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Cellular senescence is a stress response elicited by different molecular

insults. Senescence results in cell cycle exit and is characterised by multiple

phenotypic changes such as the production of a bioactive secretome. Senes-

cent cells accumulate during ageing and are present in cancerous and fibro-

tic lesions. Drugs that selectively kill senescent cells (senolytics) have

shown great promise for the treatment of age-related diseases. Senescence

plays paradoxical roles in cancer. Induction of senescence limits cancer

progression and contributes to therapy success, but lingering senescent cells

fuel progression, recurrence, and metastasis. In this review, we describe the

intricate relation between senescence and cancer. Moreover, we enumerate

how current anticancer therapies induce senescence in tumour cells and

how senolytic agents could be deployed to complement anticancer thera-

pies. “One-two punch” therapies aim to first induce senescence in the

tumour followed by senolytic treatment to target newly exposed vulnerabil-

ities in senescent tumour cells. “One-two punch” represents an emerging

and promising new strategy in cancer treatment. Future challenges of

“one-two punch” approaches include how to best monitor senescence in

cancer patients to effectively survey their efficacy.

Introduction

During their lifetime, cells are subjected to a variety of

damages. Depending on the nature and strength of

those damages, cells can repair them. When this is not

possible, they activate death signalling pathways to

avoid the impact that damage cells could have on tis-

sue homeostasis. An alternative to trigger cell death is
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cellular senescence. Cellular senescence is a highly

stable cell cycle arrest initiated in response to a variety

of stress signals to prevent the replication of old, dam-

aged or preneoplastic cells [1]. The implementation of

the senescence growth arrest depends on the activation

of the p21CIP1/WAF1/p53 and p16 INK4A/RB tumour

suppressor pathways [2].

Besides undergoing a highly-stable cell cycle arrest,

senescent cells reprogram their metabolism, suffer

structural changes, epigenetic modifications and

macromolecular (DNA, proteins, lipids) damage and

induce a bioactive secretome, termed the senescence-

associated secretory phenotype (SASP) [1,3–5]. How

the SASP is regulated has been reviewed elsewhere

[6,7]. Briefly, the SASP is linked to the DNA damage

response (DDR) [8] and its induction requires sensing

macromolecular damage by elements of the innate

immune pathways (such as cGAS/STING or the

inflammasome) [9–11]. Eventually, these signals are

integrated and activate key factors such as mTOR

[12,13], GATA4 [14] or p38 MAPK [15]. Ultimately,

the sensors and mediators of the SASP induction con-

verge to the activation of key transcriptional factors

such as NF-jB and C/EBPb that control the expres-

sion of key inflammatory factors such as IL-1b, IL-6
and IL-8 [16–18]. The secretion of these factors creates

a feedback loop that reinforce the SASP phenotype

[19].

Senescence was initially described in 1961 by Hay-

flick et al. [20] who revealed that normal cells stop to

replicate after a finite number of passages. Nowadays,

we refer to this phenomenon as replicative senescence.

It is attributed to the end replication problem that

shortens telomere, provokes persistent DNA damage

and induces the downstream activation of senescence

[21,22]. Importantly, other insults such as oncogene

activation, genotoxic and oxidative stress or mitochon-

drial defects also lead to senescence independently of

telomeric shortening (referred collectively as premature

senescence) [23]. For example, expression of oncogenic

RAS in primary cells is associated with a permanent

cell cycle arrest phenotypically indistinguishable from

cellular senescence (oncogene-induced senescence, OIS)

[24].

Importantly, senescence plays multiple roles in

health and disease. Transient senescence activation is

part of normal tissue development through embryoge-

nesis (developmental senescence) [25,26] to adulthood

(where it maintains tissue homeostasis) [27]. Induction

of senescence limits the replication of damaged cells

and elicits their elimination by the immune system in

a SASP-dependent fashion. In this context, acute

senescence is beneficial, and for example contributes

to limit fibrosis [28] and cancer initiation [29]. How-

ever, when senescent cells linger in a tissue they often

play detrimental roles, contributing to ageing and

many diseases, including paradoxically cancer progres-

sion [30].

Identifying senescent cells is key to better under-

stand their roles in vivo. This is often achieved by

assaying for senescence-associated b-galactosidase
activity (SA-b-gal), upregulated in senescent cells due

to their increase in lysosomal biogenesis [31]. Other

markers such as expression of the cell cycle regulators

p16INK4A, reduced levels of Lamin B1, absence of pro-

liferation or induction of SASP components are also

used to identify senescence. Due to the heterogeneity

of senescence, a combination of those markers is

needed to assess senescence, as summarised in the con-

sensus position from the International Cell Senescence

Association (ICSA) [1].

Senescent cells in tumours

Different types of senescent cells are present in the

tumour microenvironment (TME) during cancer initia-

tion, progression and in response to therapy. Many

preneoplastic lesions, including lung adenomas [32],

melanocytic nevi [33], lymphomas [34] or prostate

intraepithelial neoplasia (PIN) [35] are enriched in

senescent cells. This is because activation of oncogenes

(e.g., RAS in lung or BRAF in nevi) or loss of tumour

suppressor (e.g., PTEN in the prostate) induces senes-

cence, what restrains tumour progression. Another

contributor to senescence induction in the context of

tumorigenesis are anticancer treatments, as radiother-

apy, conventional chemotherapy and some targeted

therapies: that cause so-called therapy-induced senes-

cence (TIS) in the tumour cells [36]. Cancer therapies

can also induce senescence in cells other than the

tumour cells. Indeed, induction of senescence in nor-

mal tissues has been suggested to cause some of the

side effects associated with chemotherapy [37]. Finally,

other cells in the TME might also undergo senescence

[38]. Stromal senescent cells are an emerging factor

contributing to tumorigenesis and promoting cancer

drug resistance [39,40]. Senescent cells in the TME can

also arise in a paracrine fashion, as factors secreted by

tumour (senescent) cells can induce senescence in the

stroma or render infiltrating immune cells senescent.

For example, implanting different tumour cells grafts

(breast, pancreas, endometria, lung) in a p16INK4a luci-

ferase reporter mice results in luciferase activity arising

in the tumour-associated stroma, demonstrating the

ability of tumours to induce senescence in their sur-

roundings [41].
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Paradoxical roles of senescence in
cancer

Senescence exerts multiple and sometimes opposing

effects in tumorigenesis. The oncogenic activation

events involved in cancer initiation trigger OIS in pre-

neoplastic lesions and limit their progression. Conse-

quently, mutations that disable senescence are needed

for tumours to progress to more malignant stages.

Most cancer therapies work, at least in part, by trig-

gering senescence (TIS). But TIS in non-cancerous

cells has been linked to some of the side effects associ-

ated with chemotherapy [37]. And lingering senescent

cells present in the tumour and TME contribute to

sustain cancer development and progression [42].

Antitumorigenic roles of senescence

Events that drive cancer initiation, such as activation

of oncogenes (e.g., RAS or BRAF) or loss of tumour

suppressors (e.g., PTEN), trigger OIS (in the case of

PTEN loss also known as PTEN loss-induced cellular

senescence or PICS). OIS restricts tumorigenesis by

imposing a stable cell cycle arrest in preneoplastic cells

[32–34] that facilitates the subsequent elimination of

these cells by the immune system, thus contributing to

tumour clearance [43]. Surveillance by the immune sys-

tem is an important part of the antitumour senescence

response. Senescence immunosurveillance is initiated

upon secretion of immunomodulatory cytokines by

senescent cells as part of the SASP. For example, pre-

malignant senescent hepatocytes are cleared in vivo

through a CD4+ T cells response requiring monocytes

and macrophages to actively eliminate the senescent

cells [29]. This clearance is dependent of expression of

IL1, CCL2 and other SASP factors [9]. The initiation

of immune surveillance precedes full senescence: induc-

tion of p21 is sufficient to promote a secretome (ter-

med PASP or p21-activated secretory phenotype) that

can attract macrophages [44]. The SASP, produced by

hepatocytes [44] or senescent stellate cells [45], induces

M1 polarisation in macrophages, favouring clearance

of senescent cells. On the contrary, p53-deficient stel-

late cells promote an M2 polarisation, creating a pro-

tumorigenic microenvironment which stimulates the

proliferation of cancer cells [45]. Mouse liver carcino-

mas undergoing senescence recruit NK cells in a way

that promotes the recruitment of NK cells, and the

elimination of senescent tumour cells through a

NKG2D-dependent response [43,46]. In summary,

senescence limits cancer progression by triggering

arrest of cancerous cells and activating different com-

ponents of the immune system.

Disabling senescence is needed for tumour

progression and resistance to therapy

Although the senescence cell-cycle arrest is considered

as irreversible, it is believed that cells that have under-

gone senescence could re-entry cell cycle [47]. This

might explain how tumours progress or become resis-

tant to anticancer therapies. There is evidence of senes-

cent cells escaping from replicative senescence [47] and

OIS [48]. Gorgoulis’ group recently defined the con-

cept of the escape from oncogene-induced senescence

(EOIS) helped by cellular models where deregulation

of oncogenic signalling results in EOIS [48]. Upon

CDC6 expression in epithelial cells, an early chromo-

somal reorganisation (inversion of chromosome 3)

induces the circadian transcription factor Basic Helix–
Loop–Helix Family Member E40 BHLHE40 activa-

tion (circadian clock machinery regulation). This is

associated with senescent cells’ re-entry in cell cycle,

likewise demonstrating a link between genomic insta-

bility and senescence escape [48].

Cancer cells can also escape TIS. MCF-7 breast can-

cer cell clones treated with therapeutic doses of dox-

orubicin, after a burst of senescence induction, can

recover and regain their proliferative ability that is

associated with CDC2 overexpression [49]. H1229

non-small cell lung cancer cells exposed to a variety of

chemotherapeutic agents can also escape from TIS by

overexpressing CDC2/CDK1, what is a very rare event

[50]. Induction of senescence has been also shown to

induce reprogramming. Interestingly lymphoma cells

that have undergone senescence show an upregulation

of reprogramming and display enhanced aggressiveness

[51]. A recent study on primary acute myeloid leukae-

mia (AML) patients’ cells revealed that even if

chemotherapy induces a senescence-like phenotype,

this phenotype is transient and contributes to cancer

relapse by promoting aggressiveness and stem cell

potential of tumour cells [52]. Cancer cells that escape

from TIS are often polyploid [53] and express markers

of stemness and aggressiveness [54]. Senescent tumour

cells can represent a form of “cell dormancy”, and

thus also contributes to disease recurrence [55].

Pro-tumorigenic roles of senescence

While senescence can act as an intrinsic or evoked

antitumour response, in the long term, the persistence

of senescent cells has detrimental effects on tumorigen-

esis, promoting tumour progression, dissemination and

recurrence [37,56].

Tumour cell senescence can lead to the emergence of

more aggressive variants. Particularly, chemotherapy-
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induced senescence can reprogram cancer cells which

acquired stemness properties, thus enhancing their

aggressiveness, resistance to therapy and relapse [51].

TIS can also promote cancer relapse by preventing the

induction of apoptosis by chemotherapeutics. In the

context of wild-type p53, doxorubicin failed to induce

apoptosis of mammary tumours in mouse model, while

p53 mutant cells did not undergo cell cycle arrest and

were killed due to mitotic abnormalities [56]. This indi-

cates that p53 status is an important factor influencing

cancer therapy, in part by affecting senescence induc-

tion.

Senescent cells communicate with adjacent cells via

ligands/receptors interactions to modulate their state

and their microenvironment [6,7]. Senescent cells can

promote the proliferation of adjacent tumour cells in

a paracrine manner via the SASP [57]. For example,

in a model of paediatric craniopharyngioma, onco-

gene activation in pituitary stem cells leads to senes-

cence and the SASP drives tumorigenesis in a

paracrine manner [58]. The SASP can also reinforce

senescence or cause paracrine senescence [9,19]. Dur-

ing therapy-induced senescence (TIS), especially upon

radiotherapy, there is a bystander signalling mediated

by inflammatory mediators and gap junctions that

can be related to paracrine senescence [59]. Whether

the reinforced senescent phenotype will allow a better

immune clearance of the cells or in the contrary, con-

fer a higher pro-tumorigenic environment could

depend on the context. The SASP of senescent cells

lingering in the tumour microenvironment contributes

to create a chronic inflammatory environment [60].

The SASP of senescent fibroblasts can promote

tumour growth and dissemination, in part through

the induction of epithelial-mesenchymal transition

(EMT) in adjacent cells [61]. The SASP also influ-

ences immune responses beyond the positive effects of

senescence immunosurveillance. While SASP produc-

tion stimulates the clearance of senescent cells by the

immune system [9,29], when senescence is bypassed or

if the senescent cells are not fully eliminated, senes-

cent cancer cells can reshape the immune microenvi-

ronment promoting immune escape. For example, in

the context of liver cancer, the SASP can recruit

CCR2+ immature myeloid cells (iMCs) that inhibit

NK cell action, promoting cancer progression [62].

Similarly, senescence observed in PTEN-null prostate

cancer results in immature myeloid cell infiltration

that antagonises senescence, promoting tumour pro-

gression [63].

A senescent stroma plays detrimental role in cancer.

Co-injection of senescent fibroblasts with skin, breast

or prostate cancer cells favours the aggressiveness of

the generated tumours [39,64,65]. The tumour-

promoting effect of senescent fibroblasts is likely to be

mediated by the secretion of SASP factors that can

foster a growth-stimulating and/or pro-angiogenic

microenvironment [66]. Senescent endothelial cells are

also present in the tumour microenvironment and

secrete factors that influence the tumour behaviour

[67]. For example, SASP factors like CXCL11 secreted

by senescent endothelial cells contribute to the cancer

aggressiveness of breast cancer [68].

Fostering immunosuppression is another way by

which senescent cells can promote tumour progression.

For example, in a model of aged skin, senescent stro-

mal cells recruit suppressive myeloid cells and secrete

SASP factors like IL-6 to reinforce immunosuppres-

sion. The same observation was made in cancer

patients where senescent stromal cells are adjacent to

immune cells, thus creating a tumour permissive

microenvironment [39]. Other strategy used by senes-

cent cells to escape immune surveillance is the matrix

metalloproteinase (MMP)-mediated shedding of

NKG2D ligands [69]. Elimination of senescent cells by

NK cells involves the recognition of NKG2D ligands

at their cell surface. While the expression of NKG2D

ligands is induced during senescence, senescent cells

also secrete MMPs, that cleave NKG2D ligands,

avoiding NK surveillance.

Cancer therapy and senescence-
inducing drugs

Many cancer therapeutics induce senescence. Examples

include drugs that trigger DNA damage, i.e., genotoxic

chemotherapy or radiotherapy (Table 1). Various tar-

geted therapies, such as CDK4/6 inhibitors, can also

induce senescence without being genotoxic (Table 2).

Some of these senescence-inducing drugs can cause

senescence not only in the tumour itself but also in the

TME. Thus, induction of senescence by cancer thera-

pies plays key role in cancer treatment but can also

cause unwanted side effects associated with lingering

senescent cells.

Chemotherapies

Cytotoxic chemotherapy includes a wide range of

drugs that inhibit mitosis or induce DNA damage in

cancer cells. Pioneering studies showed that besides

killing them, agents such as cisplatin [72] and doxoru-

bicin [70] can also induce senescence in cancer cells.

Lower drug dose and chronic administration often

result in senescence rather than apoptosis and cell

death [163].
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Alkylating agents, mainly represented by cisplatin

and derivates, alkylate and bind covalently the DNA

to form DNA crosslinks. These structures are suscepti-

ble to breakage during DNA replication and may lead

to the activation of DDR. In the same way, topoiso-

merase inhibitors like doxorubicin or etoposide affect

the ability of the DNA to replicate, by preventing the

repair of DNA breaks required to reduce the tension

of the unwound DNA strand during the replication.

Thus, DNA damage triggers activation of p53/p21

[164] or p16 [73] and causes the subsequent prolifera-

tion arrest and senescence of cancer cells. Treatment

with different chemotherapeutic agents also results in

SASP induction.

So-called antimicrotubule agents, such as the tax-

anes paclitaxel and docetaxel, and vinca-alkaloids, are

a class of cancer drugs that interfere with normal

mitosis by causing microtubule dysfunction. Paclitaxel

has been described to induce senescence of breast

cancer [89], melanoma and neuroblastoma cells [90].

Docetaxel has been shown to induce senescence in dif-

ferent models of prostate cancer, where it is used ther-

apeutically [82,88]. Antimetabolites, that impair the

incorporation of purines and pyrimidines to the DNA

during the S phase, also induce senescence. Gemc-

itabine and methotrexate have been described as senes-

cence inducers, in a p21-dependent fashion [91,92].

Methotrexate treatment seems to induce a p53-

dependent senescence without DNA damage [93] that

could be linked to reduced DNA synthesis [165].

Finally, bleomycin, a cytotoxic antibiotic used to treat

many cancer types, induces a p21-dependent senes-

cence response [94,95].

Radiotherapy

Radiotherapy is used to treat many cancer types. Like

chemotherapies, irradiation not only causes cell death

Table 1. Senescence inducers: conventional chemotherapy and radiotherapy.

Class Drug Cancer Model

Alkylating agents Cisplatin Fibrosarcoma HT1080 [70]

Melanoma A375, B16F10 [71]

Nasopharyngeal carcinoma CNE1 [72]

Cyclophosphamide B-cell lymphoma El-Myc;ectopic Bcl2 mouse model [73]

Temozolomide Glioma U87MG [74,75]; GaMG [74]; U87, LN229 [76]; LN229 [77]

Melanoma MM200, IgR3, SK-MEL-28, Mel-FH [78]

Topoisomerase

inhibitors

Doxorubicin B-cell lymphoma El-NrasG12V;ectopic Bcl2 mouse model [34]

Breast cancer MCF-7 [70,79,80]; Reporter Mouse model p16-3MR-

MMTV-PyMT grafts [37]; patients [79]

Cervical carcinoma HeLa [70]

Colon cancer HCT-116, SW480 [70]; LS174T, HCA-7 [79]

Fibrosarcoma HT1080 [70]

Glioma U251 [70]

HCC HepG2 [70]

Larynx carcinoma Hep-2 [70]

Lung cancer NCI-H460, A549 [81]

Osteosarcoma Saos2 [70]

Ovarian cancer A2780 [70,79]

Prostate cancer LNCaP [70,82]; DU145 [82]

Daunorubicin T-cell lymphoma Jurkat T cells [83]

Etoposide Fibrosarcoma HT1080 [70]

HCC HepG2, U2OS [84]

Irinotecan Colorectal cancer HCT-116 [85–87]; LS174T [86,87]

Microtubule inhibitors Docetaxel Prostate cancer LNCaP, DU145 [82]; Ptenpc�/� mouse model [88]

Paclitaxel Breast cancer MCF-7 [89,90]; MDA-MB-231 [90]

Colorectal cancer HCT-116 [90]

Melanoma A549 [90]

Neuroblastoma SH-SY5Y [90]

Antimetabolites Gemcitabine Pancreatic carcinoma Panc1 [91,92]; Miapaca-2 [92]

Methotrexate Breast cancer MCF-7 [93]

Cytotoxic antibiotic Bleomycin Lung cancer A549 [94,95]

Radiotherapy Breast cancer MCF-7 [96]

Glioma U87 [97]
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Table 2. Senescence inducers: targeted therapies.

Class Drug Cancer Model

CDK4/6 inhibitors Palbociclib Breast cancer V720 [98]; MCF-7, T47D [99]

Gastric cancer AGS, MKN-45 [100]

Glioblastoma DBTRG-05MG, LN229, U87MG [101]

HNSCC CAL27, HN31, PCI15B [102]

HCC Huh7, SK-Hep1 [103]

Liposarcoma U2OS [104]; LS8107 [105]

Lung cancer A549, H2030, H460 [106]; LSL-KrasG12V;RERT+/ERT

mouse model [107]

Melanoma SK-MEL-103, SK-MEL-103 xenografts [108];

MEL-10 [109]; SKMEL2 [98]

OSCC SAS, OECM1 [110]

Osteosarcoma U2OS [98]

Abemaciclib Breast cancer MD-MB-453 [111–113]; BT474 [113]; MCF-7 [114];

MMTV-rtTA/tetO-HER2 mouse model [113]

Ribociclib Ewing sarcoma SKNEP-1 [115]

Neuroblastoma BE2C, IMR5, EBC1 [116]

Ovarian cancer Hey1 [117]

Epigenetic

modulators

5-azacytidine HCC HepG2 [118,119]; Huh-7 [119]

Prostate cancer LNCaP, C4-2B [82]

5-aza-20-deoxycytidine/decitabine CML K-562, MEG-01, KBM-5 [120]

Lung mesothelioma H28 [121]

Osteosarcoma U2OS [122]

HDACi SAHA/vorinostat AML MOLM-7, HL-60, JURK-MK1 [123]

Colorectal cancer HCT-116 [124]

T-cell lymphoma MyLa, MJ [125]

Sirtinol Breast cancer MCF-7 [126,127]

CML K562 [128]

Lung cancer H1299 [126]

AURK inhibitors Alisertib Colorectal carcinoma HCT-116, HCT-116 xenografts [129]

Glioblastoma GB169 [130]

Lung cancer A549 [131]

Pancreatic cancer AsPC-1, BxPC-3, MIA PaCa-2, PANC-1 [132]

Barasertib Lung cancer A549 [131]

Melanoma A375 [133]

Danusertib Glioblastoma GBM2, G166 [134]

Tozasertib Lung cancer A549 [131]

PLK inhibitors BI-2536 Colorectal carcinoma HCT-116 [135,136]; SW480, HCT-116 xenografts [135]

Lung cancer A549 [135]

BI-6727/volasertib Colorectal carcinoma HCT-116 [136]

Lung cancer A549 [137]

CFI-400945 HCC MHCC97L [138]

Ovarian cancer OCC1, ES2 [139]

Prostate cancer 22Rv1, DU145, PC-3, LNCaP, C4-2 [140]

PARP inhibitors Olaparib AML KASUMI and NB4-LR2 [141]

Breast cancer MDA-MB-231, OV4453, OV1946 and MDA-MB-231

xenografts [142]

Ovarian cancer OV1369(R2), OV90, OV4453, OV1946 [142]; SKVO3,

A2780, OVCAR-3 [143]

Prostate cancer LNCaP, C4-2B [144]

Rucaparib Prostate cancer LNCaP, C4-2B, PC-3 [145]

Niraparib/Talazoparib Ovarian cancer OV1369(R2) [142]

ABT-888/veliparib Breast cancer MCF-7, MCF-7 xenografts [146]

Cdc7 inhibitor XL413 HCC Hep3B, Huh7, MHCC97H, PLC/PRF/5 p53

mutant cells [147]

Hormone therapy Tamoxifen Breast cancer MCF-7 [148,149]
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but can also result in senescence. Either c-irradiation
[70] or exposure to x-ray [166] triggers a senescent

response. Induction of the senescent phenotype is

dependent on the p53 function and induction of DDR

in telomeres but independent of telomere shortening

[167]. One of the advantages of radiotherapy when

compared with cytotoxic chemotherapies is their local

administration, which reduces side effects. Despite

that, irradiation of surrounding healthy tissue can

cause side effects such as radiation-induced lung fibro-

sis (RILF), a severe side effect of radiotherapy

observed in lung cancer patients [168]. Senescence of

cells in the TME (macrophages, pneumocytes and

fibroblasts) is known to be part of this complication

[169–171]. Interestingly, FLASH irradiation (consisting

in the delivery of large doses of radiation in a fraction

of second) minimises the DNA damage of normal lung

cells in vitro and of irradiated mice lung in vivo com-

pared to conventional radiotherapy, thus preserving

normal lung from radio-induced senescence and associ-

ated lung fibrosis [172].

CDK4/6 inhibitors

Cyclin-dependent kinases 4 and 6 (CDK4/6) are respon-

sible for the cell cycle transition from G1 to S phase by

phosphorylating RB family proteins. Cancer cells often

present a hyperactivated CDK4/6 to sustain their prolif-

eration. Therefore, CDK4/6 inhibitors are a promising

new cancer therapy [173]. The first CDK4/6 inhibitor,

palbociclib, was described in 2004 and later approved

by the FDA as a treatment for hormone receptor

(HR) + HER2- breast cancer [174]. Two other CDK4/6

inhibitors abemaciclib [175] and ribociclib [176] are cur-

rently used in the clinic, while others are under

evaluation [177]. CDK4/6 activity is needed for cell

cycle progression and is often upregulated in tumours,

frequently in absence of genetic alterations but due to

the upregulation of mitogenic signalling [111]. CDK4/6

inhibitors inhibit E2F transcriptional activity leading to

an RB-dependent cell proliferative arrest. While CDK4/

6 inhibitors can induce quiescence, they also can trigger

senescence in various cancer cells [178,179]. Acquired

resistance to CDK4/6 inhibitors occurs in highly

responsive HR-positive breast cancer. Loss of RB and

overexpression of cyclin E are associated with palboci-

clib resistance [180–182]. Pandey et al. also demon-

strated the overexpression of cyclin E in palbociclib-

resistant cells. Cyclin E-CDK2 interaction could be tar-

geted by inhibition of CDK2, and combined inhibition

of CDK2-CDK4/6 synergistically overcomes CDK4/6

resistance and enhances senescence, highlighting the

therapeutic relevance of senescence [183].

AURK/PLK inhibitors

Aurora kinases (AURK) are essential serine/threonine

kinases that control spindle formation and mitotic pro-

gression [184]. Aurora kinases are overexpressed in a

broad range of human tumours, including gastroin-

testinal, breast, ovarian and pancreatic cancer [185].

The expression of AURK is linked to genomic insta-

bility and cancer, and due to their role as cell cycle

regulators, their inhibition is of great interest for can-

cer therapy [186]. Inhibitors of Aurora kinases have

been proven effective as cancer treatments [187]. Inter-

estingly, the Aurora A inhibitor alisertib, Aurora B

inhibitor barasertib and the pan Aurora A/B/C inhibi-

tors danusertib and tozasertib are potent inducers of

senescence in cancer cells [129,131].

Table 2. (Continued).

Class Drug Cancer Model

ADT Prostate cancer LNCaP [150,151]; LAPC4; LuCaP [151];

Patient biopsies [151]

Bicalutamide Prostate cancer LNCaP, LAPC4 [152]

Immunotherapy Rituximab B cell lymphoma EHEB, RC-48, SD1 [153]

Trastuzumab & pertuzumab Breast cancer SK-BR-3 [154]

VEGF/VEGFR

inhibitors

Bevacizumab Colorectal cancer MIP101, RKO, SW620, SW480 [155]

AZD-2171 Colorectal cancer HCT-116 [156]

MEK inhibitor Trametinib Melanoma A375, D04 [157]; DMBC11, DMBC12, DMBC21,

DMBC28, DMBC17 [158]

Lung cancer A549, H2030, H460 [106]

B-Raf inhibitor Vemurafenib Melanoma DMBC11, DMBC12, DMBC21, DMBC28,

DMBC17 [158]; M14, M19-Mel, Malme 3 M,

SK-MEL-28, UACC-62, Mel2a, FM88 [159]

SKP2 inhibitor Lung cancer A549, H1299 [160]

Prostate cancer PC-3 [161,162]
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Polo-like kinases (PLK) are another family of ser-

ine/threonine kinases essential for cell mitosis [188].

PLK1 is overexpressed in a wide range of tumours

[189]. Studies demonstrated the therapeutic value of

PLK1 inhibition, particularly in endocrine-resistant

breast cancer, as overexpression of PLK1 is observed

in the patient with cancer relapse [190]. The PLK1

inhibitor BI2536 enhances the effect of paclitaxel on

MCF-7 and T-47D breast cancer cells, by inducing

their apoptosis, whereas it prevents tamoxifen-

induced senescence [191]. On the contrary, PLK1

inhibition by MLN0905 promotes senescence in a

variety of cancer cells [135]. Interestingly CFI-400945,

an inhibitor of the PLK family member PLK4,

induces senescence in cancer cells through cytosolic

DNA accumulation and activation of the cGAS/

STING pathway [138,139].

Epigenetic modulators

Several drugs that target epigenetic regulators cause

senescence. For example, 5-azacytidine and its deoxy

derivate 5-aza-20-deoxycytidine (decitabine) are ana-

logues of the nucleoside cytidine and used in cancer

therapy as inhibitors of DNA methyltransferase [192].

While developed as cytostatic drugs, particularly in

haematological cancers, the response in cancer cells

was further investigated to demonstrate that senes-

cence induction also contributes to their antiprolifera-

tive effects [82,121]. The mechanism of senescent

induction and its ability to induce senescence or apop-

tosis depends on context. 5-aza-20-deoxycytidine but

not 5-azacytidine induces profound DNA damage

leading to senescence. On the contrary, 5-azacytidine,

known to block RNA synthesis, decreases p53 protein

accumulation and leads to the apoptosis of HepG2

cells [118]. Histone deacetylase (HDAC) inhibitors

such as vorinostat (suberoyanilide hydroxamic acid,

SAHA) are used for the treatment of different cancers

such as cutaneous T-cell lymphomas. HDAC inhibi-

tors cause senescence in different cancer types

[124,125]. The SIRT1 inhibitor sirtinol also causes

senescence, although the precise mechanism responsi-

ble is unclear [126–128]. More recently, an inhibitor of

the histone lysine acetyltransferases (KATs) KAT6A

and KAT6B, has been shown to induce INK4/ARF-

dependent senescence in cancer cell lines, explaining

their ability to hinder lymphoma progression [193].

PARP inhibitors

Poly(ADP-ribose) polymerase (PARP) is involved in

the detection of single-strand breaks (SSBs) and plays

important roles in regulating DNA repair and genomic

stability. BRCA1 or BRCA2 mutant tumours are sen-

sitive to PARP inhibitors (PARPi) due to their defects

on DNA repair [194]. Other tumours with DNA repair

defects also display synthetic lethality with PARPi. In

other cases, treatment with PARPi causes senescence.

For example, treatment of MCF-7 breast cancer cells

with veliparib increases the number of DNA damage

foci observed in response to radiation, inducing senes-

cence [146]. This suggested that DNA damage sensi-

tises the cancer cells to the senescence induced by

PARPi. Indeed, KASUMI and NB4-LR2 AML cells,

bearing compromised DDR genetic alterations, are

sensitive to olaparib-induced senescence, in contrary to

THP-1 cells [141]. Similar responses have been

observed in ovarian [143] and prostate cancers

[144,195]. In ovarian cancer, PARPi induces a reversi-

ble senescent-like phenotype that caused a BCL-xL-

mediated resistance to apoptosis [142].

Other senescence-inducing drugs

A number of other drugs and antibodies can induce

senescence in cancer cells. In hormone-dependant can-

cers, hormone-receptor antagonists like tamoxifen in

breast cancer or bicalutamide in prostate cancer not

only inhibit tumour growth but can also induce senes-

cence [148–152]. In breast cancer, targeting HER2/neu

with trastuzumab or pertuzumab also causes senes-

cence [154]. In melanoma, BRAF-activating mutations

are approximatively present in 50% of all tumours

[196]. MAPK2K1 and MAPK2K1 encoding MEK1/2

are frequently mutated in melanoma, overall leading

to the hyperactivation of MAP kinase pathway [197].

The development of BRAF and MEK inhibitors (re-

spectively vemurafenib and trametinib, among others),

shows great antitumorigenic effect in patients while

also inducing senescence and contributing to radiosen-

sitise BRAF-mutated melanoma cells but also to

explain the absence of complete response to vemu-

rafenib [157–159]. VEGFR2 inhibition that results in

AKT downregulation also induces p21 and triggers

senescence in colorectal cancer cells [156]. Similar

results were obtained with the VEGF inhibitor beva-

cizumab [155]. The SKP2 E3-ubiquitin ligase is

described as an oncogene in many cancers. SKP2 inhi-

bitors exhibit antitumour activities and leads to a p53-

independent, p21/p27-dependent induction of senes-

cence in lung and prostate cancers [160–162]. Finally,
rituximab anti-CD20 immunotherapy exerts antilym-

phoma activity but also displays a pro-senescence

activity towards B-cell lymphoma, thus sensitising lym-

phoma cells to conventional chemotherapies [153].
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Senolytics and other senotherapeutics

Senescence has both detrimental and beneficial roles in

disease (and cancer) progression. That paradoxical

behaviour made that for many years it was not obvi-

ous what the best way to exploit senescence therapeuti-

cally was. That changed with the development of

mouse models (such as the INK-ATTAC mice) allow-

ing for the selective ablation of senescent cells (senoly-

sis). In a series of seminal studies, it was shown that

eliminating senescent cells improved lifespan, health-

span and ameliorates many age-related diseases [198–
200]. That prompted the search for drugs (so-called

senolytics) that selectively kill senescent cells and have

the potential to be used against a myriad of age-

related diseases, including cancer (Table 3).

BH3 mimetics

Many stresses (such as irradiation or chemotherapy)

can either induce senescence or trigger cell death. Con-

sequently, for cells to undergo senescence they not

only need to exit the cell cycle but also inhibit apopto-

sis. One mechanism by which senescent cells prevent

cell death is by upregulating anti-apoptotic BCL-2

family proteins [218]. BH3 mimetics are a class of

drugs that inhibit BCL2 family inhibitors. ABT-737

was one of the first BH3 mimetic drugs developed and

has selectivity towards BCL-2, BCL-xL and BCL-W

[219]. Other drugs, such as ABT-263/navitoclax (orally

bioavailable) [220] and ABT-199/venetoclax (a selective

BCL-2 inhibitor) were derived from it [221].

Three pioneering studies showed that ABT-263 and

ABT-737 can selectively eliminate senescent cells [222–
224]. Upregulation of anti-apoptotic BCL-2 family

proteins BCL-2, BCL-xL and BCL-W during senes-

cence was suggested as the basis for this sensitivity to

BH3 mimetics [218]. Besides eliminating a wide-range

of mouse and human senescent cells, navitoclax (ABT-

263) can rejuvenate the haematopoietic system of irra-

diated mice [223] and ABT-737 selectively eliminated

senescent cells in lung and skin [218]. Importantly, in

most cell types ABT-263/navitoclax (a BCL-2 and

BCL-xL inhibitor) but not ABT-199/venetoclax (a

selective inhibitor for BCL-2) is senolytic, although

there are exceptions. Navitoclax causes severe throm-

bocytopenia, what has limited its clinical use and

encouraged the development of more selective BCL-2

inhibitors, such as ABT-199/venetoclax [225].

Nevertheless, not all senescent cells are sensitive to

ABT-263. For example, a recent study of senescent

cancer cells showed that LoVo cells undergoing senes-

cence in response to alisertib or etoposide treatment

are insensitive to ABT-263 treatment [203]. Similarly,

senescent prostate cancer cells treated with antiandro-

gens such as enzalutamide are resistant to ABT-263

treatment [226]. Multiple factors are likely responsible

of the different sensitivity to BH3 mimetics. Context-

dependent induction of different antiapoptotic BCL-2

family proteins, such as MCL-1 might be an explana-

tion. Recently, scRNA sequencing of prostate cancer

cells from Ptenpc�/� and Ptenpc�/�;Timp1�/� mouse

models showed Mcl-1 induction upon senescence. Con-

sistently, the MCL-1 inhibitors S63845, UMI77 and

AZD5991 efficiently eliminated those senescent pros-

tate cancer cells [208].

Quercetin, fisetin and other flavonoids

Senescent cells activate anti-apoptotic and pro-survival

pathways. Quercetin was identified as a senolytic drug

chosen from selected candidates regulating anti-

apoptotic and pro-survival pathways induced during

senescence [227]. In that study, it was shown that the

combination of the tyrosine kinase inhibitor (TKI)

dasatinib and quercetin (D + Q) was promising in the

clearance of senescent cells. Interestingly, D + Q effec-

tively cleared senescent cells of old, progeroid Ercc1�/D

mice and irradiated mice to increase their cardiovascu-

lar function, healthspan and physical endurance [227].

Following the discovery of quercetin as a senolytic, a

panel of flavonoids was screened to test their capacity

to kill senescent mice and human fibroblasts [228].

Among the flavonoids tested, fisetin demonstrated seno-

lytic activity on Ercc1�/� mouse embryonic fibroblasts

(MEFs) and etoposide-treated IMR-90 fibroblasts and

reduced senescent cell burden of p16+/Luc;Ercc1�/D pro-

geroid mice, aged mice, and in human explants. Fisetin

eliminates senescent human umbilical vein endothelial

cells (HUVECs), but not senescent IMR-90 cells or pri-

mary human adipocytes [229]. Procyanidin C1, another

flavonoid, has also been recently shown to display seno-

lytic properties [230].

While flavonoids are commonly consumed in human

diet, none of these compounds are currently approved

for medical use, despite numerous publications on bene-

ficial effects to treat cancer or cardiovascular disease.

Recently, first-in-human studies have suggested the effi-

cacy of the senolytic combination dasatinib + quercetin

in the improvement of the condition of patients with

pulmonary fibrosis and chronic kidney disease

[231,232]. Several clinical trials are currently in progress

to evaluate the senolytic activity of quercetin, fisetin

(NCT05276895; NCT04815902; NCT04770064) and

dasatinib + quercetin (NCT04063124; NCT04685590,

NCT02848131; NCT04313634) in patients.
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Table 3. Uses of senolytic drugs in preclinical models of cancer.

Class Drug Cancer Senescence induction Model

BH3 mimetics ABT-263/navitoclax Breast cancer Irradiation, paclitaxel 4226, Cal51 [201]

Doxorubicin MDA-MB-231, MDA-MB-231

xenograft [202]

Colorectal cancer Etoposide HCT-116 [203]

Glioblastoma Irradiation GBM39, GBM76, GBM6,

GBM123 [204]

Temozolomide GBM39, GBM76 [204]

Lung cancer Etoposide, irradiation A549, A549 xenograft [202]

Breast, lung cancer,

osteosarcoma

Doxorubicin 4226, SKBR7, Cal51, U2OS,

A549 [201]

Lung, breast, colorectal,

hepatocellular cancers

Alisertib or etoposide A549, MDA-MB-231, SUM159,

RKO, PC9, MCF-7, Huh7,

Hep3B, H358, T47D, HepG2

[203].

Ovarian and breast

cancers

Olaparib OV1946, OV4453, MDA-MB-

231 [142]

ABT-199/venetoclax Breast cancer Palbociclib MCF-7, patient tumour

organoid, PDX [205]

Glioblastoma Temozolomide LN-229 [206]

Sarcoma Irradiation STS117, STS93, STS109 [207]

ABT-263/navitoclax +

S63845 MCL-1

inhibitor

Breast cancer Doxorubicin HCC712, MDA-MB-175, MCF-7,

747D [201]

Irradiation, paclitaxel MDA-MB-175 [201]

S63845 MCL-1

inhibitor

Prostate cancer Docetaxel PC3 Luc-ShTimp1 xenografts

[208]

Cardiac glycosides Ouabain Craniopharyngioma Oncogenic b-Catenin Hesx1Cre/+;Ctnnb1lox(ex3)/+

mouse model [209]

Colorectal cancer Doxorubicin HCT-116 [209]

Preneoplastic

hepatocytes

NRASG12V expression NRASG12V hydrodynamic

injection in mice [209]

Hepatocellular

carcinoma,

lung cancer

Etoposide, Barasertib,

Alisertib, Tozasertib,

Palbociclib

SK-Hep1 and A549 [209] [210]

Lung cancer Etoposide, doxorubicin A549 [210]

Bleomycin, Gemcitabine,

Doxorubicin, Etoposide,

Palbociclib

A549 [211]

Melanoma Palbociclib SK-MEL-103 [211]

Digitoxin Hepatocellular

carcinoma,

lung cancer

Etoposide, Barasertib,

Alisertib, Tozasertib,

Palbociclib

SK-Hep1 and A549 [209]

Digoxin Breast cancer Doxorubicin PDX [211]

Lung cancer Bleomycin A549 [211]

Lung cancer Gemcitabine A549 xenografts [211]

Melanoma Palbociclib SK-MEL-103 [211]

Proscillaridin A Lung cancer Bleomycin A549 [211]

Galacto-conjugates Gal-NP(Nav) Breast cancer Palbociclib Xenograft [212]

Nav-Gal Lung cancer Cisplatin A549 + xenograft [213]

Galactose-modified

duocarmycin

Craniopharyngioma Oncogenic b-Catenin Hesx1Cre/+;Ctnnb1lox(ex3)/+ [214]

BET inhibitor ARV825 Colorectal carcinoma Doxorubicin HCT-116 [215]

Hepatocellular

carcinoma

Obesity-induced HCC mouse

model [215]

HDAC inhibitor Panobinostat HNSCC Taxol, cisplatin FaDu, UMSCC47 [216]

Lung cancer Taxol, cisplatin A549, H460 [216]
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FOXO4 peptidomimetics

FOXO4 is upregulated in senescent cells and con-

tributes to maintain their viability. FOXO4 resides in

PML bodies and colocalises with DNA segments with

chromatin alterations reinforcing senescence (DNA-

SCARS) where it interacts and sequesters p53 in the

nucleus, to prevent apoptosis. Thus, FOXO4-DRI pep-

tides [D-Retro Inverso (DRI)-isoform] compete with

endogenous FOXO4, releasing p53 and causing apop-

tosis of senescent cells [233]. This strategy was success-

fully validated on irradiated IMR-90 fibroblasts and

eliminates senescent cells in premature ageing mouse

models and mice treated with doxorubicin [233]. More

recently, other FOXO4 peptidomimetics have been

developed [217]. These new peptides showed 3–7 times

more effective senolytic activity on doxorubicin-treated

A375 melanoma cells and orthotopic grafts.

Galacto-conjugated senolytics

Senescent cells display an increase in lysosomal mass

that results in higher activity of lysosomal b-
galactosidase [31]. As a result, SA-b-Gal activity is one

of the most frequently used markers for senescence.

Several strategies have taken advantage of the higher

b-galactosidase activity of senescent cells to design

drugs with enhanced selectivity towards senescent cells.

This rationale was first tested by designing galacto-

oligosaccharide-capped nanoparticles, which preferen-

tially released their cargo on senescent cells [234]. This

strategy could be combined with imaging agents to

identify senescent cells. Encapsulation limited the cyto-

toxic effects of doxorubicin and transformed it into a

senolytic drug. In addition, nano-encapsulated navito-

clax Gal-NP(Nav) inhibited the tumour growth and

the emergence of metastases, while limiting the whole-

body toxicity of navitoclax [108].

Galactose conjugation was taken a step further by

using galactose-derived pro-drugs rather than encapsu-

lating drugs in galacto-oligosaccharide-capped nanopar-

ticles. A galactose derivative prodrug of navitoclax

(Nav-Gal) showed a higher specificity toward cisplatin-

induced senescent A549 cancer cells compared to

unconjugated navitoclax. In vivo, the concomitant treat-

ment with cisplatin and Nav-Gal cleared the senescent

cancer cells and reduced the growth of cancer xeno-

grafts, sparing platelets and not causing thrombocy-

topenia [213]. Other studies converted cytotoxic drugs

into senolytics by generating galactose-conjugated pro-

drugs. For example, galactose prodrug derivatives of

the alkylating antibiotic duocarmycin displayed senoly-

tic activity both in culture and in vivo [214]. Similarly,

SSK1, a galactose prodrug derived from gemcitabine

targeted senescent cells, attenuated inflammation and

restore the physical activity of old mice [235].

Cardiac glycosides

Unbiased phenotypic screens have also served to iden-

tify senolytic drugs. Taking these approaches, two

groups independently identified the senolytic potential

of cardiac glycosides [209,211]. Cardiac glycosides

(CGs), such as ouabain, digoxin and digitoxin, are nat-

ural compounds used in cardiology as inhibitors of

Na+/K+-ATPase. Interestingly, there is an increase in

the concentration of intracellular cations in senescent

cells, and treatment with CGs decrease K+ levels more

prominently in senescent cells, what eventually cause

induction of the pro-apoptotic NOXA gene. Thus, the

senolytic activity of cardiac glycosides might be

explained by inhibition of the Na+/K+-ATPase and

depolarization of the plasma membrane. In vivo, CGs

were able to eliminate different senescent cells includ-

ing preneoplastic hepatocytes and naturally arising

senescent cells in old mice [209]. Moreover, CGs syner-

gise with gemcitabine or doxorubicin to eliminate can-

cer xenografts [211]. Interestingly, another inhibitor of

ATPase pumps, curcumin, and derivatives such as o-

vanillin and EF24 also displays senolytic activ-

ity [209,236,237].

Other small compounds with senolytic activity

Drug screens have served to identify other drugs with

senolytic properties. HSP90 chaperone inhibitors such

Table 3. (Continued).

Class Drug Cancer Senescence induction Model

FOXO4 peptidomimetics Melanoma Doxorubicin A375, A375 grafts [217]

mTOR inhibitors AZD8055 and

AZD2014

Hepatocellular

carcinoma

XL413 (CDC7 inhibitor) Huh7, Hep3B; Huh7 and

MHCC97H xenografts;

MycOE;Trp53KO-HCC bearing

mice [147]
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as geldanamycin, and its derivates 17-AAG (tane-

spimycin) and 17-DMAG (alvespimycin) downregulate

the pro-survival PI3K/AKT pathway, which is associ-

ated with a decreased number of senescent cells and an

increased in healthspan of Ercc1�/D progeroid mice

[238].

Another drug screen identified the BET (Bromod-

omain and Extraterminal domain) family protein

degrader (BETd) as a senolytic drug and validated the

ARV825 compound as the BET inhibitor with the

strongest senolytic activity [215]. ARV825 is a PRO-

TAC (proteolysis targeting chimera), consisting in two

active domains, one able to engage an E3 ligase to

allow the proteolytic degradation of the chosen protein

targeting by the second active domain. This PROTAC

eliminates senescent cells in a model of obesity-induced

hepatocellular carcinoma (HCC), restraining tumour

development. Other drugs, such as the HDAC inhibi-

tor panobinostat have been shown to have senolytic

activity. In A549 non-small cell lung cancer (NSCLC)

and FaDu head and neck squamous cell carcinoma

(HNSCC) cells, taxol and panobinostat cotreatment

showed a synergistic killing of cancer cells [216]. This

apoptosis of the cancer cells was attributed to the

induction of senescence by taxol followed by

panobinostat-induced senolysis.

Exploiting the immune system to eliminate

senescent cells

Beside small compounds, senescent cells can be tar-

geted taking advantage of the immune system. For

example, antibodies against senescent-specific antigens

such as DPP4 can be used to target senescent cells by

potentiating antibody-dependent cell-mediated cytotox-

icity (ADCC) [239]. An antibody against B2M, an

extracellular epitope identified as a membrane marker

of senescence, conjugated to duocarmycin was able to

kill doxorubicin-induced senescent HCT-116 colorectal

cancer cells [240]. Recently, the therapeutic concept of

chimeric antigen receptor (CAR) T cells was applied

to senotherapy. The urokinase plasminogen activator

receptor (uPAR) is a cell surface protein upregulated

in senescent cells. The authors thus designed CAR T

cells directed against uPAR that successfully eliminate

senescent cells in vitro and in vivo upon TIS in

KrasG12D;Trp53�/� lung adenocarcinoma mouse

model, what resulted in extended survival [241].

Other senotherapies

Besides the elimination of senescent cells by senolytics,

senotherapies include senomorphic drugs that

modulate the SASP to ensure the immune-mediated

senescent cell clearance. For example, the combination

of MEK and CDK4/6 inhibitors induces senescence in

Kras-driven models of lung cancer and pancreatic duc-

tal adenocarcinoma (PDAC). In lung cancer, that is

sufficient to promote NK-mediated regression [106],

while in PDAC, the SASP increases tumour vascular-

ization, facilitating chemotherapy delivery and efficacy,

and increasing the recruitment of CD8+ T immune

cells, thus sensitising these “cold” tumours to

immunotherapy [242]. These studies suggest that

immune response against senescent cancer cells could

be further stimulated by immune checkpoint inhibitors

(ICI).

Alternatively, senomorphic drugs altering the SASP

phenotype without killing the senescent cells could be

used to prevent the adverse effects of the remaining

senescent cells or favour senescence immunosurveil-

lance. Senomorphic drugs include IjB kinase (IKK)

and NF-jB kinase inhibitors [243], JAK/STAT sig-

nalling pathway inhibitors [244] or mTOR inhibitors

[12,13]. Interestingly, the antidiabetic drug metformin

improves the healthspan and lifespan in mice, notably

via the AMP-activated protein kinase (AMPK) activa-

tion resulting in decreased oxidative damage and

chronic inflammation [245,246]. While metformin has

pleiotropic effects, it also inhibits SASP production by

preventing NF-kB activation [247,248]. Rapamycin, a

selective inhibitor of mTOR, also inhibits the proin-

flammatory SASP [12,13]. Everolimus, a second-

generation rapamycin derivate, is currently approved

to treat certain types of breast [249], pancreatic [250],

gastrointestinal [251], lung [252], kidney cancers

[253,254] and astrocytoma [255]. However, whether

everolimus (or other senomorphic drugs) behave as a

senomorphic drug in cancer patients has not been eval-

uated to date.

The “one-two punch” approach:
combining cancer therapies with
senolytics

The extension of lifespan and healthspan observed

upon genetic ablation of senescent cells in the INK-

ATTAC mice [198] fuelled the interest in developing

senolytic drugs, initially aimed to treat an array of

age-related diseases. The potential that eliminating

senescent cells have as an anticancer therapy became

evident already in these early studies, as the expansion

of lifespan observed in the INK-ATTAC mice is

mostly explained by a delay in cancer-related deaths.

While senescent cells influence many aspects of tumour

progression, a way to deploy senotherapeutics for
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Fig. 1. Strategies to target senescence in cancer (“one-two punch”). Anti-cancer therapy (first punch) induces the senescence of tumour

cells. Conventional chemotherapy, radiotherapy and targeted therapies can be used to induce senescence. Induction of senescence in

tumour cells unveils novel targetable vulnerabilities. Senolytic drugs can then be deployed to selectively target and kill senescent tumour

cells (second punch). Several senolytic drugs have been described so far and their mechanisms of action are summarised here. Selective

killing of senescent cancer cells will improve tumour control and regression. This “one-two punch” approach to cancer therapy relies on the

precise schedule of the administration of the sequential drug treatment to sensitise tumour to senolysis and restore tissue integrity. 17-

AAG, 17-allylamino-17-demethoxygeldanamycin; 17-DMAG, 17-dimethylaminoethylamino-17-demethoxygeldanamycin; ac, acetylation; ADCC,

antibody-dependent cell-mediated cytotoxicity; AURK, Aurora kinase; BET, bromodomain and extraterminal domain; CAR-T cell, chimeric anti-

gen receptor T cell; CDK, cyclin-dependent kinase; DNMT, DNA methyltransferase; Doxo, doxorubicin; DRI, D-retro inverso; gal-NP,

galactose-nanoparticle; GMD, galactose-modified duocarmycin; HDAC, histone deacetylase; HSP, heat shock protein; Nav, navitoclax; PARP,

poly(ADP-ribose) polymerase; PI3K, phosphatidylinositol tri-phosphate; PLK, polo-like kinase; ROS, reactive oxygen species; RTK, receptor

tyrosine kinase; uPAR, urokinase plasminogen activator receptor. Created with BioRender.com.
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cancer treatment is the so-called “one-two punch”

approach [256]. The rationale of “one-two punch”

therapies is that many cancer therapies induce senes-

cence and using senolytics (as a second punch) would

therefore target a newly exposed vulnerability in the

cancer cells (Fig. 1).

On 36 breast cancer patients who received adjuvant

chemotherapy, te Poele et al. [79] found that 41% of

the tumours were SA-b-galactosidase and p16 positive,

where only 10% of the 20 patients who did not receive

chemotherapy stained positive, confirming that cyto-

toxic chemotherapy induces senescence in patients.

Another demonstration comes from Roberson et al.

[50] who showed that lung tumours from patient trea-

ted with neoadjuvant chemotherapy present large area

of SA-b-galactosidase positive cells compared to

tumours from a patient treated with surgery alone.

This also illustrates the heterogeneity of tumour

responses to therapy. Given that lingering senescent

cells can promote tumour growth, metastasis and ther-

apy resistance, strategies that target the elimination of

senescent tumour cells post-therapy can have multiple

benefits.

One of the first demonstrations of the “one-two

punch” concept came from cell culture experiments in

which treating A549 cancer cells with Aurora kinase

inhibitors (such as alisertib or barasetib) were shown

to undergo senescence [131]. Subsequent treatment

with ABT-263 killed the senescent cancer cells, sug-

gesting the validity of such a combination. Given that

cancer cells with their different origins and genetic

composition might present different vulnerabilities, the

Bernards’ group concentrated in finding pro-

senescence therapies and senolytics tailored to HCC.

Inhibition of CDC7, a DNA replication kinase, with

XL413 selectively induces the senescence of p53

mutant cells, while inhibitors of mTOR signalling

killed the senescent liver cancer cells [147]. Another

example of the one-two punch treatment is the effec-

tive combination of the PARPi olaparib and the seno-

lytic drug navitoclax in a mouse model of ovarian

cancer [142]. After a successful demonstration in vivo,

the authors plan to launch in the mid-2022 the first

phase 1 clinical trial, evaluating the safety and the rec-

ommended dose for combined olaparib + navitoclax

treatment in ovarian cancer patients, with intermittent

delivery of navitoclax to prevent its hematologic toxic-

ity. A future phase 2 study will evaluate the one-two

punch approach in solid tumour, ovarian cancer

(NCT05358639).

One-two punch protocols have been tried with a wide

range of other senolytics (Table 3), including cardiac

glycosides [211], BRD4 inhibitors [215], and galacto-

coated nanoparticles loaded with doxorubicin or navito-

clax [108] or the Gal-Nav prodrug [213]. There are sev-

eral clinical trials evaluating the effect of the senolytic

Navitoclax in combination with chemotherapy in cancer

patients. However, the contribution of senescence and

senolysis to the therapeutic effect will not be evaluated

on most of those trials (NCT05358639 is an exception,

Table 4). In addition, other senolytics, such as D + Q

or fisetin, are being evaluated in different trails, includ-

ing one aiming to improve frailty in adult survivors of

childhood cancer (NCT04733534, Table 4). In addition

to clinical trials, retrospective analysis is another way to

test the potential of drugs repurposed as senolytics. For

example, cancer patients treated with the cardiac gly-

coside digoxin during chemotherapy have a better over-

all survival [257]. Cardiac glycosides have pleiotropic

effects, and the aforementioned study attributed the

effect to immunogenic cell death. But given that cardiac

glycosides have senolytic properties [209,211], it would

Table 4. Examples of clinical trials testing senolytic drugs in the context of cancer.

Senolytic drug CT phase Cancer Senescence induction CT number

Navitoclax Phase 1 Small cell lung cancer Etoposide, cisplatin NCT00878449

Navitoclax Phase 1 Solid tumours Erlotinib, irinotecan NCT01009073

Navitoclax Phase 1 Solid tumours Gemcitabine NCT00887757

Navitoclax Phase 1 Solid tumours Paclitaxel NCT00891605

Navitoclax Phase 1/2 Solid tumours Trametinib NCT02079740

Navitoclax Phase 1 Solid tumours Docetaxel NCT00888108

Navitoclax Phase 1/2 Solid tumours Dabrafenib, trametinib NCT01989585

Navitoclax Phase 1 Advanced or metastatic

non-small cell lung cancer

Osimertinib NCT02520778

Navitoclax Phase 1 High-grade serous carcinoma,

triple-negative breast cancer

Olaparib NCT05358639

Navitoclax Phase 1 Myeloid Neoplasms Decitabine NCT05455294

Navitoclax Phase 1 Refractory acute myeloid leukaemia Decitabine NCT05222984

Dasatinib and quercetin / Fisetin Phase 2 Childhood cancer survivors N/A NCT04733534
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be worthy investigating whether senolysis might explain

those results. Finally, a question that remains is what

the best timeline for senotherapy is in combination with

tumour therapy to achieve maximal benefit.

Effects of senolytics beyond the
tumour

Different types of senescent cells are present in the

TME during cancer progression and treatment. In

addition, cancer treatments are also able to induce

senescence in normal tissues. While the use of senolyt-

ics as anticancer treatment might be first deployed in

the context of “one-two punch” regimes, senolytics

might have benefits that extend beyond killing senes-

cent cancer cells.

OIS, occurring in preneoplastic lesions is a tumour

suppressor mechanism that limits tumour progression.

Senolytic drugs, such as CGs, have the ability of elimi-

nating preneoplastic senescent cells [209], and therefore

might not only target the senescent tumour cells but

also limit cancer initiation. Senescent cells (such as

fibroblasts) present in the tumour microenvironment are

known to promote tumour growth, in part by secreting

a pro-tumorigenic SASP [64]. We and others have

shown that strategies that inhibit this pro-inflammatory

SASP decrease tumour growth [12,13,258]. Similarly,

senolytics such as procyanidin C1 have been proposed

to inhibit tumour growth by targeting pro-tumorigenic

fibroblasts in the TME [230]. Moreover, side effects of

chemotherapies have been linked to induction of senes-

cence outside the tumour [37]. Using a mouse model for

genetic ablation of senescent cells, DeMaria et al. [37]

showed how killing senescent cells after chemotherapy

reduced bone marrow suppression, cardiac dysfunction,

cancer recurrence and improved physical activity and

strength. Therefore, an additional advantage of using

senolytics for cancer treatment will be limiting the side

effects of cancer therapies.

Besides these additional benefits of senolytics we

need to consider their side effects. One of the attrac-

tions of senolytics is that the original studies suggested

an absence of side effects associated with eliminating

senescent cells other than delayed wound healing

[37,198,199]. However, since cancer often affects

elderly people, and ageing is associated with slowed

wound-repair and healing abilities [259], delayed

wound healing might be problematic. In addition,

senolytics such as navitoclax present toxicities associ-

ated not with the elimination of senescent cells but

with the specific drug target. These drug-specific toxici-

ties (such as thrombocytopenia caused by navitoclax)

also need to be evaluated. In addition, recent studies

suggest that, in a way that might depend on the seno-

lytic regime used, elimination of certain senescent cells

such as liver sinusoidal endothelial cells (LSECs) [260]

can cause additional side effects such as fibrosis.

Therefore, the short- and long-term side effects of

senolytics remain unknown and need to be considered

carefully.

Future challenges

Senolytics are a relatively novel class of drugs and clini-

cal trials for senolytics are just in their infancy. Senolyt-

ics hold immense promise, not just for cancer treatment,

but also as therapies for a wide range of age-related dis-

eases and to treat multimorbidity. However, there are

many unknowns and challenges that future research and

ongoing trials will help us understand.

There are multiple therapeutics, both novel and clin-

ically approved with senolytic activity and they target

different mechanisms. Senolytics include not only small

molecules, but also cell and immunotherapies. While

this is potentially a very good starting point, it also

comes with the added question of which drugs are bet-

ter suited for which indications. In the case of “one-

two punch” approaches for anticancer therapies, an

additional issue is to establish the best regime: when to

treat with the senescence-inducing drug and when with

the senolytic? While the rationale argues for sequential

treatment (first inducing senescence and then treating

with the senolytic), in real life, the heterogeneity of the

senescence response in the tumour might need concur-

rent treatment or a more complicated regime. That of

course increases the potential for drug interactions and

toxicities that would need to be monitored and man-

aged.

While using senolytics in the context of ‘one-two

punch’ approaches is been postulated as the most clear

anticancer therapies, we should not forget about

senotherapies that could reduce the pro-tumorigenic

effects associated with the SASP, or ‘reprogram’ the

SASP to potentiate anticancer immune surveillance.

Senescence is a cell stress response that is evoked in

response to many cancer drugs and in multiple cancer

types. While this implies a potentially universal use of

senolytics as anticancer therapies, it also opens the

question of what are the best cancer types in which

start testing the “one-two punch paradigm”. While

pre-existing data from preclinical models and patients

can serve to suggest reasonable starting points, a key

element to make senolytic therapies to work is being

able to monitor senescence. Identification of senescent

cells is one of the issues that has slowed progress in

the senescent field for years, even if recent approaches
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are in development to detect senescence especially in

tumours [261]. The issue becomes even more urgent if

we want to move senotherapeutics for the clinic.

Detection of senescence should be key to enrol and

stratify patients and to monitor the efficiency of thera-

peutic strategies.

To this extent, we ideally need to identify biomark-

ers that can be routinely surveyed (in plasma or urine)

or imaging techniques that could allow a non-invasive,

longitudinal monitoring of senescence in patients.

Secreted proteins into biological fluids are routinely

used for the surveillance of cancer. Proteins secreted

by senescent cells as part of the SASP represent a

promising source of biomarkers that could be

exploited. For example, a SASP signature has been

proposed as an indicator of age and medical risk [262].

Another soluble senescence markers that could be

detected in blood include a soluble form of uPAR

(suPAR) that is cleaved and secreted by senescent cells

and has been used as a biomarker of several

senescence-associated diseases [241]. Interestingly, a

study of the lipids present in senescent cells identified

the intracellular prostaglandin dh-15d-PGJ2 and other

prostaglandin D2-related lipids that accumulate during

senescence. Moreover, the dihomo-prostaglandin is

released upon senolysis and thus represents a potential

marker of senolysis [263].

The ideal goal would be to monitor the senescence

by non-invasive imaging. While no such an approach

is currently used in the clinic, several are in develop-

ment. For example, [18F]FPyGal is a PET tracer aimed

to report b-galactosidase [264,265]. Activity of b-
galactosidase is often used as a marker of senescence.

The [18F]FPyGal tracer uptake is increased in senes-

cent cells. [18F]FPyGal can reveal the presence of

senescence in tumours and was initially evaluated in a

patient treated with alisertib, revealing the presence of

liver metastasis [264,265]. Consequently, a clinical trial

(NCT04536454) was initiated to further evaluate [18F]

FPyGal to image senescence in cancer patients.

Overall senotherapies are a very interesting nascent

field. While most of the focus has been placed on using

senolytics for age-related diseases, we anticipate that the

next years will also see an increase in the use of senolyt-

ics in anticancer therapies. The discovery of novel thera-

peutics and the establishment of protocols to deploy

them effectively, combined with strategies to monitor

senescence, will all be necessary steps in this process.
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