polymorphisms and Susceptibility to Inflammatory Bowel Disease (IBD).
Arak Univ Med Sci J (2016) 19:71–9.
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