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Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected
macrophages are surrounded by other immune cells in well organised structures called
granulomata. As part of the response to TB, a type of macrophage loaded with lipid
droplets arises which we call Foam cell macrophages. They are macrophages filled with
lipid laden droplets, which are synthesised in response to increased uptake of extracellular
lipids, metabolic changes and infection itself. They share the appearance with
atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid
droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here
we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and
immune properties of foam cells in TB, and address gaps in our knowledge to guide
further research.
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INTRODUCTION

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobacterium
tuberculosis (Mtb). TB mortality rates increase with weaker immune systems caused by
comorbidities such as diabetes, acquired immune deficiency syndrome (AIDS), smoking, alcohol
consumption, and undernutrition (WHO, Global Tuberculosis report 2020). TB is one of the
deadliest diseases worldwide, especially in developing countries in communities with low income
and poor nutrition. The WHO predicted that COVID will lead to a new TB crisis and anticipates an
increase in TB deaths worldwide due to late diagnosis and treatment during peaks of the pandemic.

Macrophages are crucial in the response to Mtb and have the main role of containing and killing
the pathogen. The main cytokine associated with Mtb killing and macrophage activation is IFN-g.
Other prototypic inflammatory cytokines such as IL-12, and the inflammasome regulated IL-1b and
IL-18 are also associated with macrophage responses to Mtb. Despite activation programmes, Mtb
infects and kills many macrophages, and the pathogen survives inside death resistant macrophages,
which are not well defined. Mtb utilises several strategies to persist inside macrophages. For example
the pathogen inhibits phagolysosome maturation and acidification by stopping translocation of
enzymes, inhibition of lysosomal enzymes, and by depleting calcium and hydrogen ions required for
the fusion of the lysosome with the phagosome (1).

Mtb infected macrophages orchestrate a pro-inflammatory response leading to granuloma
formation. Through TLR and pattern recognition receptor mediated activation (2), Mtb also alters
inflammatory pathways and oxidative stress, inducing various forms of cell death and
org December 2021 | Volume 12 | Article 7753261
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autophagy (1). Thus, cell death and abundant cellular material
are hallmarks of the Mtb infection. Foam cells represent a
predominant macrophage phenotype observed in TB
granulomata surrounding necrotic material.

Foam cell appearance is due to the presence of lipid droplets
in the cytoplasm, which grow and are consumed by the cells, as
required. Lipid droplets are numerous in macrophages, similar to
droplets in brown and beige adipose tissue. TB foam cells share
similarities with macrophages that appear in other lipid
disorders such as atherosclerosis (also termed foam cells), but
their contents in TB are predominantly triglycerides and not
cholesterol. The link between this lipid rich profile and the
conventional IFN-g Th1-macrophage response necessary to
control Mtb, is ill defined.

Granulomata (plural of granuloma) are organised cellular foci
that contain infected macrophages, granulocytes and T
lymphocytes, encased by a fibrotic ring. In vivo, the various
stages of granuloma include nascent, caseous, fibrocaseous and
resolved states. Despite such variety, granulomata are always
dominated by macrophages. Granulomata with a Th1/M1-like
profile have been proposed to control the disease, whereas a Th2/
M2 rich profile is associated with exacerbation (3). TB foam cells
are predominant features of advanced mycobacterial
granulomata associated with caseation. The caseum contains
an abundance of triacylglycerols, cholesterol, cholesteryl esters
and lactosylceramide, which derive mainly from dead cells (4),
becoming the predominant component of foam cells themselves.

Using TB+ human lymph node samples, Peyron et al. showed
that foam cells are always close to the necrotic core with a strong
correlation, and appear infected by Mtb, as confirmed by Ziehl-
Neelson acid-fast bacilli (AFB) positive staining of tissue sections
(5). In vitro, using PBMC activation assays, they found that Mtb
and Mycobacterium avium, but not Mycobacterium smegmatis,
induce foam cell formation, ascribed to the presence of Mycolic
acids. However, the mechanism of foam cell formation and the
nature of the lipids driving this process are not clear since they
did not demonstrate reproducible Mtb replication in foam cells,
and in bulk. They also showed bacteria inside large lipid droplets
by electron microscopy, but the data need further verification
due to the fusion of lipids in processing samples for EM, and the
challenge of studying subcellular events with pathogenic bacteria.

We can learn from atherosclerosis and adipose tissue
research, since lipid droplet proteins and mechanisms are
somewhat conserved. Progression of granulomata to caseation
is associated with upregulation of lipid handling proteins such as
ADFP, required for droplet formation, Acyl-CoA Synthetase
Long-Chain Family Member (ACSL1), involved in the de novo
triglyceride synthesis pathway and the membranous lysosomal
protein Saposin C (SapC), required to remodel the droplets (4).
These three proteins involved in lipid metabolism were highly
expressed in caseous and fibrocaseous granulomata. SapC was
markedly positive in nascent granulomata, whereas ADFP was
more prevalent in the foamy macrophage-rich centre of
advanced disease, pointing to accumulation of lipid laden foam
cells in granuloma formation, over time (4). LTA4H, which
synthesises the proinflammatory mediator LTB4, is also highly
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expressed in the ring of foam cells. The interconversion between
macrophages and foam cells and the migration and distribution
of macrophages within granulomata deserve further scrutiny.
BIOCHEMICAL PATHWAYS LEADING TO
FOAM CELL FORMATION IN TB

The main requirement for lipid droplet formation is the increase
in neutral lipids in the cell. For uptake of exogenous lipid
particles such as lipoproteins and fatty acid complexes,
macrophages are equipped with a variety of receptors
including scavenger receptors CD36, SR-A1, and SR-B1, the
oxidized low-density lipoprotein receptor 1 (LOX-1),
Macrophage receptor with collagenous structure (MARCO),
the Fatty acid transport protein 1 (FATP1) and Lipoprotein
lipase (LPL) (6). The interaction of macrophages with necrotic
and apoptotic debris involves a distinct type of immune
phagocytic synapse. Intracellular trafficking of fatty acid is
supported by another group of proteins including the fatty acid
binding proteins, FABP4 and FABP5 (7). CD36 is of particular
interest due to its regulation and its role in the recognition of
cellular debris, apoptotic cells, and oxidized LDL (oxLDL) (8, 9).

Lipid droplets accumulate in the endoplasmic reticulum as the
neutral lipid content between leaflets of the ER membrane reaches
a high concentration (10). Triglycerides and their components
need to be synthesised in order for cells to accumulate lipid
droplets in TB. Fatty acids are synthesized de novo or more
likely, incorporated from the extracellular space, e.g. by lipolysis
of lipoproteins and dead cell debris, Figure 1A. The process is
actively controlled by multiple isoforms of lipid enzymes and
accessory proteins reviewed in detail in (11). Internalised complex
lipids are degraded to fatty acids by the action of lysosomal acid
lipases (LAL) in phagolysosomes (6). Lipophagy degrades particles
by various hydrolases into basic components such as amino acids,
glucose, nucleotides and free fatty acids (12, 13). Engulfment of
lipids from necrotic cells induces triacylglyceride (TAG)- enriched
lipid droplets, whereas inhibition of necrosis by the oxidation
inhibitor IM54 prevents lipid droplet accumulation. The source of
lipid is mainly esterified-lipid of necrotic cells, first degraded by
lysosomes then mobilised into TAG, since inhibition of lysosomal
lipases by chlorpromazine (CPZ) prevents the transfer of labelled
fatty acids of necrotic cells into the TAG of recipient cells (14).
Figure 1B provides an overall picture of foam cell markers with
high scavenger receptors CD36, CD163, TNF receptors and T cell
response inhibitors, and decreased HLADR expression.

Triacylglyceride synthesis (TAG) requires de novo fatty acid
production from cytosolic citrate. This step is produced by the
Krebs cycle from oxaloacetate and acetyl-CoA by citrate synthase
(CS) and exported from mitochondria through the citrate carrier
(CIC). Citrate is broken down by the ATP-citrate synthase-
(ACLY), to oxaloacetate and acetyl-CoA which is then used as a
substrate for fatty acid and cholesterol synthesis (15). The Fatty
Acyl Co-A synthetase (ACS) catalyses the formation of a thioester
bond between a fatty acid and coenzyme-A to form fatty Acyl
Co-A. Through the successive enzymatic actions of glycerol-3-
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phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate
O-acyltransferase (AGPAT) and phosphatidic acid phosphatase
(PAP), fatty Acyl Co-A is esterified with Glycerol-3-phosphate to
form Diacylglycerol (DAG). In the final step, DAG is esterified to
TAG by the Acyl-CoA: diacylglycerol acyltransferases-(DGAT1)
and (DGAT2). DGAT1 is exclusively in the ER as a dimer or
tetramer form, whereas DGAT2, in addition to the ER, localizes in
droplets directly, as well as inmitochondria. DGAT1 preferentially
uses exogenous FA while DGAT2 uses fatty acids of both
exogenous and endogenous origin (16).

Specific to Mtb infection and inspired by the strong
association between foam cells and necrotic areas, Jaisinghani
et al. investigated the role of necrotic mixtures and their impact
on inflammation, over all. In guinea pigs, they found foam cells
close to necrotic areas and enrichment of the expression of
TNF-a, in situ. In vitro, overexpression of DGAT1 in human
THP1 cells lead to lipid droplet formation. Knockdown of
DGAT1 by shRNA, lead to a decrease in TAG level with a
concomitant decrease in quantity and size of lipid droplets in
THP1 cells (14). Furthermore, inhibition of DGAT1 by its
inhibitor T863 established in (17), precluded lipid droplet
formation in IFN-g activated and Mtb infected bone marrow
derived mouse (BMDM) and human macrophages (18).
Surprisingly, the key step controlled by fatty acid synthase
(FASN), was downregulated in IFN-g activated and Mtb
infected macrophages. However, this did not affect droplet
formation, which suggests that TAG synthesis and not the de
novo synthesis of fatty acid is a major contributor to lipid
droplets in Mtb infected macrophages (18).

Acetyl-CoA levels are also regulated by the rate-limiting
enzymes Acetyl-CoA carboxylase (ACC1 and ACC2). ACC1 is
cytosolic and regulates de novo fatty acid synthesis, while ACC2
is mitochondrial and is involved in fatty acid oxidation. De novo
fatty acid synthesis has been shown to be increased in Dendritic
Frontiers in Immunology | www.frontiersin.org 3
cells (DCs) and macrophages in response toM bovis BCG, but in
this model ACC1 or ACC2 inhibition in murine DCs and
macrophages was not required to control infection (19). In
CRISPR/Cas9 knock down experiments performed on ACC1
and ACC2 in BLaER1 cells (a human B and macrophage-like cell
line), inhibition lowered foam cell formation and TAG levels in
infected macrophages, while enhancing mitochondrial activity
and limiting Mtb-induced necrotic cell death of macrophages
(20). Mtb growth in ACC2, but not in ACC1 deficient cells was
reduced compared to wild-type cells.

Of interest, Brandenburg et al. recently described an
association between ACC2 and the Wnt family member 6
(WNT6). Immunohistochemical staining of human TB
infected lung showed colocalized expression of WNT6 which
correlated with Oil Red O signal. A similar colocalization was
observed in the infected lungs of IL-13- overexpressing mice.
WNT6- supported ACC2 activity increased intracellular TAG
levels and Mtb survival in macrophages. A combination of ACC2
inhibitors with isoniazid improved the clinical outcome and
reduced Mtb dissemination in mouse models of infection (20).

AlthoughFoam cells inTB are predominantly TG rich, there are
other components which are essential for any cellular membranes
or droplet. Cholesterol esters are another component of droplets,
generated by acyl-CoA: cholesterolO-acyltransferase (ACAT1 and
ACAT2). The role of both enzymes is to process free cholesterol,
derived from the diet or from endocytosed complex particles.
ACAT1 and ACAT2 deficiency causes ER stress due to excess
cholesterol (21, 22). ACAT1 is ubiquitous and abundant in
macrophages, while ACAT2 is mainly expressed in hepatocytes
and enterocytes in liver and intestine in the steady state (23). Both
enzymes ACAT1 and ACAT2 are regulated by monocyte
maturation into macrophages (24). ACAT2 positive macrophages
appear in skin TB and sarcoidosis, among other pathologies (24).
Recently, Genoula et al. found increased expression of CD36 and
A B

FIGURE 1 | Foam cells in TB. (A) Lipid droplet synthesis in macrophages can be triggered by external and internal stimuli. Extrinsic complex sources of lipids
include phagocytosis of apoptotic or necrotic cells, or endocytosis, pinocytosis and receptor mediated uptake of lipoproteins. Simpler fatty acids can be transported
by specialised machineries in the cell. Lysosomal activity and autophagy contribute to the degradation of accumulated lipid remnants in the cell to avoid lipotoxicity.
Cytokines, hormones, growth factors and metabolic changes such as variations of glucose level, induce enzymes and proteins important for lipid synthesis and
droplet stability. (B) Although there is no consensus, some markers appear repeatedly in Foam cell literature. Foam cells have been shown to have increased
scavenger receptors- CD36, CD163, TNF-a/TRAF1,2, the inflammatory cytokine IL-6 and the inflammasome dependent IL-1b. The checkpoint inhibitor PDL1 has
been shown as increased while the antigen presentation related HLA-DR as decreased. Upregulated markers are colour coded in red and downregulated in green.
These and other markers can guide needed translational histological studies on foam cells in multiple species and cell line models. It is early to ascertain the true
nature of foam cells in TB, and more research in primary models is necessary since THP1 and primary macrophages behave differently. See text for references.
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ACAT1 in human monocyte derived foam cells developed after
exposure to TB-Pleural Effusions. This effect was IL-10 dependent
(25). IL-10 activated STAT3 in these cells, which also bore high
bacillary loads and showed an immunosuppressive phenotype as
demonstrated by decreased production of TNF-a (25).
We postulate that the inflammatory potential of foam cells
might be a spectrum regulated by differences in TG and
cholesterol accumulation.
FOAM CELLS IN TB INFLAMMATION

Mtb interacts with a variety of macrophage receptors. Mycolic
acids do not seem to form the bulk of the lipids of the foam cell,
but they may play a role in foam cell formation and function by
regulating lipid-related genes downstream of TLR and scavenger
receptor pathways. For example, TLR2, CD14 and MARCO are
required for murine and human macrophage cytokine responses
to mycobacterial trehalose dimycolate and Mycobacterium
tuberculosis (2). Mtb mannose-lipoarabinomannan (Man-
LAM), lipomannan (LM), and mannosylated glycoproteins also
interact with C-type lectin receptors (CLRs) such as Dectin-1,
Mannose receptor, and DC-SIGN. Intracellular Nod-like
receptors (NLRs) also participate in Macrophage recognition
within the innate response to Mtb, reviewed in (26). Engagement
of all these receptors can induce activation of intracellular
kinases and of NF-kB and other inflammatory transcription
factors, as well as lipid related PPAR receptors, leading to cell
death and inflammation or survival and persistence, involving
inflammatory cytokines and lipid related proteins.

An interesting autocrine loop mediated by TLR2 controls
lipid droplet formation and TNF-a secretion by BCG-infected
mouse peritoneal macrophages (27, 28). TLR2 stimulation by
BCG triggers expression and activation of PPARg and NF-kB.
Inhibition of PPARg by GW9662 inhibits droplet biogenesis,
while inhibition of NF-kB by JSH-23 does not have any effect on
lipid droplet accumulation (28). PPARg- dependent lipid droplet
accumulation depends on cooperation between TLR2 and CD36
with disruption resulting in the reduction of lipid droplets (28).
Competition between the bacterium and the lipid ligands for
CD36 and MARCO may bring about special signalling in foam
cells, hitherto undefined.

Cytokines such as TNF-a act in an auto- and paracrine
manner to promote droplet formation in Mtb infected human
macrophages. TNFa recognition at the cell surface activates
mTORC1 (mTOR complex 1) and caspase 8, which enhance
lipid droplet formation by inhibition of lipophagy, promotion of
mitochondrial dysfunction, and by activation of SREBP
involvement in TAG synthesis (29). Furthermore, IL-10 in TB-
PE promotes foamy phenotype in macrophages by activating
STAT 3 (signal transducer and activator of transcription 3)
which in turn upregulates the expression of ACAT, leading to
cholesterol accumulation in lipid droplets (25). Additionally,
foam cells also show enhanced expression of CD36, required
for the import of extracellular lipid.

In vitro, using human monocyte derived macrophages, we
found that foam cell formation prevented cells from dying.
Frontiers in Immunology | www.frontiersin.org 4
This may be due to activation of inflammasome versus death
pathways in foam cells. In THP1 cells, which are more resistant
to infection than primary macrophages, foam cells displayed an
increased production of inflammatory cytokines including TNF-
a, IL-1b, and an increased IL-1b/IL-10 ratio, compared with
macrophages. Increased TNF-a secretion in response to Mtb
infection of oleic acid-derived-THP-1-foam cells, involved the
NF-kB pathway (30).

Foam cells can function as factories of inflammatory
eicosanoids, producing arachidonic acid (AA)- derived
eicosanoids such as prostaglandins, leukotrienes, thromboxanes,
lipoxins, and related oxygenated lipid species, pro- or anti-
inflammatory in nature. They can also produce resolvins and
the balance between pro- and anti-inflammatory lipid mediators
influences the outcome of infection. Lipid droplets are sites for
many of the AA enzymes including cyclooxygenases and
lipoxygenases. Specific GPCRs (G protein coupled receptors)
sense these inflammatory lipids which act in a paracrine
or autocrine manner. Examples include receptors for
prostaglandin E2 and D2, leukotriene B4 and lipoxin (31). Fatty
acids and leukotriene B4 bind directly to PPARa and PGJ2. Some
derivatives of HETE bind PPARg and modulate their effect on
lipid metabolism (32). During Mtb infection, it has been
demonstrated that pharmacological inhibition by both
mepenzolate bromide (MPN) or siRNA, mediated reduction of
GPR109A in THP-1 macrophages, resulting in less droplet
formation and reduced bacterial loads (33). Infection of
macrophages with Mtb or activation by ESAT-6, a virulence
factor of Mtb, induces ketone body formation. Acetyl Co-A can
be metabolised into 3HB (D-3-hydroxybutyrate) which activates
GPR109A in a paracrine or autocrine manner to promote lipid
droplet accumulation by exerting an antilipolytic effect (33). Fatty
acids, intermediates of TAG synthesis such as diacylglycerol
(DAG) and monoacylglycerol (MAG), acyl-coenzyme A and
phosphatidic acid, are all potential signalling molecules in
immunity (34).
FINAL CONSIDERATIONS
AND CONCLUSIONS

The designation “foam cells” covers a range of storage, genetic,
metabolic, inflammatory and infectious conditions. In this
review we briefly covered the lipid content and metabolism
associated with macrophage foam cells in TB. The roles of
lipids in pathogenesis of florid, subclinical and latent disease
are still poorly defined, nor do we have insights into their
contribution to the hallmarks of granuloma formation such as
Langhans giant cell formation, macrophage inflammasome and
antimicrobial activation, epithelioid cell transformation and the
induction of life threatening systemic acute and chronic
inflammatory syndromes.

This review sets the stage for further studies of lipid
metabolism in TB by temporal and spatial analysis of single
cell gene expression in situ, exemplified by the recent publication
by Russell and colleagues where both susceptibility of the
macrophage to infection and the metabolic state of the
December 2021 | Volume 12 | Article 775326
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bacterium were used as important variables in a single cell
RNAseq study (35). Combined with the resurgence of interest
in immunometabolism, the availability of human and
experimental material will transform our understanding of the
molecular and cellular mechanisms at play, the basis for
improved therapy. To date the most convincing data emerge
from studies that address human pathology, thus more efforts at
obtaining samples should be made worldwide.

It remains to establish whether foam cell formation is a
beneficial host response to Mtb infection, or another of the
mechanisms Mtb uses to survive inside the cells by controlling
their metabolic environment. Numerous studies suggest that
Mtb can access host TAG and sequester it in the form of
intracytoplasmic lipid inclusions (ILI) during persistence, as a
source of carbon and energy (36, 37). Moreover, Mtb can also
metabolize host membrane cholesterol for energy production
and to maintain microbial cell wall components during
persistence in IFN-g activated macrophages, as in chronic
animal models of infection (38).

A red flag arises when we see that for host lipid acquisition,
Mtb upregulates many genes involved in lipid metabolism
including Tgs-1, Ppe4- a perilipin like protein- involved in
TAG synthesis, and Mce1, Mce4, LucA, OmamB, Mce1D,
MceG, and rv0966c-, contributing to lipid import (36, 38–42).
Mtb itself also expresses many genes involved in lipid hydrolysis
such as lipY, Msh1, lipF, lipH, lipJ, lipK, lipN, lipV, lipX, lipY,
culp5, culp7, and culp6, which may contribute to the breakdown
of host lipid (40, 43, 44). Studies indicate that apart from using
lipid as energy source, Mtb also utilises lipid for the synthesis and
maintenance of its cell wall, largely consisting of lipids including
mycolic acid, phiocerol-dimycoseroic acid, poly-acylated
trehaloses and sulfolipids (37, 45).

The reason why only some macrophages undergo foam cell
formation in the same environment where other macrophages
differentiate towards epithelioid and giant cells, is unknown. To
date there is no informationabout the developmental originoffoam
cells in Mtb and the fact that foam cells form in many locations in
the body would suggest a general tissue macrophage property or a
feature of recruited blood monocytes in particular. In the lungs of
TB patients, foam cells could originate from alveolar, interstitial, or
recruited monocyte-derived macrophages, or specific subsets of
these. The cell- specific phenotype, not necessarily their origin, was
implicated by Ordway et al. who showed high expression of DEC-
Frontiers in Immunology | www.frontiersin.org 5
205 and TRAF1,2, 3, (TNFR-associated factors) in foam cells, the
latter associated with resistance to apoptosis (46). Further research
into the origin of foam cells in the lung and lymph nodes will
be important.

There are reportswhichdemonstrate that infected foamcells can
leave the alveoli and reach the upper bronchus by the propelling
movement of mucus, from where they can be swallowed or
expectorated (47), thus facilitating Mtb dissemination and spread.
During regression of atherosclerosis, foam cells may acquire
characteristics of DC, shown by upregulated expression CCR7
allowing them to migrate to lymph nodes (48). In post-primary
TB showing extensive lipid pneumonia, infected foam cells are
prominent inexudates fromdisruptedgranulomata, aswell as in the
lung alveoli, andMtb organisms are found in close association with
lipid droplets (5, 49).

Proteomic analysis of granulomata is also highly informative.
Colocalization of LTA4H with TNFa predominantly in the
marginal area of caseum suggests a strong association of these
factors in inflammation and tissuenecrosis (50). LTB4andenzymes
ALOX5, ALOX5AP, and LTA4H were more pronounced in the
caseum, as well as in the cells adjacent to the caseum. Their
expression diminished as the distance from the necrotic centre
increased. They further observed that prostanoids and COX1 and
COX2 were prominently located in the surrounding cells and less
prevalent in the necrotic core. Establishing co-expression of lipid
handling molecules, with lipid droplet positive macrophages, and
the balance of pro and anti-inflammatory lipids in the foam cell
reaction toMtb, will be important.Development of proteomics and
lipidomics applied toTB,willhelp this subject toprogress.Themain
challenge for now is developing robust human and humanised
models that enable investigators to extract and work with these
labile cells, developing phenotypic markers for their
characterization in combination with infection readouts to
establish bona fide Foam cell functions.
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3HB D-3-hydroxybutyrate
AA Arachidonic acid
ACAT1,2 Acetyl-CoA acetyltransferase 1 and 2
ACC1, 2 Acetyl-CoA carboxylase 1 and 2
ACLY ATP-citrate synthase
ACS FattyAcylCo-A synthetase
ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1
ADFP or ADRP Adipose Differentiation-Related Protein, aliases for Perilipin 2

PLIN2
AFB Acid-fast bacilli
AGPAT 1-acyl glycerol-3-phosphate O-acyl transferase
ALOX5 Arachidonate 5-Lipoxygenase
ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein
BCG Bacille Calmette-Guerin
BLaER1 B-cell-derived human cancer cell line
BMDM Bone marrow derived macrophages
Cas9 CRISPR-associated protein 9
CCTa Phosphate Cytidylyltransferase 1A
Choline PCYT1A
CD14 CD14 molecule
CD163 CD163 molecule
CD206 CD206, molecule, Mannose receptor
CD36 CD36 molecule
CIC Citrate carrier SLC25A1 Gene
cKO Conditional Knockout
COX1 Cyclooxygenase 1
PTGS1 prostaglandin-endoperoxide synthase 1
COX2 Cyclooxygenase 2
PTGS2 prostaglandin-endoperoxide synthase 1
cPLA2 Cytosolic Phospholipase A2
PLA2G4A Gene Phospholipase A2 Group IVA
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
CS Citrate synthase
culp5 Probable carboxylesterase Culp5
culp6 Carboxylesterase/lipase Culp6
culp7 Probable carboxylesterase Culp7
DAG Diacylglycerol.
DCs Dendritic cells
DEC-205 LY75 Gene
DGAT1,2 Diacylglycerol O-Acyltransferase 1 and 2
ER Endoplasmic reticulum
FA Fatty acid
FABP3,4,5 7 Fatty acid binding protein, 4, 5 or 7
FASN Fatty acid synthase gene
FATP1 Fatty acid transport protein 1
GPAT Glycerol-3-phosphate acyl transferase
GPCRs G Protein coupled receptors
GPR109A Hydroxycarboxylic Acid Receptor 1 HCAR1
GTP Guanosine triphosphate
GW9662 Antagonist of PPARgamma
HCV Hepatitis C virus
HETE Hydroxyeicosatetraenoic acids
HIF-1a Hypoxia Inducible Factor 1 Subunit Alpha
Hig-2 Hypoxia Inducible Lipid Droplet
HLADR Human Leukocyte Antigen – DR isotype
IFN-g Interferon Gamma
IM54 Necrosis inhibitor
ILI Intracytoplasmic lipid inclusions
JSH-23 Inhibitor of NF-kB transcriptional activity

(Continued)
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KO Knockout
LAL Lysosomal acid lipases
lipF Carboxylesterase LipF
lipH Lipase LipH
lipJ Probable lignin peroxidase LipJ
lipK Hydrolase LipK
lipN Carboxylic ester hydrolase LipN
lipV Lipase LipV
lipX Lipase LipX
lipY Lipase LipY
LOX-1oxidized Low-density lipoprotein receptor1
LPL Lipoprotein lipase
LPS Lipopolysaccharide
LTA4H Leukotriene A4 Hydrolase
LTB4 Leukotriene B4
LucA Rv3723/LucA integrates cholesterol and fatty acid uptake
MAPK Mitogen-activated protein kinase
Marco Macrophage receptor with collagenous structure
Mce1 Mce protein 1
Mce1D Mce-family protein Mce1D
Mce4 Lipoprotein LprN
MceG Putative ATPase subunit Rv0655/MceG
MPN Mepenzolate bromide
MAG Monoacylglycerol
Msh1 Mycobacterial secreted hydrolase 1
Mtb Mycobacterium tuberculosis
Mtb ESAT-6
mTORC1 mTOR complex 1
Myd88 Myeloid differentiation primary response 88
NF-Kb Nuclear Factor kappa-light-chain-enhancer of activated B cells
OmamB Putative components of the Mce1 fatty acid transporter

(Rv0200/OmamB)
oxLDL Oxidized LDL
PAP Phosphatidic acid phosphatase
PDL1 Programmed death-ligand 1
PGJ2 Prostaglandin J2
PLIN2, 3 Perilipin 2 and 3
PPARa, PPARg Peroxisome proliferator-activated receptor alpha or gamma
Ppe4 perilipin like protein 4
rv0966c Uncharacterized protein Rv0966c
SAPC SaposinC
Septin9 Septin-9
MLL septin-like fusion
siRNA Silencing Ribonucleic Acid
SR-A1 Scavenger receptor class A type 1
SR-B1 Scavenger receptor class B type I
SREBP-1 Sterolbregulatory element binding protein 1
TAG Triacylglycerol
TB Tuberculosis
TDM Lipid trehalose 6,6′-dimycolate of Mtb
Tgs-1 Probable diacyglycerol O-acyltransferase tgs1
THP1 Monocytic cell line
TLR2 Toll like receptor 2
TLRs Toll like receptors
TNF-a Tumor Necrosis factor Alpha
TRAF1,2,3 TNFR associated factors
WHO World Health Organization
WNT6 Wnt family member 6
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