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Statistical Tests for Force Inference 
in Heterogeneous Environments
Alexander S. Serov   1*, François Laurent   1, Charlotte Floderer2, Karen Perronet3, 
Cyril Favard   2, Delphine Muriaux2, Nathalie Westbrook3, Christian L. Vestergaard1* &  
Jean-Baptiste Masson   1*

We devise a method to detect and estimate forces in a heterogeneous environment based on 
experimentally recorded stochastic trajectories. In particular, we focus on systems modeled by the 
heterogeneous overdamped Langevin equation. Here, the observed drift includes a "spurious” force 
term when the diffusivity varies in space. We show how Bayesian inference can be leveraged to reliably 
infer forces by taking into account such spurious forces of unknown amplitude as well as experimental 
sources of error. The method is based on marginalizing the force posterior over all possible spurious 
force contributions. The approach is combined with a Bayes factor statistical test for the presence 
of forces. The performance of our method is investigated analytically, numerically and tested on 
experimental data sets. The main results are obtained in a closed form allowing for direct exploration 
of their properties and fast computation. The method is incorporated into TRamWAy, an open-source 
software platform for automated analysis of biomolecule trajectories.

Random walks are encountered throughout biology and other domains of science, and so is the associated inverse 
problem of inferring their properties from experimental data. Random walkers can be considered probes of their 
environment, and their recorded trajectories thus contain information on the properties of both the walker and 
its environment. In the context of biophysics, the random walkers are typically colloidal particles or biomolecules, 
but, in a general context, they may, for example, represent the motion along an abstract coordinate of a chemical 
reaction or the fluctuating price of a stock asset. Transport of biomolecules within cells1, conformational dynam-
ics of proteins and RNA molecules2, diffusion of proteins on the DNA3, dynamics of nanosized objects in the 
cytosol4, dynamics of receptors in neurons5–7, complex random walks in mixed biological environments8–11, bac-
teria performing chemotaxis12,13, immune-cell dynamics14–16, and directionally persistent cell movement17 are all 
examples of cases where biologically relevant information can be extracted from recorded stochastic trajectories.

Empirical systems featuring biomolecule random walks are typically characterized by high heterogeneity, so 
the inverse problem often translates into inferring the properties of the heterogeneous environment from the tra-
jectories of tracer molecules18–31. A paradigmatic model for random walks in such systems is the heterogeneous 
overdamped Langevin equation (OLE):
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 which describes the continuous-time dynamics underlying a discrete-time recorded random walk22. Here Xt 
is the tracer’s position at time t, f(X) is the force acting on it in the point X, D(X) is its diffusivity, γ(X) is the 
viscous friction coefficient, and Wt is a Gaussian zero-mean continuous-time white noise process with uncor-
related increments and unit variance32. Owing to its simplicity, the OLE (1) is a popular model for biological 
random walks, providing an effective mesoscopic description of the dynamics22. As is often the case for models of 
biological systems, the OLE is empirically postulated rather than derived from the first principles, since this der-
ivation is complex and requires taking into account many factors, such as the heterogeneity of the environment 
composition, presence of boundaries33 and hydrodynamic properties34, as well as possible noise correlations35,36. 
We refer the interested reader to (i) references37,38 for an in-depth discussion of the derivation of the OLE and for 
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a microscopic model of crowded environments, to (ii) references39–41 for some approaches to the derivation of 
the equation of motion in media featuring diffusivity or temperature gradients, and to (iii) references35,36,42 for a 
discussion and experimental measurements of the extent to which Brownian noise is truly uncorrelated.

When the diffusivity D(x) varies in space, Eq. (1) is only well-defined after a convention for calculating the 
(stochastic) integral of the noise term has been defined43. Two well-known examples are the Itô and Stratonovich 
conventions. Each convention leads to a different extra "spurious” drift term, which is proportional to the diffu-
sivity gradient41,43,44. This feature of the OLE is known as the Itô-Stratonovich dilemma41,45–49. For an experimen-
tal illustration of the presence of two physically different components see50,51.

Any stochastic convention can be used in the OLE to statistically describe a given experimental random walk. 
However, they are not equivalent to an external observer attempting to interpret the parameters of the random 
walk. Indeed, the two components of the drift in the OLE — the spurious force and the non-diffusive force — have 
a different physical nature. The spurious force is proportional to the diffusivity gradient, hence its value changes 
when the diffusivity, viscosity, or the temperature of the system change in space (time) or across systems. On the 
contrary, the non-diffusive component of the drift does not depend on the diffusivity and represents specific or 
non-specific interactions. The spurious force does not contribute to the equilibrium (Boltzmann) distribution.

Spurious forces are due to the interactions of the tracked particle with the surrounding thermal bath, while the 
non-diffusive forces represent its interactions with other objects or fields45. The separation of interactions between 
these two groups naturally depends (i) on the scale on which the system is analyzed and (ii) on which parts of the 
environment are included into the thermal bath. In Sect. 3.7 below, we show how in the same simulated system, 
the drift due to non-diffusive forces on the microscopic scale is perceived as a spurious force on the mesoscopic 
scale, when the contribution of individual interacting partners can no longer be identified.

For practical applications, it is thus important to develop a method allowing to distinguish between diffusive 
and non-diffusive forces or at least to develop a test allowing to confirm the presence of the non-diffusive forces 
on a given scale. The need for such approaches is further emphasized by the inaccessibility of the equilibrium 
distributions and of the exact boundary conditions at the nanometer scale in numerous biological setups.

Since the seminal work of Bachelier52, the inverse problem of drift and diffusivity inference from random 
walks has been attracting attention53,54, especially in financial applications55,56. In this article, we address a more 
specific problem of distinguishing between diffusive and non-diffusive forces, since the value of the latter is gen-
erally unknown. Although the spurious force is proportional to the diffusivity gradient λ ∇ D(X), it includes an 
unknown proportionality factor λ. It is known that for physical systems in equilibrium, described by Boltzmann 
distribution, λ = 1, but its value is not known in general for out-of-equilibrium systems41,42,44,47–50,57,58. Each value 
of λ represents specific symmetries of transition probabilities in these systems46,58,59.

Our goal is hence two-fold: (i) to develop a statistical test for the presence of non-diffusive forces, and (ii) to 
infer the posterior distribution for the intensity of the non-diffusive forces while taking into account all possible 
contributions of the "spurious” forces as well as experimental localization errors and motion blur. The method we 
introduce here is statistically robust to changes in the spurious force contribution in the OLE due, for example, 
to changes of the diffusivity or viscosity. We validate our approach on numerical trajectories and demonstrate its 
efficiency on experimental data.

The Itô-Stratonovich Dilemma for the Inverse Problem
In this section we give a brief review of the Itô-Stratonovich dilemma45. Numerous discussions of the dilemma 
have been focused on choosing the appropriate integral convention for the forward problem of integrating the 
OLE in a particular system. In contrast, we here focus on how the dilemma affects the inverse problem of inferring 
the underlying physical parameters of a model from recorded data. To underline the generality of the problem, 
we rewrite the OLE (1) in the form of a general stochastic differential equation (SDE): 

= +d dt b dX a X X W( ) ( ) , (2)t t t t

where a and b are differentiable functions of Xt. We will refer to a and b as the drift and diffusivity respectively.
The integral of Eq. (2) is defined as the limit of Riemann sums 
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where each point ξi is chosen in the interval [ti; ti+1]. The standard conventions — Itô, Stratonovich-Fisk and 
Hänggi-Klimontovich — correspond to ξi = ti, ξi = (ti + ti+1)/2 and ξi = ti+1 respectively41,46. More generally, ξi 
can be set to any point ξi = ti + λ(ti+1 − ti) within the [ti; ti+1] interval. This allows one to rewrite Eq. (2) with any 
convention λ in the Itô form60,61: 

d dt b dX X X W( , ) ( ) , (4)t t t tα λ= +

where the total drift α is the sum of a and the spurious drift λb(X) ∇b(X): 

α λ λ≡ + ∇ .b bX a X X X( , ) ( ) ( ) ( ) (5)

From the perspective of the forward problem, Eq. (5) shows that the often arbitrary choice of the value of λ 
influences the value of the drift α when a and b are fixed, — this is the essence of the Itô-Stratonovich dilemma45. 
In the context of the inverse problem, one is given fixed values of α and b estimated from the recorded trajecto-
ries, so different choices of λ result in different estimates of the non-diffusive drift a. If the chosen λ does not agree 
with its true value in the empirical system, the resulting estimate of a becomes biased.
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We emphasize that we do not address here the forward problem, i.e. the question of finding the correct λ for 
a given system41,45–49. The correct λ values are often inaccessible in real biological systems. Instead, we aim to 
solve the inverse problem of whether non-diffusive forces are observed in the system and to infer their values 
if the appropriate value of λ cannot be determined. It is an inverse problem with an uncertainty in the under-
lying physical model. This ambiguity in λ may stem, for example, from the lack of a priori knowledge about 
the out-of-equilibrium fluxes in the system, noise correlations or the particle density distribution. In all cases, 
the method developed below allows one to obtain estimates of the non-diffusive forces and to circumvent the 
Itô-Stratonovich dilemma by marginalizing over all possible λ values. The estimates are robust to changes in the 
spurious force contribution in the OLE.

Above, we have formulated the main question of this paper from a physical point of view as that of inferring 
non-diffusive forces, when the correct λ is unknown. It is interesting to note that the same question can also be 
asked from a purely statistical point of view: Given the OLE, does there exist a value of 0 ≤ λ ≤ 1 that would allow 
to describe the given system with zero non-diffusive forces (a = 0)? This would allow to describe the same system 
with fewer parameters (D and λ instead of D, λ, a), thus minimizing the description length among all the descrip-
tions proposed by the OLE family62,63.

From this point of view, the Bayes factor developed below is a Bayesian analog of the difference in the descrip-
tion lengths between the models with a ≠ 0 and a = 0 for the given data. It evaluates how much more efficient 
the non-diffusive-force description is, as compared to the spurious-force-only description of the same data. If the 
spurious-force description is preferred, as a byproduct, one can calculate the value of λ that provides the most 
efficient description of the data.

The Bayesian Approach
Our goal is to discriminate between the following two nested hypotheses: 

•	 H0: The only forces present are spurious forces due to heterogeneous diffusivity (the null hypothesis).
•	 H1: There are other, non-diffusive, forces acting on the random walker in addition to the spurious forces.

We use the Bayes factor to decide between these hypotheses64.

The Bayes factor.  According to Bayes’ rule65, the posterior probability Pr(Hi | T) of a hypothesis Hi given 
data T is 

π
= .H T p T H H
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Pr( ) ( ) ( )
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Here, T is a trajectory, T {r }i i
n

1≡ = , or a set of trajectories; p(T | Hi) is the marginal likelihood for the data T to be 
observed under the hypothesis Hi; π(Hi) is the prior probability of Hi; and p(T) is the probability to observe T 
under either hypothesis. For the two competing hypotheses H1 and H0, the ratio of their posterior probabilities 
reads 
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The first fraction on the right-hand side is called the Bayes factor for H1 over H0
64: 
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Each marginal likelihood p(T | Hi) is calculated by marginalizing the corresponding conditional likelihood 
p(T | θi, Hi) over all model parameters: 

∫ θ θ π θ= .p T H d p T H H( ) ( , ) ( )i i i i i i

For H0, the likelihood p(T | θ0, H0) thus depends on 3 parameters: θ0 = {b2, g, λ}, where b2 is the diffusivity 
and g ≡ ∇ b is the diffusivity gradient. For H1, the likelihood p(T | θ1, H1) additionally includes the drift a, so 
θ1 = {b2, g, λ, a}. Note that we treat g as independent from b2, which allows us to obtain the results in the analytical 
form. This assumption is further discussed in Appendix A1.

Likelihood.  The likelihood p(T | θi, Hi) is obtained as the fundamental solution of the Fokker-Planck equation 
corresponding to the OLE (2). However, it cannot in general be obtained analytically. Instead, one can approxi-
mate it locally by assuming that α and b are constant within small spatial domains20,21. In this case, the likelihood 
of observing a set of displacements {Δr} inside a given domain is21: 
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sufficient statistics of the model65, and d is the number of dimensions. The equations below are valid for d = 1 and 
d = 2, but the framework can also be extended to d = 3.
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Note that calculations would be similar if one relaxed the approximation of the locally constant values of α and 
b. Computations would be performed numerically but the analytical explorations such as those of Appendix A3 
would not be possible. Meanwhile, the assumption of bin independence is paramount to the presented method.

Priors.  The likelihood (6) belongs to the exponential family65. Therefore, a natural choice for the prior is a 
conjugate prior for the parameters a and b2. Among other advantages, conjugate priors provide a closed form 
of the posterior distribution. We furthermore assume a factorized form for the prior distributions for λ and the 
diffusivity gradient g: 

π λ π λ π λ π≈ .a b H a b H( , , g, ) ( , , ) ( ) (g)2
1

2
1

We have no a priori information available about the true value of λ other than that 0 ≤ λ ≤ 1, so we use the flat 
prior π(λ) ≡ 1. The diffusivity gradient prior is approximated by a delta function π δ≡ −(g) (g g)  centered 
around its maximum a posteriori (MAP) value g. Details of g estimation are given in Appendix A1.

Under H1, the full conjugate prior is then (cf. (6)): 
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d m d d/2 ( ) 1 ; m(d) ≡ d(nπ − 1)/2 − 1; μπ, Vπ and n are the parameters of 
the prior (called hyper-parameters).

The models H0 and H1 are nested models. In such case, it is common practice to obtain the H0 prior by inte-
grating the H1 prior over a64: 
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We further set the hyper-parameters to maximally favor the null model. More specifically, nπ acts as an 
effective number of prior observations. The least constraining prior is obtained by setting nπ = 4 for 1D data 
and nπ = 3 for 2D, which are the minimal number of observations, for which the prior is proper (normalized). 
Furthermore, we center the prior on zero force by setting μπ = λgΔt. The remaining hyper-parameter Vπ defines 
the prior distribution for the diffusivity. Sensitivity of the results to u ≡ Vπ/V is explored in Appendix A2.

Model evidence and the Bayes factor.  The evidence for the H1 and H0 models is the central ingredi-
ent in the Bayes factor. Given the likelihood p({Δr} | α(a, λ), b2) (Eq. (6)) and prior π(a, λ, g, b2 | H1) (Eq. (7)), 
the evidence for H1 is calculated by marginalizing p({Δr} | α(a, λ), b2)π(a, λ, g, b2 | H1) over all the parameters 
θ1 = {a, b2, g, λ}. This gives 
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For H0, the likelihood p({Δr} | α(λ), b2) is given by Eq. (6) with α(λ) = λb ∇b, and the prior π(λ, g, b2 | H0) by 
Eq. (8). Marginalization of p({Δr} | α(λ), b2)π(λ, g, b2 | H0) over θ0 = {b2, g, λ} gives 
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Expressions (9) and (10) let us finally calculate the marginalized Bayes factor KM, which takes into account all 
possible values for the unknown parameter λ. For comparison, we also provide the Bayes factor K(λ) for fixed-λ 
inference procedures (Itô, Stratonovich or Hänggi), which is calculated in the same manner: 
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All the integrals appearing in Eqs. (9–11) are 1D integrals that are numerically evaluated using the trapezoid rule.
The natural parameter combinations appearing in Eq. (11) are: (i) ζ ≡ Δ Vr/t , the signal-to-noise ratio for 

the total force in a single displacement; (ii) ζ ≡ Δ Vg /tsp 

, the signal-to-noise ratio for the spurious force in a 
single displacement; (iii) η ≡ +π πn n n/( ) , the relative strength of the prior compared to the observed data; (iv) 
v ≡ 1 + nπVπ/(nV), a weighted ratio of jump variances in the prior and in the data.

Figure 1A plots the marginalized Bayes factor KM (11) as a function of ζsp, and of the component of the total 
force ζ∥ parallel to ζsp. The lowest values of KM are achieved in the region 0 ≤ ζ∥/ζsp ≤ 1. The value of KM changes 
relatively little within this region but grows rapidly at its boundary. The absolute minimum of KM is achieved for 
ζsp = 0 and ζ∥ = 0 with λ η η ζ ζ= = + +

κ
⊥ ⊥

−
K K v vmin min ( ) [( )/( )]d

t t
M 2 2 2 . A mathematical analysis of Eq. 

(11) is provided in Appendix A3, where it is shown that non-diffusive forces cannot in principle be detected in 
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certain intervals of ζsp, ζt regardless of the number of collected data points. Appendix A4 extends the Bayes factors 
(11) to the experimentally relevant case with localization errors and motion blur.

Force posterior.  When H1 is met, we can infer the value of the non-diffusive force by marginalizing the force 
posterior over all possible values of λ: 

∫ζ λ η
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where a signal-to-noise ratio for the force ζa ≡ aΔt/ V  was introduced. Figure 1B plots an example force poste-
riors obtained with the marginalized method and with fixed-λ inference schemes. The wider marginalized 
method posterior takes into account all possible λ values. Appendix A5 demonstrates that in contrast to the 
fixed-λ posteriors, the marginalized posterior is in general non-symmetric.

Numerical results.  The performance of the marginalized method was investigated on simulated trajectories. 
Random trajectories were simulated in a 2D box with periodic boundary conditions, a uniform total force, and a 
triangular diffusivity profile along the x axis (Fig. 2A,B). Other simulation parameters are given in Appendix A6. 
For each trial, the simulated trajectories were then analyzed using the TRamWAy software platform66 and follow-
ing a procedure similar to the one used in reference20,28 and consisting of (i) individual spatial tessellation in each 
trial; (ii) assignment of recorded displacements to spatial domains; (iii) inference of ζsp and ζt in each domain; (iv) 
calculation of the Bayes factor in each domain.

The marginalized Bayes factor K
M
 , inferred in each domain, was then plotted against its expected value KM to 

test the accuracy of the method (Fig. 2C,D). The figure shows good correspondence between the inferred Bayes 
factor and the expected Bayes factor. 95% confidence intervals (CIs) show the extent of the deviation of the results 
from the true values due to the stochastic nature of the simulated trajectories.

Microscopic model of heterogeneous diffusivity.  The next simulation was performed with two goals: 
(i) to illustrate how spurious forces may originate from crowding at the molecular scale, and (ii) to illustrate a 
case, wherein our developed statistical test successfully indicates the absence of non-diffusive forces. For this 
purpose, we simulated free diffusion of particles with no microscopic drift within a square region with periodic 
boundaries and with impenetrable immobile beads evenly spaced on a square lattice (Fig. 3A), similar to schemes 
suggested in67–69. The microscopic diffusivity of the particle was the same throughout the system. A spatial var-
iation in the radii of the immobile beads created a spatial variation in the effective diffusivity on a much larger 
“mesoscopic” scale, where each analysis bin included ~100 small beads (Fig. 3B). As a result, recordings at the 
mesoscopic scale exhibit a diffusivity gradient (Fig. 3C), which contributes to the drift observed on the same scale 
(Fig. 3D). Note that at long time scales, the system is in physical equilibrium, although particles experience a 
stationary non-zero drift. Simulation details and parameters are provided in Appendix A7.

The diffusivity gradient contribution to the drift is the spurious force, its exact value depends on λ. Assuming 
the value of λ is unknown, one can use the Bayes factor test developed above to estimate the a posteriori likelihood 
of that the observed drift is due to non-spurious forces (Fig. 3E). In our simulation, the inferred Bayes factors 

BA

Figure 1.  (A) Marginalized Bayes factor KM for the presence of forces in a 2D system as a function of the signal-
to-noise ratios ζsp and ζ∥ (see text). Black lines show the Bayes factor levels =Klog 110

M  (solid) and 
Klog 110

M = −  (dashed). Gray lines mark levels of Bayes factor for Klog 1010
M ≥ . The color map shows Bayes 

factor values for ≤ −Klog 110
M . KM behavior is qualitatively similar for other parameter values. (B) Force 

posteriors for a 2D system with ζsp = 0.1 and ζt = 0. Posterior distributions obtained for Itô (dashed blue line), 
Stratonovich (dashed green), Hänggi (dashed orange) and marginalized (solid magenta) approaches are shown 
alongside their common prior (dotted black). In both panels, the number of recorded displacements is n = 500, 
the prior hyperparameter u = 1.0, the perpendicular component of the total force ζt⊥ = 0, and the localization 
error 0L

2σ = .
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were small ( Klog 110 < − ) in most parts of the region, supporting the claim that only spurious forces were present 
(Fig. 3F). Statistical noise in several bins resulted in weaker evidence, which did not let us draw statistically signif-
icant conclusions in those zones. These results confirm the capacity of the method to detect spurious forces. Its 
capacity to detect non-spurious forces will be illustrated in the next section.

This simulation captures one possible microscopic mechanism behind the observation of a diffusivity gradient 
on the mesoscopic scale in biological systems. However, note that the homogeneous composition required for 
a uniform microscopic diffusivity is probably achievable in the biological systems only on the molecular scale 
(10−9 m and smaller). On this scale though, it is not clear whether the diffusivity itself is well-defined, since by 
definition it is the result of the action of millions of individual molecules and Fick’s law describes an intrinsically 
mesoscopic phenomenon.

Other microscopic mechanisms for the diffusivity gradient include (i) confinement, wherein it was shown that 
the diffusivity in a homogeneous system changes with the distance to a wall33,41,50,70, (ii) corralled motion71, (iii) 
hydrodynamic coupling to other objects in the medium34,72, (iv) temperature gradients44,73,74, or (v) intermittent 
trapping75.

Applications
The developed method was tested on two experimental systems. The first one was a well-controlled setup of a 
bead in the optical tweezers. The second one was a complex biological process of HIV virion assembly in a T 
cell76, where the OLE is potentially only an approximation to the true biomolecule dynamics (ignoring inertial 
effects, colored noise or memory of the previous states).

Figure 2.  (A) A diffusivity map inferred using the TRamWAy software platform66. The white line y = 0.5 μm 
indicates the axis along which the diffusivity profile is plotted in (B). (B) 1D diffusivity profile showing the true 
diffusivity (solid blue line) and D values inferred from a single simulation (magenta crosses). Error bars show 
95% confidence intervals (CI) calculated from the diffusivity posterior (see Appendix A1). (C,D) Inferred values 
of the marginalized Bayes factor Klog10

M
  as a function of its expected value: sliding average (solid green line) 

over a window of constant width 0.5 on the logarithmic scale and the corresponding 95% CI (shaded green 
region). The observed dependency is centered around the identity line ( =K K

M M, dashed orange) indicating 
that the inferred Bayes factors are approximately unbiased for both the case when the total force is parallel to the 
spurious force (ζt⊥ = 0, (C)) and when it is not (ζt⊥ = 0.11, (D)). The Bayes factors were inferred in individual 
domains shown in (A), with an average of ~123 individual domains per trial. In each trial, the spatial tessellation 
was performed independently based on the relative particle density. The calculations were repeated across 100 
trials for each value of ζ∥ out of the analyzed range (see Appendix A6).
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Optical tweezers.  Optical tweezers combine physical trapping of the bead with local laser heating of the 
medium, leading to a heterogeneous diffusivity field. Therefore, the heating effect and the ensuing spurious forces 
may interfere with the inferred trapping potential. Figure 4A–C compares the results of Bayes factor calculations 
for the same system subjected to three different laser powers. The tessellation procedure was designed to assign 
the same number of jumps to each domain. In all 3 cases, the particle is confined and the Bayes factor favors the 
presence of forces ( >Klog 110

M ) in a large number of domains, which form a connected region. With the 
decrease of the laser power, the confinement at the center of the trap becomes more shallow, so that the statistical 
test only detects confining forces on the trap border.

Assembly of HIV-1 Virus-Like particles.  The HIV virus-like-particle (VLP) assembly experiments that 
provided the data are described in reference77. The VLPs derive from the human immunodeficiency virus type 1 
(HIV-1), but are immature and deprived of envelope proteins. One of their main components is the group-specific 
antigen (Gag) protein. It is a viral structural protein produced by the virus that anchors and oligomerizes at the 
plasma membrane of the host T cells, eventually assembling into a VLP76. In the experiments, the HIV-1 Gag 
precursor was genetically modified to contain a photoactivable fluorescent tag mEOS2 protein. It allowed to 
record VLP assembly in human CD4 T cells using single-particle tracking photoactivated localization microscopy 
(sptPALM)77,78. Several VLPs can assemble in parallel in the same observation region.

The TRamWAy software platform was used to tessellate the observation region and infer maps of diffusivities 
(Fig. 4G) and drift20,66. The Bayes factor map was then computed. The localization uncertainty was σL = 30 nm, 
requiring corresponding corrections to the Bayes factor (Appendix A4). Inference results and Bayes factors for a 
2 μm × 2 μm zone of one T-cell membrane are shown in Fig. 4D–F.

Plots of the trajectories, the density of the recorded points and the diffusivity (Fig. 4D,E,G) indicate that there 
are two regions of interest (ROI) in the data set. However, the plots of the diffusivity gradient and the drift 
(Fig. 4H,I) suggest that the two parameters are of the same scale, hence it is not a priori clear, whether the locali-
zation of the particles is due to non-diffusive or spurious forces. Only the calculation of the Bayes factors for these 
regions allowed us to confirm that it is not solely due to heterogeneities in the diffusivity but rather to 
non-spurious forces (

Klog ( ) 110 , Fig. 4F).

Figure 3.  Simulations of mesoscopic changes in particle diffusivity due to microscopic crowding. Inference 
results for particles diffusing in the presence of a lattice of immobile beads of various radius. (A) A zoom-in on a 
small 1 × 1 μm2 section of the simulated 10 × 10 μm2 system. The radius of the immobilized beads located in 
the nodes of a lattice changes with x leading to an effective diffusivity gradient on a larger scale (cf. (B,C). A 
sample trajectory of 1000 jumps of a single diffusing particle, with a green circle indicating the origin point. In 
total, 1000 independent diffusing particles were simulated. (B) Inferred diffusivity. (C) Inferred diffusivity 
gradient. Arrows indicate the direction and the strength of the gradient, also represented by the bin color. (D) 
Inferred drift. Arrows indicate the direction and the strength of the drift, also represented by the bin color. (E) 
Estimated Bayes factor. (F) Thresholded Bayes factor. Color code: green (non-spurious force, ≥Klog 110 ), red 
(spurious force only, ≤ −Klog 110 ), white (insufficient evidence, Klog 110 < ). Values of D, ′D  and α in the 
plots (B–D) were clipped at high values around the 9th decile to allow for a clearer visualization. Simulation 
details are provided in Appendix A7.
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Some other individual domains in Fig. 4F bear evidence of a force with rather high Bayes factors 
( Klog ( ) 110 ≥ ). In such a complex system, the high K values in these individual domains may stem from local 
membrane activity, failed capsid assembly77 or be false detection. In the rest of the region, the Bayes factor is 

<Klog ( ) 110  meaning neither of the models is favored at the chosen level of statistical significance.
As demonstrated in the simulation of Sect. 3.7, the results of any inference procedure depend on how the spatial 

scale on which the analysis is performed, corresponds to the internal scale of the observed system. An illustration of this 
fact for the VLP data can be seen in Fig. 5. Here, our statistical test was applied to the same VLP data set on three differ-
ent spatial scales. When the bins are much larger than the typical structures present in the biological system (Fig. 5A, 
0.5 μm), the interactions are averaged out and our statistical test confirms the absence of interactions or is inconclusive. 
On the scale of the structures (Fig. 5B, 0.25 μm), one may identify the potential regions of interest, but is unable to 
resolve their internal structure. When the bins are smaller than the regions of interest (Fig. 5C, 0.05 μm), given enough 
data, the internal structure of the regions can be resolved. At even smaller scales (not shown), when few points are avail-
able per bin, one starts losing the connectivity of the regions of interest, and the statistical tests becomes inconclusive 
or (by design) favor the model with only spurious forces (H0). We suggest that one should aim for a scale smaller than 
the scale of the analyzed structure, but maintain enough points per bin to reach statistically significant conclusions.

Figure 4.  (A–C) Bayes factors for the presence of non-spurious forces inferred from experimentally-recorded 
trajectories of a bead trapped in the optical tweezers at 3 different levels of laser power: (A) 500 mW, (B) 
251 mW, (C) 138 mW. For a better visual representation, all values of >Klog 310

M  (very strong evidence for H1) 
are shown as Klog 310

M = . Each domain contained strictly between 390 and 410 recorded displacements. (D–I) 
Bayes factors analysis for single-molecule-dynamics of the Gag protein during the assembly of HIV VLPs in 
human T cells. (D–I) All panels show the same 2 μm × 2 μm patch of a T cell membrane. (D) 1000 trajectories 
randomly chosen among the 12 825 trajectories of the data set. (E) Number of displacements n attributed to 
each domain. (F) Common logarithm of the marginalized Bayes factor KM. Note the high values of Klog10

M 
where Gag particles cluster. (G) Inferred diffusivity field. (H) Absolute value of the inferred diffusivity gradient. 
(I) Absolute value of the inferred total force. In panels (H,I), large values have been clipped around the 9th 
decile to increase plot readability.
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Discussion
In this paper, we introduced a method to address the inverse problem for the spatially heterogeneous OLE that is 
robust in regards to changes in the spurious-force contribution. We leveraged Bayesian inference and Bayesian 
model comparison to account for the uncertainty in the values of the spurious force caused by a heterogeneous 
diffusivity field. The method provides a test for the presence of non-diffusive forces and returns the values of the 
non-diffusive forces and diffusivity.

The marginalized posterior takes into account the error in the inferred forces due both to stochastic errors and 
to possible spurious forces when the true value of λ is unknown. The expression for the Bayes factor was derived 
in a closed form, allowing for identification of natural parameters associated with the dynamics, namely, the 
signal-to-noise ratios for the total force (drift) and spurious forces, ζt and ζsp, and the relative strength of the local-
ization uncertainty σ4 L

2/(nV). Interestingly, we showed that under some configurations, the discrimination 
between active and spurious forces is impossible without introducing additional assumptions.

As for any statistical method, a prerequisite for our method is that one observe the trajectories on the "right” 
spatial and temporal scales, which depend on the individual system. In particular, the spatial tessellation 
employed here should be constructed on the appropriate spatial scale, i.e. finer than the spatial heterogeneities 
of interest and coarse enough to provide sufficient measurements in each mesh domain (as discussed above). 
Another condition required by our method is that the number of points per bin be >4 in 1D and >3 in 2D, 
which are the equivalent numbers of points contained in the prior. Otherwise, due to the choice of μπ, the model 
with only spurious forces is likely to always be favored. Our experience with the method indicates that for the 
biological data we tested, n ≥ 20 typically provides a reasonable compromise between the spatial and statistical 
resolution.

The VLP example demonstrated successful utilization of the method for the detection of biological activity. 
The test was applied in an unsupervised way, which makes it useful for automatic analysis of single-molecule 
dynamics. In general, however, the results may depend on the spatial meshing. For the VLP data set, we had the 
advantage of a priori knowing the characteristic spatial scale of the underlying biological processes77. In a general 
case, one may need to sample multiple spatial scales in an attempt to optimize the detection. An optimal mesh 
scale in this case can be seen as a trade-off between increasing statistical significance (by getting more data per 
domain) and increasing resolution (by reducing the domain size).

Potential ways to circumvent this fundamental trade-off of spatial versus statistical resolution could be to 
regularize the inference of the diffusivity and drift fields20,79 or to cluster the regions with similar Bayes factor 
values based on a certain rule. However, the former approach induces correlations between the results inferred in 
different domains making analytical calculations intractable and hindering interpretation of the results. The main 
difficulty with the latter approach consists in defining the appropriate clustering criterion and in accounting for 
how the uncertainty in the individual Bayes factors propagates to the Bayes factors of the clusters.

One should also keep in mind that the validity of the main result (11) relies on the assumption that the dif-
fusivity b is smooth enough, so that the gradient  ∇b exists on the spatial scale on which the system is exper-
imentally probed. Additionally, we stress that α and b are mesoscopic quantities and their values may change 
depending on the analyzed scale80. In practice, the choice of the spatial and temporal resolutions for the analysis 
is limited by the particular experimental setup and the properties of the biological system.

The Bayesian approach that we proposed here is general and not limited to the OLE equation. The ambiguity 
of the stochastic integration is encountered in numerous other scientific fields involving stochastic equations 
with multiplicative heterogeneous noise. The effect is usually ignored and an arbitrary standard convention is 
used. The marginalized method allows us to avoid arbitrarily choosing an integral convention in the absence of 
system-specific information, therefore providing more robust results.

A B C

Figure 5.  Thresholded Bayes factors for the VLP data set inferred at three different spatial scales. The average 
distance between bins was set to 0.5 μm (A), 0.25 μm (B), 0.05 μm (C). Panel (C) demonstrates the same mesh 
as in Fig. 4D–I. Color code: green — non-spurious force, ≥Klog 110 ; red — only spurious force, ≤ −Klog 110 ; 
white — insufficient evidence, <Klog 110 .
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The marginalized method code is available as a module of the open source project TRamWAy81 and the micro-
scopic crowding simulation code is available at82. Two Jupyter notebooks are provided as illustration of the mod-
ule interface66.
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