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Abstract: Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe
disease in immunocompromised individuals and immunologically immature fetuses and newborns.
Most infected newborns are able to resolve the infection without developing sequelae. However, in
severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent
damage of organ systems that possess a low regenerative capacity. Despite the severity of the
problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized
to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in
experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus
(MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection
in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the
development of widespread histopathology and inflammation. Effector functions from both resident
cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However,
host-mediated inflammatory factors can also mediate the development of immunopathologies during
CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the
brain, local immune response to infection, and mechanisms leading to CNS sequelae.

Keywords: cytomegalovirus; congenital HCMV infection; mouse cytomegalovirus; inflammation;
latency; central nervous system; CMV tropism; immune response

1. Introduction

Human cytomegalovirus (HCMV), a β-herpesvirus, is a highly prevalent virus infect-
ing 40–100% of the population worldwide [1]. The majority of the infected population
remains asymptomatic due to the effective immune response [2]. Upon resolution of pri-
mary infection, like other herpesviruses, HCMV establishes lifelong latency. However,
primary infection or viral reactivation can cause serious multiorgan disease in immuno-
compromised individuals. Various risk groups, such as transplant recipients, intensive care
patients, acquired immunodeficiency syndrome (AIDS) patients, and fetuses/newborns are
susceptible to the development of HCMV-mediated disease due to the impaired immune
response [2,3]. In addition, HCMV-mediated life-threatening complications, although rare,
are also possible in immunocompetent individuals [4].

1.1. Congenital HCMV Infection

Annually, 0.2–2% of all newborns develop HCMV infection in utero, making it the
most common congenital infection in the developed world [3,5]. Amongst the infected
newborns, 10–15% exhibit clinical findings (symptomatic congenital HCMV infection) such
as visceral organomegaly, microcephaly with intracranial calcifications, chorioretinitis, jaun-
dice, mental retardation, sensorineural hearing loss (SNHL), and skin lesions (petechiae
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and purpura). Additionally, symptoms such as prematurity, small size for gestational
age and neonatal death (5–10%) are also considered to define symptomatic congenital
infection [1,3,6]. In general, congenital HCMV infection affects more children than widely
known trisomy 21 or fetal alcohol syndrome and is a leading cause of non-familial hearing
loss [7]. The majority of infected newborns lack clinically evident symptoms (asymptomatic
congenital HCMV infection); however, they still possess a high risk of developing neurode-
velopmental sequelae, such as SNHL or end-organ disease [3,5]. Studies have reported
that even infants that lack evident symptoms can shed virus in their body fluids up to
5 years following the infection, rendering them as a source of virus spread within group
care facilities and households [8].

Maternal adaptive immunity can significantly reduce rates of intrauterine transmis-
sion, as evidenced by the difference in transmission rates between women undergoing
primary infection and women undergoing nonprimary infection [9]. As the severe disease
is not observed in the majority of cases, it is evident that most infants can resolve the acute
phase of infection without permanent consequences. Observational studies have failed to
report an evident connection between viral load in amniotic fluid and the development of
long-term sequelae, making estimates of the prognosis of individual cases challenging [6].
At birth, high viral loads in urine and peripheral blood have been correlated with a higher
risk of developing sequelae [8,10]. In severe cases, high viral loads can damage fetal organ
systems such as hepatobiliary, nervous, hematopoietic, and respiratory [11]. The inability to
efficiently resolve acute infections in organ systems that possess low regenerative capacity,
such as the nervous and auditory system, can consequently lead to the development of
permanent sequelae [11]. It is suggested that the development of severe sequelae is most
closely associated with infections during the first trimester in primary infections [12,13].
This observation could be correlated with the undeveloped fetal immune system [14]. The
transmission of HCMV to fetus seems to be more common in the last two trimesters [12].

Despite the long history of development, there is no approved vaccine for HCMV [15].
Diagnostic and therapeutic approaches for congenital HCMV infection are still very limited,
warranting the need for understanding the pathogenesis of infection and development of
novel diagnostic and therapeutic approaches [1]. Usage of antivirals as therapy during
pregnancy remains controversial. In theory, antiviral therapy could be effective in prevent-
ing fetal infection and in modifying disease in the infected fetuses. However, the majority
of antivirals are not approved for use during pregnancy due to their targeting of enzymes
required for DNA synthesis, thus leading to possible adverse effects, of which, some
could be long-term [12]. Novel antivirals, including letermovir, which is specific for viral
terminase, and valacyclovir, are currently being evaluated [12]. The standard postnatal
treatment for congenital HCMV infection is the use of antiviral agents such as ganciclovir,
which have been shown to control the severity of the acute infection and possibly modify
the progression of neurological abnormalities, primarily SHNL [6]. Hyperimmunoglobulin
treatment was also tested in clinical trials on pregnant women with confirmed congenital
HCMV infection; however, to date, clinical trials have shown no clear benefit of such
treatment [16,17].

1.2. Mouse Model of Congenital HCMV Infection

Cytomegaloviruses (CMVs) show strict species specificity and therefore HCMV patho-
genesis cannot be studied in experimental animals. Due to comparable genetics and
pathogenesis, various animal CMVs have been used to model HCMV infection [18–20].
The most commonly used animal model is the mouse model, but rat, guinea pig, and
Rhesus macaque are also frequently used to study CMV infection.

The Rhesus macaque CMV (RhCMV) model is especially well suited to study con-
genital HCMV infection in humans [21]. However, this model has major disadvantages,
including the paucity of RhCMV-seronegative macaques and the high cost of laboratory an-
imals and experimental setups. The guinea pig CMV (GPCMV) is able to cross the placenta,
infect the embryo, and cause pathology in the nervous system [22,23]. However, this model
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requires high doses of the virus for infection of dams, with consequent significant placental
damage, fetal loss, and small litters. In addition, both GPCMV and RhCMV viral genomes
lack detailed characterization with an additional shortage of available immunological and
genetic tools in comparison to the murine models [22]. Similar drawbacks also apply to rat
CMV models of congenital infection [24].

Mouse cytomegalovirus (MCMV) infection has been used to elucidate numerous mecha-
nisms of infection, pathogenesis, and immune response to CMV [25]. Even though MCMV is
unable to pass the placenta and infect the embryo, various inoculation techniques have been
established to model congenital infection [26–28]. Direct inoculation of MCMV into cerebral
hemispheres or lateral ventricles of either mouse embryos or newborn mice has been used
to model congenital infection [29,30]. However, direct intracranial (i.c.) inoculation of the
virus does not efficiently reflect the pathogenesis of congenital infection, including a disregard
of viral spread and immune response in peripheral tissues prior to infection of the CNS.
Additionally, these methods require pretreatment anesthesia and complex techniques and can
lead to significant loss of animals in experimental groups in comparison to intraperitoneal
(i.p.) inoculation, as it can lead to collateral infections and disruptions of the blood–brain
barrier (BBB) [26,31]. Intraperitoneal inoculation of MCMV into newborn pups is a commonly
used method for studying congenital infection in mice [26]. The use of newborn mice is
justified by the fact that the CNS of neonatal mice corresponds developmentally to the CNS
of human fetuses between gestation weeks 12 to 15 and by the highly conserved structure
of the cerebellum between rodents and humans [31–33]. Following inoculation, the virus
spreads hematogenously, establishing primary viremia in peripheral organs prior to infecting
the CNS, which resembles the proposed route of HCMV dissemination into CNS during
congenital HCMV infection [26,31]. Importantly, infected mice develop brain alterations and
neurobehavioral sequelae observed in congenital HCMV infection [26,34]. Similarly, MCMV-
infected newborn mice exhibit hearing loss associated with loss of spiral ganglia neurons
and degeneration of cochlear vasculature [35,36]. Newborn mice of different strains show
different levels of susceptibility to MCMV infection [37,38], potentially resembling differential
susceptibility for symptomatic infection in the human population. However, only BALB/c
and C57BL/6 mice have been used to model congenital infection so far. The kinetics of
virus replication and virus-induced pathology are similar in newborn BALB/c and C57BL/6
mice [39–41]. Ly49H receptor, which provides MCMV resistance in C57BL/6 mice, is not
expressed in NK cells in newborn mice, explaining the lack of efficient control of MCMV in
newborn C57BL/6 mice [41,42].

2. CMV Infection of Brain-Resident Cells
2.1. Cytomegalovirus Tropism

CMV possesses a broad cell tropism, with the majority of cell types reported to be
fully permissive for infection [43]. Cell types such as epithelial, endothelial, fibroblasts,
and smooth muscle cells are considered to be the prime targets for HCMV infection [44]. It
is presumed that HCMV enters a new host by infecting mucosal epithelium, or in the case
of congenital infection, by infecting placental trophoblasts. Upon entry, HCMV establishes
myeloid cell-mediated primary infection of organs such as spleen, liver, and lungs [45].
Efficient proliferation in ubiquitous cell types such as fibroblasts, hepatocytes, and smooth
muscle cells contributes to high viral loads in different organs [44]. Interestingly, even
though the liver is one of the organs with the highest viral load during acute infection in
adult mice, the hepatocyte-produced cytomegalovirus does not disseminate [46]. Myeloid
cells are considered to function as transport vehicles for viral spread, rather than as sites
of robust productive infection. Following infection of initial organs, the virus undergoes
secondary dissemination to organs such as salivary glands and kidneys [45]. Infection of
epithelial cells of glands and mucosal tissues allows the virus to spread to new hosts via
infected bodily secretions.

Three major glycoprotein complexes of cytomegalovirus, gB, gM/gN, and gH/gL,
mediate virus entry [47]. Their contributions to entry are thought to occur sequentially,



Viruses 2021, 13, 1078 4 of 18

with the gM/gN complex mediating initial attachment to the host cells, gH/gL complexes
binding cell surface receptors, and gB mediating membrane fusion [48]. The binding of
gH/gL complexes to an entry receptor induces conformational changes that activate gB
to perform membrane fusion [48]. HCMV encodes two gH/gL complexes. The trimeric
complex consisting of gH/gL and gO (gH/gL/gO) mediates entry into all cells, most
notably fibroblasts, and is required for infectivity of cell-free virus [49]. The pentameric
complex of gH/gL with small glycoproteins UL128, UL130, and UL131 broadens the HCMV
cell tropism, and is required for infection of epithelial cells, endothelial cells, leukocytes,
and dendritic cells, but not fibroblasts [50–53]. The ability of HCMV to efficiently infect
various cell types can be also linked to the efficient exploitation of numerous host surface
receptors and co-receptors that mediate viral entry [48]. The gH/gL/gO complex mediates
infection of fibroblasts by binding to platelet-derived growth factor receptor-α (PDGFRα),
a receptor that is not expressed on epithelial cells [54,55]. The pentameric complex targets
neuropilin-2 (Nrp2) for efficient infection of epithelial and endothelial cells [56].

Similar to HCMV, MCMV shows broad tropism and encodes two gH/gL com-
plexes [47]. Mouse gH/gL/gO complex is a functional homolog of the correspond-
ing HCMV complex and it is important for infectivity of MCMV virions and fibrob-
last tropism [57]. The second complex of MCMV gH/gL is with viral chemokine-
like protein, MCK-2 [58]. gH/gL/MCK-2 mediates cell-associated spread, infection
of macrophages, and dissemination to salivary glands [58,59]. Interestingly, while
gH/gL/gO is critical for establishing infection, both gH/gL/MCK-2 and gH/gL/gO
can mediate intra-tissue spread [60]. The role of CMV glycoprotein complexes in
infection of the CNS, spread, and neurotropism is yet to be established.

2.2. Cytomegalovirus Infection of Neurons and Glial Cells

The viral transmission from HCMV-positive mothers to fetuses starts at the uterine–
placental junction by first infecting uterine smooth muscles and endothelial cells in the
decidua [61]. Secondly, virus interactions with trophoblast cell receptors mediate transpla-
cental transmission, which consequently enables the virus to enter the fetal blood sys-
tem [61,62]. It is suggested that the virus enters the fetal circulation in a cell-free form
due to the placenta’s limited permeability for maternal cells to enter fetal circulation [3].
When HCMV crosses the placenta into the fetal blood system it undergoes replication in
numerous fetal organs [63]. However, the exact dissemination pathway from the maternal
placenta to individual organs, including the brain, is still not resolved [3].

Studies of HCMV infection in the brain during congenital infection are limited mainly
to histopathological and observational studies. Additionally, discrepancies in the timing
of fetal infection, viral burden, and wide variations in histopathological changes, accom-
panied by a lack of non-invasive methods, impair direct study of HCMV in the brain [25].
Therefore, the mouse model has been informative in defining the kinetics of virus spread
and subsequent immune response and pathology. It has also been suggested that the
neonatal brain is more susceptible to MCMV infection following i.c. infection as compared
to the adult brain [64]. Furthermore, peripherally infected adult mice are resistant to the
invasion of CMV into the brain, due to efficient immune control [65]. As the virus can
be detected in both the plasma and blood upon i.p. inoculation of MCMV into newborn
mice, it is assumed that it can enter the CNS in both forms, cell-free or cell-associated;
however, the exact mechanism of crossing the blood–brain barrier is still unknown [66].
Mononuclear cells are speculated to be the entrance gates for the viral migration into the
developing CNS [26,31,65]. Following i.p. infection, the infectious virus can be isolated
from the brain starting from 7 days post-infection (d.p.i.) up to 21 d.p.i [39,40]. The virus
efficiently infects all cell types in the brain, showing no specific cell tropism in the CNS
(Figure 1) [67]. However, the vast majority of the published data are based on in vitro anal-
ysis from primary cell cultures [67]. Additionally, discordant findings have been reported
by different research groups in the capacity of resident CNS cells to support a full viral
replication cycle.
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Figure 1. Cytomegalovirus infection in developing brain. Cytomegalovirus (CMV) dissemination to the central nervous
system (CNS) is secondary to peripheral organ infection (1). Upon reaching the brain, CMV is hypothesized to cross the
blood–brain barrier (BBB) by either cell-associated (2a) or cell-free form (2b). Monocytes are proposed to mediate cell-
associated passage across the BBB. Upon crossing of the BBB, CMV infects resident cells (3). Apart from oligodendrocytes,
CMV infection of resident CNS cells was confirmed in vivo. CMV DNA was detected in cerebrospinal fluid (CSF) of
congenitally infected infants and neural stem precursor cells (NSPCs), abundant in subventricular zones (SVZ), are a
prominent target of CMV infection. Figure was created with Biorender.

Astrocytes are the most abundant glial cells with a range of diverse functions ranging
from metabolic support to regulation of synaptogenesis [68]. As astrocyte foot processes are
involved in the formation and maintenance of the blood–brain barrier, they are therefore
resident cells of the CNS that are the initial targets of neurotropic viral infections [69,70].
During acute infection, histopathological studies of fetal brains have shown that among
resident cells, GFAP+ astrocytes represent the predominant cell type infected with HCMV
(Table 1.) [71]. In vitro, astrocytes are fully permissive for HCMV and MCMV and support
productive replication [72–76].
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Table 1. HCMV and MCMV infection of brain-resident cells.

Cell Type
Acute Infection

Latent Infection Selected References
In Vivo In Vitro

Astrocytes HCMV (+)
MCMV (?)

HCMV (+)
MCMV (+) No information [71]

[72]

Microglia HCMV (+)
MCMV (+)

HCMV (+/−)
MCMV (+) No information [71]

[41]

Neurons HCMV (+)
MCMV (+)

HCMV (+/−)
MCMV (?) Possible site of latency [71]

[34]

NSPCs HCMV (+)
MCMV (+)

HCMV (+)
MCMV (+) Possible site of latency [71]

[77]

Oligodendrocytes HCMV (?)
MCMV (?)

HCMV (+)
MCMV (?) No information [78]

Ependymal cells HCMV (+)
MCMV (+)

HCMV (+)
MCMV (?) No information [79]

[64]

Human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), neural stem precursor cell (NSPC), infected (+), not infected (−), no
information (?).

Microglia are yolk sac-derived, tissue-resident immune cells of the CNS [80]. During
development, microglia populate the CNS and establish a long-lived cell pool [81]. This
cell type possesses an abundance of specific proteins referred to as the sensome, that enable
microglia to efficiently respond to neurotropic viruses and other microbes that invade the
CNS, rendering them essential in protection against viral encephalitis [82]. Early in vitro
analyses of HCMV infection of enriched microglia cell cultures reported opposing results
on HCMV’s ability to infect this cell type (Table 1) [72,74,83,84]. By analyzing fetal brains,
separate research groups have confirmed that microglia are indeed susceptible to CMV
infection during acute congenital HCMV infection, embryogenesis in RCMV, and MCMV
infection of newborn mice [41,71,85]. In the case of HCMV infection, microglia are not a
primary target of HCMV, accounting for approximately 10% of infected cells [71]. In vitro,
microglia were reported to be permissive for MCMV infection and to support productive
viral replication [86]. Furthermore, MCMV productively infects both ramified/quiescent
and amoeboid/activated phenotypes of the BV-2 microglial cell line [87].

Neurons possess a unique cell morphology which enables them to perform vital
functions of receiving and sending electrical impulses [88]. One of the particular features
of neurons is limited regeneration; once fully differentiated, neurons possess poor regen-
eration capabilities upon damage [89]. Therefore, neurons have developed pro-survival
strategies to avoid destruction from cellular components of the immune system [90]. This
self-preservation evolutionary feature is often exploited by neurotropic viruses in both the
CNS and peripheral nervous system (PNS) [90]. Additionally, it is postulated that viruses
exploit neuronal metabolism by hitchhiking with the axonal traffic [90]. Histopathologi-
cal examination of brains from fetuses with severe manifestations of intrauterine HCMV
infection reported on neuron infection, accompanied by increased levels of apoptosis
(Table 1) [63,71,91]. However, neurons are reported to be infected to a lesser extent than
resident glia cells, as only a few post-mitotic HCMV-positive neurons were observed [71].
In vitro, conflicting results have been reported on the permissiveness of HCMV infection in
neurons, ranging from no infection to full permissiveness [72,92–94]. Interestingly, neural
stem precursor cell (NSPC) differentiated neurons were associated with a decrease in viral
replication in comparison to their undifferentiated precursors [93]. This phenomenon is
hypothesized to be correlated with either efficient control of IE major promoter (MIEP)
activity or viral exploitation of the poor neuronal antiviral response [93,95]. The expres-
sion of the MIEP is thought to be regulated by various transcription factors that respond
to cell differentiation or membrane polarization, while the latter can be correlated with
low expression of MHC molecules on neurons, a phenotype that is believed to protect
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neurons from immune-mediated cell destruction [95,96]. MCMV infection of neurons has
been reported in the developing brain following both peripheral and cranial inoculation
models [34,64,97].

During embryonic development of the CNS, both neurons and glial cells (except
microglia) develop from NSPC, a common neuroepithelial precursor [98]. A population of
NSPCs is present in adulthood as well and resides in subgranular zones of the dentate gyrus
and ventricular zones of the cerebellar cortex [99]. Histopathological analysis of brains
from infants with severe congenital HCMV infection revealed a high number of infected
cytomegalic cells, and loss of germinal and radial glial cells in proximity of ventricular zones
(Table 1) [100]. These observations suggest that NSPCs could be a prime target for HCMV
infection. Primary NSPCs isolated from human fetuses or neonates have been shown
to be fully permissive and support active viral replication with both early and late gene
expression [92,93,101,102]. Similar data were reported for in vitro MCMV-infected mouse
NSPCs, which support productive viral replication [103,104]. Interestingly, neural stem
cells are more resistant to HCMV infection in comparison to neural progenitor cells, which
have limited proliferative ability and do not exhibit self-renewal [105]. Histopathological
brain analysis of severe cases of intrauterine HCMV infections established that the virus
favors ventricular regions which have abundant NSPCs [100]. Teissier et al. reported that
during intrauterine HCMV infection, NSPCs are indeed the prime targets of CMV infection,
as the majority of HCMV-positive cells show hallmarks of NSPCs [71]. Additionally, similar
extensive infection of NSPCs was reported in the murine i.c. model of infection [77,104,106].

Oligodendrocytes are glial cells that are predominantly located in white matter and
are responsible for the myelination of axonal membranes [107]. Infection of oligoden-
drocytes with CMV is poorly characterized [78]. The human oligodendroglioma cell line
(HOG), which mimics immature oligodendrocytes, is permissive for HCMV infection, and
productive infection was observed exclusively in stimulated HOG cells which resembled
mature oligodendrocytes (Table 1) [78].

Ependymal cells are cuboidal, glial cells that form a single layer around the ventricular
system of the brain and the central canal of the spinal cord. It is suggested that ependymal
cells provide trophic and metabolic support. Due to the direct contact with cerebrospinal
fluid (CSF), it is not unexpected that ependymal cells are targets for viral infection [108].
Histopathological examinations of congenitally infected fetuses confirmed HCMV infection
of ependymal cells (Table 1) [79,100]. In addition, primary ependymal cultures were also
permissive for HCMV infection [109]. Ependymal cells lining the ventricles have been
reported to be highly susceptible to infection in the MCMV i.c. model [64].

2.3. Cytomegalovirus Latency in Brain

One of the signatures of the herpesvirus family is the establishment of a life-long
latency from which the virus intermittently reactivates [110]. By limiting viral replication
during latency, CMV efficiently avoids host immune cell activation, while maintaining
the viral genome in host cells. Even though CMV latency is extensively studied, this viral
state is still not well understood [111–113]. In contrast to herpes simplex virus 1 (HSV-1),
where latency-associated transcripts (LATs) are well characterized, genes expressed during
CMV latency are not latency-specific, as their expression was observed also during the
lytic cycle [112,114,115]. Consistent with these observations, recent studies indicate that
a hallmark of HCMV latent infection is a low-level expression of a broad spectrum of
canonical viral lytic genes [116–118].

In primitive neural stem cell (pNSC) culture, HCMV genomes were detectable up to
one month after infection, without any detectable IE1 expression, suggesting NSPCs as
a reservoir of latent HCMV (Table 1) [119]. In contrast, by using fetal-derived NSPCs it
was suggested that neurons act as a reservoir of latent HCMV [92]. The human embryonal
carcinoma cell line NTera2, which can be differentiated into neurons upon retinoic acid
treatment, was used to determine molecular mechanisms of latency in neuronal progenitor
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cells [111,113]. It was observed that stimulation of the cAMP signaling pathway activates
viral reactivation in NTera2 cells, suggesting a possible role in CMV latency [120,121].

MCMV can be reactivated from latency in brain slice cultures of mice infected as
newborns [122]. A high degree of infection was observed around ventricular zones fol-
lowing reactivation, suggesting that NSPCs could function as a viral reservoir during
latency. Furthermore, upon loss of immune control MCMV reactivates in the brain in vivo
in mice infected as newborns [40,123]. Depletion of either CD8+ or CD4+ T lymphocytes
was sufficient to achieve reactivation; however, the identity of cells reactivating MCMV in
this context remained undetermined [40,123].

The impact of latent CMV infection on the homeostasis and function of the nervous
tissue is currently unclear. It was demonstrated that latent MCMV infection in the brain
promotes the development of glioma [124]. This is in line with the hypothesis that HCMV
could be an oncomodulatory agent in developing gliomas [125]. Therefore, latent CMV in
CNS could be involved in the development of a range of diseases.

3. Immune Response to Cytomegalovirus Infection in Developing Brain

Upon cytomegalovirus infection of the brain, different resident and infiltrating cells
mediate protection (Figure 2) [126]. Astrocytes are probably the first brain cells exposed to
infection due to their location surrounding blood vessels. So far, there is no definitive evi-
dence of astrocyte-mediated control of CMV infection. However, as seen in other infections,
astrocytes could have an important role in CNS innate immunity as they express various
pattern recognition receptors (PRRs). Activation of PRRs such as Toll-like receptors (TLR)
leads to downstream expression of interferon-stimulated genes, consequently establishing
an antiviral immune response [127]. Supernatants of HCMV-infected primary astrocyte cul-
tures contain high levels of chemokines that could attract microglia to the infection site [84].
The migration of microglia to the infection foci is probably a source of proinflammatory cy-
tokines and mediators of antiviral response [84]. By using i.p. MCMV infection of newborn
mice we have shown that microglia acquire a proinflammatory phenotype and transcrip-
tional profile, proliferate, and produce antiviral cytokines during acute infection [41]. While
the direct role of microglia in the control of MCMV infection has not been shown, microglia
likely have a major role in orchestrating immune response in the brain. Besides microglia,
CNS-associated macrophages are activated and peripheral blood monocytes infiltrate the
brain early after infection [26,39,128,129]. Activated microglia are not limited to the viral
foci, but are rather equally distributed, favoring the hypothesis that virus infection of the
developing brain results in a widespread pro-inflammatory response [129]. Expression of
genes involved in interferon response (IRF-1, IRF-7, USP18, LRG-47, IFIT1, STAT1), pro-
inflammatory cytokines (TNFα, IFNβ, IL-1β, IFNγ), chemokines (CXCL10, CCL2, CCL5,
CCL21), and both MHC class I and MHC class II molecules are shown to be significantly
elevated and widely expressed in the cerebellum of infected animals [26,128,129]. NK and
ILC1 cells infiltrate the brain as well and produce IFN-γ (Figure 2a). This early IFN-γ
production leads to polarization of microglia; however, it does not contribute to virus
control in the brain [41]. Recent studies suggested that neurons are actively involved in the
CNS immune response [96]. However, the involvement of neurons in immune responses
to CMV infection is yet to be determined.



Viruses 2021, 13, 1078 9 of 18

Viruses 2021, 13, 1078 9 of 19 
 

 

brain of infected mice, they are similarly important for the control of virus replication in 
the brain and resolution of productive infection [123]. It is well established that maternal 
antibodies reduce the risk of HCMV transmission to the fetus, as well as improve disease 
outcome [131]. Similarly, we have shown that offspring of MCMV-immunized mothers 
are protected from MCMV infection [132,133]. In addition, adoptive transfer of immune 
sera or monoclonal antibodies specific for viral glycoproteins can reduce MCMV levels in 
newborn mice, as well as the development of pathology [134]. 

The control of the latent virus in the brain is less well understood. Following resolu-
tion of MCMV infection, T cells persist in the brain of mice for the lifetime of the animal 
[40]. Persisting T lymphocytes are characterized by the establishment of a tissue-resident 
memory phenotype (TRM), as CD8+ T cells express CD69 and CD103, and CD4+ T cells ex-
press CD11a and CD69. In addition, CD8+ TRM cells express elevated levels of PD1, CD44, 
TCR, and co-receptor CD8, and are long-lived slowly proliferating cells [40]. Phenotypic 
and functional analysis of CD4+ TRM cells has shown that they express Th1 markers (T-bet 
and CXCR3) and cytokine IFN-γ [40,123]. Importantly, TRM populations are functionally 
competent and provide protection upon reinfection (Figure 2b) [40]. Long-term depletion 
of either CD4+ or CD8+ T cells from latently infected brains results in the appearance of 
MCMV IE1+ cells in the brain [40,123]. Interestingly, depletion of CD4+ T cells from the 
brain results in the loss of TRM marker CD103 expression by CD8+ T cells. Whether loss of 
CD103+ population of CD8+ T cells results in impaired control of latent virus remains un-
determined. The importance of CD8+ T cells is not limited to control of virus reactivation, 
but they also provide control of the inflammatory response in latently infected CNS [40]. 

 
Figure 2. Immune response to cytomegalovirus infection in the brain. (a) Acute infection. Upon crossing of the blood–
brain barrier (BBB), cytomegalovirus (CMV) infects resident cells (1). Astrocyte-derived chemokines recruit microglia to 

Figure 2. Immune response to cytomegalovirus infection in the brain. (a) Acute infection. Upon crossing of the blood–brain
barrier (BBB), cytomegalovirus (CMV) infects resident cells (1). Astrocyte-derived chemokines recruit microglia to the
infection site (2a). Microglia are activated via pattern recognition receptors and cytokines. Activated microglia produce
proinflammatory cytokines (2b), which mediate immune cell recruitment into the brain (3) and orchestrate immune cell
response (4). Infiltrating NK cells and ILC1 cells produce IFN-γ and myeloid cells produce TNF-α, leading to organ-wide
polarization of microglia (5); infiltrating T cells provide direct control of productive infection (6). CD8+ and CD4+ T
cells recognize virus-infected cells in the context of MHC I and MHC II molecules and provide virus control by cytolytic
mechanisms (gzmB) or by non-cytolytic mechanisms (IFN-γ). (b) Latent infection. Following resolution of acute CMV
infection, T cells are retained in the brain as tissue-resident cells (TRM) and control latent/reactivating CMV. CD8+ TRM cells
are characterized by expression of CD69 and integrin CD103, while CD4+ TRM cells express CD69 and CD11a. Both cytolytic
mechanisms (gzmB) and cytokines (IFN-γ) could mediate the control of latent and reactivating CMV in the CNS. TRM cells
are suggested to persist in the brain of mice for a lifetime without or with minimal replenishment from the circulation.
Activated microglia probably contribute to maintenance and functional capacity of TRM cells in the brain. Figure was
created with Biorender.

The importance of adaptive immunity, especially T cells, in controlling CMV infection
is well established in immunocompromised individuals and murine models [130]. Both
CD4+ and CD8+ T cells infiltrate the brain following the infection of newborn mice [39].
Virus replication in the CNS is shown to resolve gradually following the increasing levels
of infiltrating CD8+ T cells (Figure 2a) [39,40]. Depletion of CD8+ T cells results in a
significant increase in viral load in the brain and peripheral organs and mortality [39].
Even though the levels of CD4+ T cells are much lower as compared to CD8+ T cells in the
brain of infected mice, they are similarly important for the control of virus replication in
the brain and resolution of productive infection [123]. It is well established that maternal
antibodies reduce the risk of HCMV transmission to the fetus, as well as improve disease
outcome [131]. Similarly, we have shown that offspring of MCMV-immunized mothers
are protected from MCMV infection [132,133]. In addition, adoptive transfer of immune
sera or monoclonal antibodies specific for viral glycoproteins can reduce MCMV levels in
newborn mice, as well as the development of pathology [134].
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The control of the latent virus in the brain is less well understood. Following resolution
of MCMV infection, T cells persist in the brain of mice for the lifetime of the animal [40].
Persisting T lymphocytes are characterized by the establishment of a tissue-resident mem-
ory phenotype (TRM), as CD8+ T cells express CD69 and CD103, and CD4+ T cells express
CD11a and CD69. In addition, CD8+ TRM cells express elevated levels of PD1, CD44, TCR,
and co-receptor CD8, and are long-lived slowly proliferating cells [40]. Phenotypic and
functional analysis of CD4+ TRM cells has shown that they express Th1 markers (T-bet
and CXCR3) and cytokine IFN-γ [40,123]. Importantly, TRM populations are functionally
competent and provide protection upon reinfection (Figure 2b) [40]. Long-term depletion
of either CD4+ or CD8+ T cells from latently infected brains results in the appearance of
MCMV IE1+ cells in the brain [40,123]. Interestingly, depletion of CD4+ T cells from the
brain results in the loss of TRM marker CD103 expression by CD8+ T cells. Whether loss
of CD103+ population of CD8+ T cells results in impaired control of latent virus remains
undetermined. The importance of CD8+ T cells is not limited to control of virus reactivation,
but they also provide control of the inflammatory response in latently infected CNS [40].

Pathogenesis of Congenital CMV Infection in the Brain

Congenital HCMV infection-induced neuropathology in the CNS is widespread. Le-
sions are found in different regions of the brain such as the hippocampus, olfactory bulb,
eyes, and inner ears, which leads to impaired perceptual senses (SNHL, chorioretinitis) or
neurological diseases accompanied with structural deformity [12,100]. Histopathological
changes are manifested in the form of cerebellar and cortical hypoplasia (underdevelop-
ment or incomplete development of the brain), microcephaly (reduction in head size),
meningoencephalomyelitis (inflammation of the meninges, brain, and spinal cord), neu-
ronal heterotopia (atrophy of the cortical plate and rupture of the glia limitans), ventricu-
lomegaly (larger ventricles than normal), calcifications in the form of nodules, hemorrhagic
lesions, hemosiderosis (iron overload disorder), necrosis, and cellular loss [100]. Due to the
limitations of observational studies, the exact mechanism of pathogenesis remains unre-
solved. It is suggested that it involves disruption in the microvasculature of the developing
brain, damaged blood–brain barrier, altered synaptogenesis, loss of NSPCs, and altered
cell migration manifested in disordered cellular positioning [26,66,100,134].

The MCMV model of congenital infection efficiently recapitulates many aspects of the
neuropathology associated with congenital HCMV infection [26]. Namely, focal and non-
necrotizing encephalitis are observed in brains of i.p.-infected newborn mice, accompanied
by mononuclear cell infiltrates and alterations in cerebellar morphology and size [26]. No
striking differences were observed in the cerebrum of infected animals [26,134]. However,
the cerebellum is part of the brain that undergoes extensive postnatal development as
opposed to the cerebrum, making it highly susceptible to viral-mediated perturbation [135].
The observed cerebellar pathology parallels the viral kinetics in the CNS. Upon resolution
of acute viral infection, the cerebellar growth is normalized, suggesting virus-mediated
growth retardation [26,39,40]. Importantly, similar morphological changes in cerebellum
size are observed in acute cases of congenital HMCV infection [136]. Additionally, global
histopathological lesions such as edema, micronodular gliosis, perivascular cuffing, and
reactive gliosis are also observed in the brains of infected newborns and can persist to a
lower extent following resolution of acute infection [134].

Alterations in NSPC differentiation and migration can lead to extensive malformations
in cortical development and manifest as severe pathology [137]. NSPCs have a reduced
ability to proliferate and differentiate into neuronal and astrocyte lineage during productive
HCMV infection as shown in vitro [101,102]. It is proposed that these alterations in differen-
tiation correlate with IE1-specific targeting of STAT3 phosphorylation, which consequently
decreases levels of SOX2 expression, a transcription factor (TF) crucial in NSPCs pluripo-
tency and self-renewal [138]. Besides the STAT3–SOX2 pathway, IE1 is shown to function
as E3 ubiquitin ligase, which targets and downregulates Hes1, a TF involved in down-
stream Notch signaling, essential in NSPC differentiation and brain development [139].
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The ability of CMV to induce NSPC apoptosis is still unclear as conflicting findings have
been reported in studies to define the role of HCMV in NSPC apoptosis in vitro [93,102].
However, histopathological examination of HCMV-infected brains reported extensive cell
loss and necrosis in brain zones abundant with NSPCs [100].

Similar data were reported for in vitro MCMV-infected mouse NSPCs that support
productive viral replication and have reduced ability to proliferate and differentiate. Addi-
tionally, alternations in cellular processes such as DNA synthesis, self-renewal, migration,
and downregulation of MHC class I molecules were also observed [103,104]. These data
were validated by i.c. MCMV infection of newborn mice, resulting in infection of NSPCs
and causing a substantial decrease in NSPC number, proliferation, and self-renewal while
also disrupting their differentiation into a neuronal lineage. Disruption in neurogene-
sis was linked with decreased expression levels of neurotrophins such as brain-derived
neurotrophic factor (BNDF) and neurotrophin-3 (NT3) [77]. Whole-genome expression
analysis on cultured human NSPCs infected with HCMV also reported alterations in gene
expression and mRNA levels of genes important for NSPC differentiation. The authors sug-
gested that this change in gene expression likely correlates with premature and abnormal
differentiation [140].

In MCMV-infected newborn mice, increased thickness of the cerebellar external granu-
lar layer (EGL) and decreased thickness of the internal granular layer (IGL) and molecular
layer (ML) can be observed [26,128,129,134]. The thicker EGL is correlated with an in-
crease in cellularity of granule neuron precursor cells (GNP), while decreased thickness
of the IGL is hypothesized to develop secondary, as a result of reduced granular neuron
migration [26,128,129]. The Purkinje cell body size did not differ between the infected and
control group. However, lower cell numbers of Purkinje cells were observed, accompanied
by impaired alignment and decreased dendrite arborization, consequently leading to a
decreased thickness in the ML [26,134]. It was suggested that GNP cells have lower pro-
liferation and migration rates, while increased levels of apoptosis were not observed [26].
Further studies indicated the increased ratio of GNP cells in the S phase without a de-
crease in the number of cycling cells [128,129]. This observation would suggest that CMV
infection blocks or delays GNP proliferation downstream from gli1 and N-myc, effectors
of granular neuron proliferation in the Sonic hedgehog (SHH) pathway that are elevated
during MCMV infection [128,129,141]. Prolongation in the GNP cell cycle would delay
the expression of developmental genes that are directly connected to adequate positioning
and differentiation of GNPs, consequently leading to a reduction in cerebellar foliation
and cerebellar size, and altered EGL thickness. Additionally, MCMV infection decreased
activation of neurotrophin receptors, which are actively involved in postnatal cerebellar
development [26,142]. Furthermore, differentiation of GNP cells has also been shown to be
altered with an observed reduction in the expression of molecular markers for granular
neuron differentiation and differentiated neurons [26,128,129]. The reported data are some-
what similar to the reported data on NSPC infection in vitro as CMV infection efficiently
alters normal GNP processes such as proliferation and differentiation.

The involvement of other CNS cell types in altered neurodevelopment is poorly stud-
ied. Analysis of MCMV-infected neurons reported impaired homeostatic processes, such
as neuronal conductivity, attenuation in generating action potentials, and synaptic activity,
while maintaining normal morphology during MCMV infection [73,143]. MCMV infec-
tion of primary astrocytes alters intercellular communication in vitro [73]. The observed
increase in levels of intracellular calcium (Ca2+) in MCMV-infected astrocytes consequently
diminished neuronal synaptic activity and intercellular communication between astro-
cytes [73]. Interestingly, perturbations in Ca2+ signaling were reported to alter neurogenesis
in ventricular zones, while also increasing susceptibility for neuron infection in the HSV-1
model [144]. These data suggest a possible connection between CMV-mediated alteration
in intercellular communication and consequently diminished neurogenesis. Whether oligo-
dendrocytes are involved in altered neurodevelopment during congenital HCMV infection
is not known. In humans, myelination begins around gestation week 30, and continues
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extensively in the postnatal period and during the first year, and therefore it is possible
that oligodendrocytes and myelination are not significantly affected by HCMV infection
prior to birth [145].

While the protective role of the host inflammatory response is clear, there is a deli-
cate balance between neuroprotection and neuropathology [126,146]. Infection can cause
excessive activation of astrocytes and microglia, consequently overproducing proinflamma-
tory mediators. This immune imbalance can lead to oxidative stress, tissue degeneration,
neuronal death, and cognitive decline [146]. Additionally, an excessive immune response
can mediate various neurodevelopmental disorders [147]. Therefore, one can argue that
host immune response to CMV infection in the brain is neuropathologic, as observed
morphological alterations are not limited solely to adjacent foci of infection or to immune
cell infiltrations but are rather more globally distributed. This could suggest that the
observed morphological changes are not directly correlated with viral cytopathic activity,
but rather with the host pro-inflammatory response [31,66]. Indeed, we have previously
shown that glucocorticoid treatment of MCMV-infected newborn mice attenuates CNS
inflammation and limits deficits in cerebellar development, while minimally affecting virus
replication [128]. Such treatment limited morphogenic abnormalities, normalized the ex-
pression of developmentally regulated genes within the cerebellum, and normalized GNPC
proliferation deficits. Further studies indicated that TNF-α is a major component of the
inflammatory response associated with altered neurodevelopment in the MCMV-infected
developing brain, with key effector cells in this process being myeloid cells [128]. NK/ILC1
cell-derived IFN-γ similarly exerts a detrimental impact on cerebellar development in
the infected developing brain [41]. Conversely, blocking of TNF-α or IFN-γ, or depletion
of NK cells, normalizes cerebellar development. Altogether, these studies demonstrate
that limiting the proinflammatory response can alleviate the CMV-induced pathology
and open the potential therapeutic avenues. Similar mechanisms could be responsible
for CMV induced hearing loss, as decreasing cochlear inflammation by corticosteroid
treatment of MCMV-infected mice resulted in preservation of spiral ganglion neurons and
improved auditory function [35]. Whether other immune cells play a detrimental role in
altered neurodevelopment in MCMV-infected developing brain is not known. Furthermore,
the sequence of events leading to altered neurodevelopment, as well as interactions of
inflammatory mediators and cells, are currently unknown.

4. Closing Remarks and Future Perspectives

Many important aspects of congenital HCMV infection in the CNS, such as mecha-
nisms of viral entry and dissemination, induction of immune response, and development of
pathologies, remain ill-defined and incompletely understood. The mouse model of congen-
ital HCMV infection provides an opportunity to define some of these mechanisms. While
it is clear that CMVs can infect (almost) all brain cell types, the mechanisms which mediate
virus dissemination to the CNS, the spread of the virus in the CNS, and the consequences
of infection of individual cell types, are still unknown. Major viral glycoprotein complexes,
and especially gH/gL complexes, could be essential in guiding the virus to the CNS and are
considered to be an important target of neutralizing antibodies. Therefore, future studies
should address their involvement in CMV infection of CNS, as well as the potential of
their blocking. Host immune response can be regarded as a double-edged sword; besides
providing virus control, neurodevelopmental pathology can be corrected by suppressing
the immune response. Defining mechanisms of immunity mediating these detrimental
outcomes could potentially provide hints for the development of interventional therapies.
Once the acute infection is resolved in the CNS by an efficient host immune response,
primarily CD4+ and CD8+ T cells, the virus establishes latency, from which it can reactivate
upon loss of immune control. However, the impact of the latent virus on the homeostasis
and function of this delicate tissue is currently unknown. The lifelong persistence of T cells
in the CNS, which provide control of the latent virus, warrants the need for future studies
to define their role in the development of different pathological conditions.
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