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Modeling regulatory network topology improves
genome-wide analyses of complex human traits
Xiang Zhu 1,2,3✉, Zhana Duren3,4 & Wing Hung Wong 3,5✉

Genome-wide association studies (GWAS) have cataloged many significant associations

between genetic variants and complex traits. However, most of these findings have unclear

biological significance, because they often have small effects and occur in non-coding

regions. Integration of GWAS with gene regulatory networks addresses both issues by

aggregating weak genetic signals within regulatory programs. Here we develop a Bayesian

framework that integrates GWAS summary statistics with regulatory networks to infer

genetic enrichments and associations simultaneously. Our method improves upon existing

approaches by explicitly modeling network topology to assess enrichments, and by auto-

matically leveraging enrichments to identify associations. Applying this method to 18 human

traits and 38 regulatory networks shows that genetic signals of complex traits are often

enriched in interconnections specific to trait-relevant cell types or tissues. Prioritizing variants

within enriched networks identifies known and previously undescribed trait-associated genes

revealing biological and therapeutic insights.
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Genome-wide association studies (GWAS) have cataloged
many significant and reproducible associations between
common genetic variants, notably single-nucleotide

polymorphisms (SNPs), and diverse human complex traits1.
However, it remains challenging2 to translate these findings into
biological mechanisms and clinical applications, because most
trait-associated variants have individually small effects and map
to non-coding sequences.

One hypothesis is that non-coding variants cumulatively affect
complex traits through cell type- or tissue-specific3 gene
regulation4. To test this hypothesis, large-scale epigenomic5,6 and
transcriptomic7–10 data have been made available spanning
diverse human cell types and tissues. Exploiting these data many
studies have shown enrichments of trait-associated SNPs in
chromatin regions11–13 and genes14–16 that are active in trait-
relevant cell types or tissues. These studies overlap regulatory
maps with GWAS data and often ignore functional interactions
among loci within regulatory programs.

Gene regulatory networks17–20 have proven useful in mining
functional interactions of genes from genomic data. Transcrip-
tional regulatory interactions, rather than gene expression alone,
drive tissue specificity19. Further, context-specific regulatory net-
works have emerged as promising tools to dissect the genetics of
complex traits21–23. Network-connectivity analyses in GWAS have
shown that trait-associated genes are more interconnected than
expected18 and highly interconnected genes are enriched for trait
heritability24. However, these analyses do not leverage observed
enrichments to further enhance trait-associated gene discovery.

To unleash the potential of regulatory networks in GWAS, we
develop a Bayesian framework for simultaneous genome-wide
network enrichment and gene prioritization analysis. Through
extensive simulations we show several advantages of the method
such as flexibility in various genetic architectures, robustness to a
wide range of model mis-specification and improved performance
over existing methods. Applying the method to 18 human traits
and 38 regulatory networks, we identify strong enrichments of
genetic associations in network topology specific to trait-relevant
cell types or tissues. By prioritizing variants within enriched
networks we identify trait-associated genes that were not impli-
cated by the same GWAS. Many of these previously undescribed
genes have strong support from multiple lines of external evi-
dence; some are further validated by follow-up GWAS of the
same traits with increased sample sizes. Together, these results
demonstrate the potential for our method to yield additional
biological and therapeutic insights from existing data.

Results
Method overview. Figure 1 shows the method schematic. In
brief, we develop a model dissecting the total effect of a single
SNP on a trait into effects of multiple (nearby and distal) genes
through a regulatory network, and we combine it with a multiple-
SNP regression likelihood25 based on GWAS summary statistics
to perform Bayesian inference.

Conceptually, we decompose the total effect of a common SNP
on a complex trait into three components: a cis-regulatory
component through nearby genes, a trans-regulatory component
through distal genes that are regulated by genes near this SNP,
and a remaining component due to other factors (Fig. 1a). Since
common genetic variation contributes to complex traits primarily
via gene regulation22, we find this decomposition a sensible
approximation to the genetic basis of complex traits.

Despite various ways to model the regulatory components, here
we use cell type- or tissue-specific regulatory networks18,20

linking transcription factors (TFs) to target genes (TGs).
Specifically, we define a regulatory network as a directed bipartite

graph with weighted edges from TFs to TGs (Fig. 1b). Given a
TF-TG network, we use its topology to decompose the total effect
of each SNP into effects of multiple interconnected genes. As
shown in Fig. 1c, we approximate the effect of SNP j using a
weighted sum of cis effects of three nearby genes (outside-
network gene k, TG u and TF g) and trans effects of three TGs
(u and t on the same chromosome, and n on a different
chromosome) that are directly regulated by TF g near SNP j. For
identifiability we assume the SNP-gene (cjg) and TF-TG (vgt)
weights in the decomposition are known, specified by existing
omics data (Methods).

To implement this regulatory decomposition in GWAS, we
formulate a network-induced prior for SNP-level effects (β), and
combine it with a regression likelihood25 of β based on single-
SNP association statistics from a GWAS (Fig. 1d) and linkage
disequilibrium (LD) estimates from a reference panel with
ancestry matching the GWAS (Fig. 1e). We refer to the resulting
Bayesian framework (Fig. 1f) as Regression with Summary
Statistics exploiting NEtwork Topology (RSS-NET).

RSS-NET accomplishes two tasks simultaneously: (1) testing if
a network is enriched for genetic associations (Fig. 1g); (2)
identifying which genes within this network drive the enrichment
(Fig. 1h). Specifically, RSS-NET estimates two independent
enrichment parameters (θ and σ2) that measure the extent to
which, SNPs near network genes and regulatory elements (REs)
have higher chances to be associated with the trait, and, SNPs
near network edges have larger effect sizes, respectively. To assess
network enrichment, RSS-NET computes a Bayes factor (BF)
comparing the “enrichment model” (M1: θ > 0 or σ2 > 0) against
the “baseline model” (M0: θ= 0 and σ2= 0). To prioritize genes
within enriched networks, RSS-NET contrasts posterior distribu-
tions of β estimated under M0 and M1.

RSS-NET improves upon its predecessor RSS-E16. Specifically,
RSS-NET exploits the full network topology, whereas RSS-E
ignores the edge information. By explicitly modeling regulatory
interconnections, RSS-NET outperforms RSS-E on both simu-
lated and real data. Despite different treatments of network
information, RSS-NET and RSS-E share computation schemes
(Box 1; Supplementary Notes 1–3), allowing us to reuse the
efficient algorithm of RSS-E. Software is available at https://
github.com/suwonglab/rss-net.

Box 1 | RSS-NET model fitting algorithm

Input: GWAS summary statistics fbβ; bSg, LD estimates bR, network
annotations {a,O,W} and a grid of hyper-parameters
fθðhÞ0 ; θðhÞ; σðhÞ0 ; σðhÞg, h= 1,…,H; see Methods for details.
Output: {τ, ν, α} such that

Qp
j¼1½αj �N ðβj; νj; τ2j Þ þ ð1� αjÞ � δ0ðβjÞ� is

the closest mean-field approximation in Kullback–Leibler divergence
to the exact conditional posterior of β given the hyper-parameters
{θ0, θ, σ0, σ}.
1. Initialize: Set the initial values of {ν, α} randomly.
2. Optimize:

2a. Compute the prior parameters for each SNP j= 1,…, p:

πj ¼ 1 = ½1þ 10�ðθ0þajθÞ�; σ2j ¼ σ20 þ σ2 � ∑
g2Oj

w2
jg:

2b. Determine τ: τ j ¼ ŝjσ j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2j þ σ2j

q
for SNP j= 1,…, p.

2c. Iterate through all SNPs to update {ν, α} as follows:

νj ¼ τ2j �
β̂j

ŝ2j
�∑

i≠j

r̂ijαiνi
ŝi ŝj

 !

;
αj

1� αj
¼ πj

1� πj
� τ j
σ j
� exp ν2j

2τ2j

 !

:

2d. Repeat 2c until {ν, α} converge.

3. Repeat: Repeat 2 for each fθðhÞ0 ; θðhÞ; σðhÞ0 ; σðhÞg in the grid to obtain the
corresponding optimal {τ(h), ν(h), α(h)}, h= 1,…, H.
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Method comparison through simulations. The key contribution
of RSS-NET is a unified framework that leverages network
topology to infer enrichments from whole-genome association
statistics and prioritizes loci in light of inferred enrichments
automatically. We are not aware of any published method with
the same features. However, one could ignore topology and
simply annotate SNPs based on their proximity to network genes
and REs (Methods). For these SNP-level annotations there are
methods to assess global enrichments or local associations on
GWAS summary data. Here we use Pascal26, LDSC13,27, and RSS-
E16 to benchmark RSS-NET.

Given a network, we first simulated SNP effects (β) from either
RSS-NET or mis-specified models, and then combined them with
real genotypes to simulate phenotypes from a genome-wide
multiple-SNP model. We computed the single-SNP association
statistics, on which we compared RSS-NET with other methods
(Figs. 2–4; Supplementary Figs. 1–9). Since RSS-NET is model-
based, we designed a large array of simulation scenarios for both
correctly- and mis-specified β. To reduce computation of this
large-scale design, we mainly used genotypes28 of 348,965
genome-wide common SNPs and a whole-genome regulatory
network inferred for human B cells (436 TFs, 3,018 TGs)20,29. We

Fig. 1 Schematic of RSS-NET. a Decomposition of the total effect of a common SNP on a complex trait through multiple nearby and distal genes. b Gene
regulatory network defined as a weighted and directed bipartite graph linking TFs to TGs. c RSS-NET exploits the topology of a TF-TG network to
decompose the total genetic effect into cis and trans-regulatory components. Both the SNP-gene (cjg) and TF-TG (vgt) weights in this decomposition are
assumed known and are specified by existing omics data (Methods). In addition to TF-TG networks, RSS-NET also requires d GWAS summary statistics
and e ancestry-matching LD estimates as input. f Bayesian hierarchical model underlying RSS-NET. An in-depth description is provided in Methods. g Given
a network, RSS-NET produces a Bayes factor comparing the baseline (M0) and enrichment (M1) models to summarize the evidence for network
enrichment. h RSS-NET prioritizes loci within an enriched network by computing P1, the posterior probability that at least one SNP j in a locus is trait-
associated (βj≠ 0). Differences between P1 under M0 and M1 reflect the influence of a regulatory network on genetic associations, highlighting previously
undescribed trait-associated genes.
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obtained similar results from simulations based on genotypes30 of
1 million common SNPs31 (Supplementary Fig. 9) or a different
network (Supplementary Figs. 2 and 8).

We started with simulations where RSS-NET modeling
assumptions were satisfied. We considered two genetic architec-
tures: a sparse scenario with most SNPs being null and a
polygenic scenario with most SNPs being trait-associated. For
each architecture, we created negative datasets by simulating SNP
effects (β) from M0 and positive datasets by simulating β from
threeM1 patterns (only θ > 0; only σ2 > 0; both θ > 0 and σ2 > 0) of
the target network, and applied the methods to detect M1 from all
datasets (Fig. 2; Supplementary Figs. 1, 2). Existing methods tend
to perform well in select settings. For example, Pascal and LDSC
perform poorly when genetic signals are very sparse (Fig. 2b);
RSS-E performs poorly when enrichment patterns are incon-
sistent with its modeling assumptions (Fig. 2c). Except for
datasets with weak genetic signals on the network (Fig. 2d), RSS-
NET performs consistently well in all scenarios. This is expected
because the flexible model underlying RSS-NET can capture
various genetic architectures and enrichment patterns. In
practice, one rarely knows beforehand the correct architecture,
which makes the flexibility of RSS-NET appealing.

Genetic associations of complex traits are enriched in
regulatory regions5,6. Since a regulatory network is a set of genes
linked by REs, it is important to confirm that network
enrichments identified by RSS-NET are not driven by general

regulatory enrichments. To this end, we simulated negative
datasets with enriched associations in random SNPs that are near
genes (Fig. 3a; Supplementary Fig. 3) or REs (Fig. 3b; Supple-
mentary Fig. 4). The results show that RSS-NET is unlikely to
yield false discoveries due to arbitrary enrichments in regulatory
regions, and it is yet more powerful than other methods.

Minor allele frequency (MAF)- and LD-dependent genetic
architectures are identified in complex traits27. To assess the
impact of MAF- and LD-dependence on RSS-NET results, we
simulated MAF- and LD-dependent SNP effects (β) from an
additive model of 10 MAF bins and 6 LD-related annotations27,
which were then used to create negative datasets (Fig. 3c;
Supplementary Fig. 5). Similarly, enrichments identified by RSS-
NET are unlikely to be false positives induced by MAF- and LD-
dependence.

Interconnections within regulatory programs play key roles in
driving context specificity19 and propagating disease risk22, but
existing methods often ignore the edge information. In contrast,
RSS-NET leverages the full topology of a given network. The
topology-aware feature increases the potential of RSS-NET to
identify the most relevant network for a trait among candidates
that share many nodes but differ in edges. To illustrate this
feature, we designed a scenario where a real target network and
random candidates had the same nodes and edge counts, but
different edges. We simulated positive and negative datasets
where genetic associations were enriched in the target network
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Fig. 2 Flexibility of RSS-NET to identify network-level enrichments from GWAS summary statistics. We used a B cell-specific regulatory network and
real genotypes of 348,965 genome-wide SNPs to simulate negative and positive individual-level data under two genetic architectures (“sparse” and
“polygenic”). We simulated SNP effects (β) for negative datasets from the baseline model (M0: θ= 0 and σ2= 0). We simulated β for positive datasets
from the enrichment model (M1: θ > 0 or σ2 > 0) for the target network under three scenarios: a θ > 0, σ2= 0; b θ= 0, σ2 > 0; c θ > 0, σ2 > 0. Using the
simulated individual-level data we computed single-SNP association statistics, on which we compared RSS-NET with RSS-E16, LDSC-baseline13, LDSC-
baselineLD27, and Pascal26 using their default setups (Methods). Pascal includes two gene (“max”: maximum-of-χ2; “sum”: sum-of-χ2) and two pathway
(“chi”: χ2 approximation; “emp”: empirical sampling) scoring options. For each dataset, Pascal and LDSC methods produced P-values, whereas RSS-E and
RSS-NET produced BFs; these statistics were used to rank the significance of enrichments. A false and true positive occurs if a method identifies
enrichment of the target network in a negative and positive dataset respectively. Each panel displays the trade-off between false and true positives via
receiver operating characteristics (ROC) curves for all methods in 200 negative and 200 positive datasets of a simulation scenario, and also reports the
corresponding areas under ROC curves (AUROCs, higher value indicating better performance). Dashed diagonal lines denote random ROC curves
(AUROC = 0.5). d RSS-NET, as well as other methods, does not perform well when the target network harbors weak genetic associations. Simulation
details and additional results are provided in Supplementary Figs. 1, 2.
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and random candidates respectively, and then tested enrichment
of the target network on all datasets. As expected, only RSS-NET
can reliably distinguish true enrichments of the target network
from enrichments of its edge-altered counterparts (Fig. 3d;
Supplementary Fig. 6).

To benchmark its prioritization component, we compared
RSS-NET with gene-based association modules in RSS-E16 and
Pascal26 (Fig. 4; Supplementary Figs. 7–9). Consistent with
previous work16, RSS methods outperform Pascal methods even
without network enrichment (Fig. 4a). This is because RSS-NET
and RSS-E exploit a multiple regression framework25 to learn the
genetic architecture from data of all genes and assess their effects
jointly, whereas Pascal only uses data of a single gene to estimate
its effect. Similar to enrichment simulations (Fig. 2), RSS-NET
outperforms RSS-E in prioritizing genes across different archi-
tectures (Fig. 4b–d). This again highlights the flexibility of RSS-
NET.

Finally, since RSS-NET uses network as is and most networks
to date are algorithmically inferred, we performed simulations to
assess the robustness of RSS-NET under noisy networks.
Specifically, we simulated datasets from a real target network,
created noisy networks by randomly removing edges from this
real target, and then fed the noisy networks (rather than the real
one) to RSS-NET. By exploiting retained true nodes and edges,
RSS-NET produces reliable results in identifying both network
enrichments and genetic associations, and unsurprisingly, its
performance drops as the noise level increases (Supplementary
Fig. 10).

In conclusion, RSS-NET is adaptive to various genetic
architectures and enrichment patterns, it is robust to a wide
range of model mis-specification, and it outperforms existing
related methods. To further investigate its real-world utility, we
applied RSS-NET to analyze 18 complex traits and 38 regulatory
networks.

Enrichment analyses of 38 networks across 18 traits. We first
inferred20 whole-genome regulatory networks for 38 human cell
types and tissues (Methods; Supplementary Data 1) from public
data29 of paired expression and chromatin accessibility (PECA).
On average each network has 431 TFs, 3,298 TGs, and 93,764
weighted TF-TG edges. Clustering showed that networks reca-
pitulated context similarity, with immune cells and brain regions
grouping together as two units (Fig. 5a; Supplementary Fig. 11).

As a validation, we assessed the pairwise similarity between the
38 PECA-based networks and 394 human cell type- and tissue-
specific regulatory networks18 reconstructed from independent
cap analysis of gene expression (CAGE) data7,8. Reassuringly,
PECA- and CAGE-based networks often reached maximum
overlap when they were derived from biosamples of matched cell
types or tissues (Fig. 5b; Supplementary Fig. 12), showing that the
context specificity of regulatory networks is replicable.

On the 38 networks, we applied RSS-NET to analyze 1.1
million common SNPs31 for 18 traits, using GWAS summary
statistics from 20,883 to 253,288 European-ancestry individuals
(Supplementary Table 1) and LD estimates16 from the European
panel of 1000 Genomes Project30. For each trait-network pair we
computed a BF assessing network enrichment. Full results of 684
trait-network pairs are available online (Data availability).

To check whether observed enrichments could be driven by
general regulatory enrichments, we created a “near-gene” control
network with 18,334 protein-coding autosomal genes as nodes
and no edges, and analyzed this control with RSS-NET on the
same GWAS data. For most traits, the near-gene control has
substantially weaker enrichment than the actual networks. In
particular, 512 out of 684 trait-network pairs (one-sided binomial
P= 2.2 × 10−40) showed stronger enrichments than their near-
gene counterparts (average log10 BF increase: 13.94; one-sided
t P= 5.1 × 10−15), and, 16 out of 18 traits had multiple networks
more enriched than the near-gene control (minimum: 5;
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Fig. 3 Robustness of RSS-NET to model mis-specification in enrichment analyses. Here positive datasets were generated from M1 with θ > 0 and σ2 > 0
(Fig. 2c). Negative datasets were simulated from four scenarios where genetic associations were enriched in: a a random set of near-gene SNPs; b a
random set of near-RE SNPs; c SNPs with MAF- and LD-dependent effects; d a random edge-altered network. By this design, RSS-NET was mis-specified in
all four scenarios. Similar to positive datasets, the simulated false enrichments in all negative datasets manifested in both association proportion (more
frequent) and magnitude (larger effect). RSS-E was excluded here because of its poor performance shown in Fig. 2c. The rest is the same as Fig. 2.
Simulation details and additional results are provided in Supplementary Figs. 3–6.
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one-sided Wilcoxon P= 1.2 × 10−4). In contrast, LDSC and
Pascal methods identified fewer trait-network pairs passing the
near-gene enrichment control (LDSC maximum: 389, one-sided
χ2 P= 1.7 × 10−12; Pascal maximum: 69, P= 2.0 × 10−129;
Supplementary Table 2). Consistent with simulations (Fig. 3a,
b), these results indicate that network enrichments identified by
RSS-NET are unlikely driven by arbitrary enrichments harbored
in the vicinity of genes.

Among 512 trait-network pairs passing the near-gene enrich-
ment control, we further examined whether the observed
enrichments could be confounded by network properties or
genomic annotations. We did not observe any correlation
between BFs and three network features (proportion of SNPs in
a network: Pearson R=−3.0 × 10−2, two-sided P= 0.49; node
counts: R=−5.4 × 10−2, P= 0.23; edge counts: R=−9.2 × 10−3,
P= 0.84). To check confounding effects of genomic annotations,
we computed the correlation between BFs and proportions of
SNPs falling into both a network and each of 73 functional
categories27, and we did not find any significant correlation
(−0.13 < R <−0.01, P > 0.05/73). Similar patterns hold for all 684
trait-network pairs (Supplementary Table 3 and Data 2).
Together, the results suggest that observed enrichments are
unlikely driven by generic network or genome features.

For each trait-network pair, we also computed BFs comparing
the baseline (M0) against three disjoint models where enrichment
(M1) was contributed by (1) network genes and REs only (M11: θ
> 0, σ2= 0); (2) TF-TG edges only (M12: θ= 0, σ2 > 0); (3)
network genes, REs and TF-TG edges (M13: θ > 0, σ2 > 0). We

found that M13 was the most supported model by data (with the
largest BF) for 411 out of 512 trait-network pairs (one-sided
binomial P= 1.2 × 10−45), highlighting the key role of TF-TG
edges in driving enrichments. To further confirm this finding, we
repeated RSS-NET analyses by fixing all TF-TG edge weights as
zero (vtg= 0) and we observed substantially weaker enrichments
(average log10 BF decrease: 30.46; one-sided t P= 8.6 × 10−35;
Supplementary Fig. 13). Altogether the results corroborate the
“omnigenic model” that genetic signals of complex traits are
distributed across the genome via regulatory interconnections22.

Enrichment patterns varied considerably among traits (Fig. 5c;
Supplementary Table 4). For type 2 diabetes (T2D), two of five
networks passing the near-gene enrichment control showed the
strongest support for M11. Many networks showed the strongest
support forM12 in breast cancer (10), body mass index (BMI, 14),
waist-hip ratio (37), and schizophrenia (38). Since one rarely
knows the true enrichment patterns a priori, and M1 includes
{M11, M12, M13} as special cases, we used M1-based BFs
throughout this study. Collectively, these results highlight the
heterogeneity of network enrichments across traits, which can be
potentially learned from data by flexible approaches like RSS-
NET.

Top-ranked enrichments recapitulated many trait-context links
reported in previous GWAS. Genetic associations with BMI were
enriched in the networks of pancreas (BF= 2.07 × 1013), bowel
(BF= 8.02 × 1012), and adipose (BF= 4.73 × 1012), consistent
with the roles of obesity-related genes in insulin biology and
energy metabolism. Networks of immune cells showed
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Fig. 4 Power of RSS-NET to identify gene-level associations from GWAS summary statistics. We used a B cell-specific regulatory network and real
genotypes of 348,965 genome-wide SNPs to simulate individual-level GWAS data under four scenarios: a θ= 0, σ2= 0; b θ > 0, σ2= 0; c θ= 0, σ2 > 0;
d θ > 0, σ2 > 0. Using the simulated individual-level data we computed single-SNP association statistics, on which we compared RSS-NET with gene-
level association components of RSS-E16 and Pascal26. RSS-E is a special case of RSS-NET assuming σ2= 0, and RSS-E-baseline is a special case of RSS-
E assuming θ= 0. Pascal includes two gene scoring options: maximum-of-χ2 (“max”) and sum-of-χ2 (“sum”). Given a network, Pascal and RSS-E-
baseline do not leverage any network information, RSS-E ignores the edge information, and RSS-NET exploits the full topology. Each scenario contains
200 datasets and each dataset contains 16,954 autosomal protein-coding genes for testing. We defined a gene as "trait-associated'' if at least one SNP j
within 100 kb of the transcribed region of this gene had non-zero effect (βj ≠ 0). For each gene in each dataset, RSS methods produced posterior
probabilities that the gene was trait-associated (P1), whereas Pascal methods produced association P-values; these statistics were used to rank the
significance of gene-level associations. The first row of each panel displays ROC curves and AUROCs for all methods, with dashed diagonal lines
indicating random performance (AUROC= 0.5). The second row of each panel displays precision-recall (PRC) curves and areas under PRC curves
(AUPRCs) for all methods, with dashed horizontal lines indicating random performance. For both AUROC and AUPRC, higher value indicates better
performance. Simulation details and additional results are provided in Supplementary Figs. 7, 8.
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Fig. 5 RSS-NET analyses of 18 complex traits and 38 regulatory networks. a Clustering of 38 regulatory networks based on t-distributed stochastic
neighbour embedding. Details are provided in Supplementary Fig. 11. b Similarity between a given tissue-specific PECA-based network and 394 CAGE-
based networks for various cell types and tissues (a: adult samples; c: cell lines; f: fetal samples). The similarity between a PECA- and CAGE-based network
is summarized by Jaccard indices of their node sets (x-axis) and edge sets (y-axis). To simplify visualization, only labels of top four CAGE-based networks
with the highest edge similarity are shown for each PECA-based network. See Supplementary Fig. 12 for additional results. c Ternary diagram showing, for
each trait, percentages of the “best” enrichment model (with the largest BF) as M11: θ > 0, σ2= 0, M12: θ= 0, σ2 > 0 and M13: θ > 0, σ2 > 0 across networks.
See Supplementary Table 4 for numerical values. Shown are 16 traits having multiple networks more enriched than the near-gene control. d Comparison of
context-matched PECA-based (y-axis) and CAGE-based (x-axis) network enrichments on the same GWAS. Dashed lines have slope 1 and intercept 0. See
Supplementary Fig. 14 for additional results. e Median proportion of genes with Pbma

1 higher than reference estimates (Pbase1 or Pnear1 ), among genes with
reference estimates higher than a given cutoff. Medians are evaluated among 16 traits in c. See Supplementary Table 5 for numerical values. Overlap of
RSS-NET prioritized genes (Pbma

1 � 0:9) with genes implicated in f knockout mouse phenotypes47 and g human Mendelian diseases49,50. An edge
indicates that a category of knockout mouse or Mendelian genes is significantly enriched for genes prioritized for a GWAS trait (FDR≤ 0.1). Thicker edges
correspond to stronger enrichments. To simplify visualization, only top-ranked categories are shown for each trait (f 3; g 2). See Supplementary Data 4, 5
for full results. Trait abbreviations are defined in Supplementary Table 1.
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enrichments for rheumatoid arthritis (RA, BF= 2.95 × 1060),
inflammatory bowel disease (IBD, BF= 5.07 × 1035) and Alzhei-
mer’s disease (BF= 8.31 × 1026). Networks of cardiac and other
muscle tissues showed enrichments for coronary artery disease
(CAD, BF= 9.78 × 1028), atrial fibrillation (AF, BF= 8.55 × 1014),
and heart rate (BF= 2.43 × 107). Other examples are brain
network with neuroticism (BF= 2.12 × 1019), and, liver network
with high- and low-density lipoprotein (HDL, BF= 2.81 × 1021;
LDL, BF= 7.66 × 1027).

Some top-ranked enrichments were not identified in the
original GWAS, but they are biologically relevant. For example,
natural killer (NK) cell network showed the strongest enrichment
among 38 networks for BMI (BF= 3.95 × 1013), LDL (BF=
5.18 × 1030), and T2D (BF= 1.49 × 1077). This result supports a
recent mouse study32 revealing the role of NK cell in obesity-
induced inflammation and insulin resistance, and adds to the
considerable evidence unifying metabolism and immunity in
many pathological states33. Other examples include adipose
network with CAD34 (BF= 1.67 × 1029), liver network with
Alzheimer’s disease16,35 (BF= 1.09 × 1020) and monocyte net-
work with AF36,37 (BF= 4.84 × 1012).

Some networks show enrichments in multiple traits. To assess
network co-enrichments among traits, we tested correlations for
all trait pairs using their BFs of 38 networks (Supplementary
Data 3). In total 29 of 153 trait pairs had significant correlations
(two-sided Pearson P < 0.05/153). Reassuringly, subtypes of the
same disease showed strongly correlated enrichments, as in IBD
(R= 0.96, P= 1.3 × 10−20) and CAD subtypes (R= 0.90, P=
3.3 × 10−14). The results also recapitulated known genetic
correlations including RA with IBD (R= 0.79, P= 5.3 × 10−9)
and neuroticism with schizophrenia (R= 0.73, P= 1.6 × 10−7).
Network enrichments of CAD were correlated with network
enrichments of known CAD risk factors such as heart rate (R=
0.75, P= 5.1 × 10−8), BMI (R= 0.71, P= 5.1 × 10−7), AF (R=
0.65, P= 9.2 × 10−6) and height (R= 0.64, P= 1.6 × 10−5).
Network enrichments of Alzheimer’s disease were strongly
correlated with network enrichments of LDL (R= 0.90, P=
2.6 × 10−14) and IBD (R= 0.78, P= 8.3 × 10−9), consistent with
roles of lipid metabolism and inflammation in Alzheimer’s
disease35. Genetic correlations among traits are not predictive of
correlations based on network enrichments (Pearson R= 0.12,
two-sided P= 0.18), suggesting the additional explanatory power
from regulatory networks to reveal trait similarities in GWAS.

To show that RSS-NET can be applied more generally, we
analyzed the CAGE-based networks18 of 20 cell types and tissues
that were present in 38 PECA-based networks (Fig. 5d;
Supplementary Fig. 14). PECA-based networks often produced
larger BFs than their CAGE-based counterparts on the same
GWAS data (average log10 BF increase: 17.36; one-sided t P=
1.4 × 10−11), suggesting that PECA-based networks are more
enriched in genetic signals. Reassuringly, PECA- and CAGE-
based networks consistently highlighted known trait-context links
(e.g., immune cells and autoimmune diseases, muscle tissues and
heart diseases). For some traits PECA-based networks produced
more informative results. For example, CAGE-based analysis of
HDL showed a broad enrichment pattern across cell types and
tissues (which is consistent with previous connectivity analysis18

of the same data), whereas PECA-based analysis identified liver as
the top-enriched context by a wide margin. Although not our
main focus, these results highlight the potential for RSS-NET to
systematically evaluate different network inferences in GWAS.

Enrichment-informed prioritization of network genes. A key
feature of RSS-NET is that inferred network enrichments auto-
matically contribute to prioritization of network genes (Method).

Specifically, for each locus RSS-NET produces Pbase
1 , Pnear

1 and
Pnet
1 , the posterior probabilities that at least one SNP in the locus

is associated with the trait, assuming M0, M1 for the near-gene
control network and M1 for a given network, respectively. When
multiple networks are enriched, RSS-NET produces Pbma

1 by
averaging Pnet

1 over all networks passing the near-gene control,
weighted by their BFs. This allows us to assess genetic associa-
tions in light of enrichment without having to select a single
enriched network. Differences between enrichment estimates
(Pnet

1 or Pbma
1 ) and reference estimates (Pbase

1 or Pnear
1 ) reflect the

impact of network on a locus.
RSS-NET enhances genetic association detection by leveraging

inferred enrichments. To quantify this improvement, for each
trait we calculated the proportion of genes with higher Pbma

1 than
reference estimates (Pbase

1 or Pnear
1 ), among genes with reference

P1 passing a given cutoff (Fig. 5e). When using Pbase
1 as reference,

we observed high proportions of genes with Pbma
1 >Pbase

1

(median: 82–98%) across a wide range of Pbase
1 -cutoffs (0−0.9),

and as expected, the improvement decreased as the reference
cutoff increased. When using Pnear

1 as reference, we observed less
genes with improved Pbma

1 than using Pbase
1 (one-sided Wilcoxon

P= 9.8 × 10−4), suggesting the observed improvement might be
partially due to general near-gene enrichments, but proportions
of genes with Pbma

1 >Pnear
1 remained high (median: 74–94%)

nonetheless. Similar patterns occurred when we repeated the
analysis with Pnet

1 across 512 trait-network pairs (Supplementary
Table 5). Together the results demonstrate the strong influence
of network enrichments on nominating additional trait-
associated genes.

RSS-NET tends to promote more genes in networks with
stronger enrichments. For each trait, the proportion of genes with
Pnet
1 >Pnear

1 in a network is often positively correlated with the
network enrichment BF (R: 0.28−0.91; Supplementary Table 6).
When a gene belongs to multiple networks, the highest Pnet

1 often
occurs in the top-enriched networks (Fig. 6). We illustrate this
coherent pattern with MT1G, a liver-active9 gene prioritized for
HDL by RSS-NET and also implicated in a recent multi-ancestry
genome-wide interaction analysis of HDL38. Although MT1G
belongs to regulatory networks of 18 contexts, only the
top enrichment in liver informs a strong association between
MT1G and HDL (Pnet

1 ¼ 0:98), and remaining networks with
weaker enrichments yield minimal improvement (Pbase

1 ¼ 0:10,
Pnet
1 : 0:14�0:19).
RSS-NET recapitulates many genes implicated in the same

GWAS. For each analyzed dataset we downloaded the GWAS-
implicated genes from the GWAS Catalog1 and computed the
proportion of these genes with high Pbma

1 . With a stringent cutoff
Pbma
1 ≥ 0:9, we observed a significant overlap (median across

traits: 69%; median two-sided Fisher exact P= 1.2 × 10−26;
Supplementary Table 7). Reassuringly, many recapitulated genes
are well-established for the traits (Supplementary Table 8), such
as CACNA1C for schizophrenia, TCF7L2 for T2D, APOB for
lipids, and STAT4 for autoimmune diseases.

RSS-NET also uncovers putative associations that were not
reported in the same GWAS. To demonstrate that many of these
previously undescribed associations are potentially real, we
exploited 15 analyzed traits that each had a updated GWAS with
larger sample size. In each case, we obtained newly implicated
genes from the GWAS Catalog1 and computed the proportion of
these genes that were identified by RSS-NET (Pbma

1 ≥ 0:9). The
overlap proportions remained significant (median: 12%; median
two-sided Fisher exact P= 1.9 × 10−5; Supplementary Table 7),
showing the potential of RSS-NET to identify trait-associated
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Fig. 6 RSS-NET gene prioritization results of select trait-network pairs. Shown are four trait-network pairs: a body mass index and pancreas;
b rheumatoid arthritis and B cell; c high-density lipoprotein cholesterol and liver; d neuroticism and putamen. In the first column of each panel, each point
represents a member gene of a given network (blue circle: TF; orange triangle: TG). Dashed lines have slope 1 and intercept 0. In the second and third
columns, each point represents a cell type- or tissue-specific network to which a select gene belongs. Numerical values of P1 and BF are available online
(Data availability) and are provided as a Source Data file.
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genes that can be validated by later GWAS with additional
samples. Among these validated genes, many are strongly
supported by multiple lines of external evidence (Table 1). A
particular example is NR0B2, a liver-active9 gene prioritized for
HDL by RSS-NET (Pbase

1 ¼ 0:84, Pnet
1 ¼ 0:98) but not identified

by standard GWAS39 of the same data (minimum single-SNP
association P= 1.4 × 10−7 within 100 kb, n= 99, 900). NR0B2
was associated with mouse lipid traits40–42 and human obesity43,
and identified in a later GWAS of HDL44 with doubled sample
size (P= 9.7 × 10−16, n= 187, 056).

Biological and clinical relevance of prioritized genes. Besides
looking up overlaps with GWAS publications, we cross-
referenced RSS-NET prioritized genes (Pbma

1 ≥ 0:9) with multi-
ple orthogonal databases to systematically assess their biological
and therapeutic themes.

Mouse phenomics provides important resources to study
genetics of human traits45. Here we evaluated overlap between
RSS-NET prioritized genes and genes implicated in 27 categories
of knockout mouse phenotypes46. Network-informed genes
(Pbma

1 ≥ 0:9) were significantly enriched in 128 mouse-human
trait pairs (FDR ≤ 0.1; Supplementary Data 4). Fewer significant
pairs were identified without network information (119 for
Pnear
1 ≥ 0:9; 80 for Pbase

1 ≥ 0:9). For many human traits, top

enrichments of network-prioritized genes occurred in closely
related mouse phenotypes (Fig. 5f). Genes prioritized for
schizophrenia were strongly enriched in nervous, neurological
and growth phenotypes (OR: 1.77–2.04). Genes prioritized for
autoimmune diseases were strongly enriched in immune and
hematopoietic phenotypes (OR: 2.05–2.35). The cardiovascular
system showed strong enrichments of genes prioritized for heart
conditions (OR: 2.45–2.92). The biliary system showed strong
enrichments of genes prioritized for lipids, BMI, CAD, and T2D
(OR: 2.16–10.78). The phenotypically matched cross-species
enrichments strengthen the biological relevance of RSS-NET
results.

Genes causing Mendelian diseases often contribute to complex
traits47. Here we quantified overlap between RSS-NET prioritized
genes and genes causing 19 categories48 of Mendelian disorders49.
Leveraging regulatory networks (Pbma

1 ≥ 0:9), we observed 47 sig-
nificantly enriched Mendelian-complex trait pairs (FDR ≤ 0.1; 44
for Pnear

1 ≥ 0:9; 31 for Pbase
1 ≥ 0:9; Supplementary Data 5), among

which the top-ranked ones were often phenotypically matched
(Fig. 5g). Genes prioritized for schizophrenia were strongly
enriched in Mendelian development and psychiatric disorders
(OR: 2.22–2.23). Genes prioritized for AF and heart rate were
strongly enriched in arrhythmia (OR: 7.16–8.28). Genes prior-
itized for autoimmune diseases were strongly enriched in

Table 1 Examples of RSS-NET highlighted genes that were not reported in GWAS of the same data but were implicated in later
GWAS with increased sample sizes (genome-wide significance threshold: single-SNP association P < 5 × 10−8).

Trait Gene (Role) Pbase
1 Pnear

1 Pbma
1 Pnet

1 (Network, BF) Mouse trait Therapeutic and clinical evidence

BMI PAX2 (TF) 0.78 0.80 0.94 0.94 (Pancreas, 2.07 × 1013) Eye, Renal Ocular and renal anomalies
FLT3 (TG) 0.61 0.70 0.85 0.85 (Cerebellum, 8.70 × 1011) Growth, Immune Acute myeloid leukemia

WAIST LAMB1 (TG) 0.97 0.97 0.98 0.98 (Esophagus, 6.78 × 10239) Neuron, NS Lissencephaly-5
BC KCTD1 (TG) 0.89 0.93 0.98 0.98 (Heart, 8.08 × 107) CS Scalp-ear-nipple syndrome

CASP8 (TG) 0.71 0.72 0.94 0.94 (Aorta, 8.27 × 108) Growth, Immune Hepatoma, Glionitrin A*

RA AIRE (TF) 0.54 0.61 0.84 0.84 (B cell, 3.31 × 1057) Immune APS1
IBD LPP (TG) 0.98 0.94 0.99 0.99 (Monocyte, 6.28 × 1031) Cellular Acute myeloid leukemia

FOXP1 (TF) 0.84 0.78 0.95 0.95 (NK cell, 5.07 × 1035) Immune, Neuron Language impairment
CCND3 (TG) 0.81 0.89 0.95 0.95 (NK cell, 5.07 × 1035) Immune

HDL ALOX5 (TG) 0.97 0.97 0.99 0.99 (Monocyte, 4.75 × 1015) Immune, Metab. Atherosclerosis
GPAM (TG) 0.92 0.95 0.98 0.98 (Liver, 2.81 × 1021) Liver, Metab.
NR0B2 (TG) 0.84 0.93 0.98 0.98 (Liver, 2.81 × 1021) Growth, Metab. Early-onset obesity

LDL CERS2 (TG) 0.99 0.99 1.00 1.00 (NK cell, 5.18 × 1030) Liver, Metab.
ABCA1 (TG) 0.98 0.98 0.99 0.99 (Liver, 7.66 × 1027) Liver, Metab. Tangier disease, Probucol*

ABCB11 (TG) 0.68 0.72 0.88 0.88 (Liver, 7.66 × 1027) Liver, Metab. Cholestasis
DLG4 (TG) 0.69 0.59 0.85 0.85 (NK cell, 5.18 × 1030) Metab., NS Tat-NR2B9c*

SOX17 (TF) 0.52 0.65 0.82 0.84 (CD8, 5.86 × 1028) Liver, Metab. Vesicoureteral reflux-3
CAD TGFB1 (TG) 0.92 0.99 0.99 0.99 (Adipose, 1.67 × 1029) CS, Growth Camurati-Engelmann disease

FN1 (TG) 0.58 0.79 0.91 0.92 (GEJ, 9.78 × 1028) CS, Metab. GFND2, SMDCF
CDH13 (TG) 0.31 0.55 0.77 0.82 (Heart, 1.93 × 1028) CS, Metab.
EDNRA (TG) 0.57 0.79 0.80 0.82 (Aorta, 1.09 × 1027) CS, Muscle Ambrisentan*, Macitentan*

AF SCN5A (TG) 0.87 0.92 1.00 1.00 (Heart, 6.89 × 1012) CS, Muscle Brugada syndrome-1, ATFB10
ENPEP (TG) 0.50 0.76 0.92 0.94 (Uterus, 2.71 × 1011) QGC-001*

ATXN1 (TG) 0.45 0.62 0.90 0.90 (Colon, 7.54 × 1014) Muscle, NS Spinocerebellar ataxia-1
MYOT (TG) 0.55 0.66 0.86 0.87 (Muscle, 8.55 × 1014) Myofibrillar myopathy

SCZ FOXP1 (TF) 1.00 1.00 1.00 1.00 (Colon, 1.20 × 10144) Growth, Neuron Language impairment
BCL11A (TG) 1.00 1.00 1.00 1.00 (Spleen, 1.44 × 10141) Immune, NS Dias-Logan syndrome
SLC25A12 (TG) 0.79 0.81 0.88 0.88 (Muscle, 4.99 × 10127) Neuron, NS DEE39

NEU TCF4 (TF) 0.72 0.88 0.95 0.95 (CD8, 3.66 × 1020) Immune, NS Pitt-Hopkins syndrome
RAPSN (TG) 0.77 0.88 0.93 0.93 (Muscle, 8.20 × 1017) Muscle, NS Congenital myasthenic syndrome-11
MEF2C (TF) 0.15 0.40 0.83 0.83 (Ileum, 8.56 × 1022) Growth, Neuron Mental retardation-20
SNCA (TG) 0.15 0.32 0.78 0.79 (Putamen, 2.12 × 1019) Neuron, NS Parkinsonism, BIIB054*

PAX6 (TF) 0.10 0.22 0.62 0.64 (Putamen, 2.12 × 1019) NS, Vision Optic nerve hypoplasia
PCLO (TG) 0.06 0.17 0.63 0.63 (Ileum, 8.56 × 1022) Growth, NS Pontocerebellar hypoplasia-3

The “mouse trait” column is based on the Mouse Genome Informatics47. The “therapeutic/clinical evidence” column is based on the Online Mendelian Inheritance in Man50 and Therapeutic Target
Database53. Drugs are identified with an asterisk ("*”). Trait abbreviations are defined in Supplementary Table 1. GEJ: gastroesophageal junction. CS: cardiovascular system. DS: digestive/alimentary
system. Metab.: metabolism. NS: nervous system. APS1: autoimmune polyendocrinopathy syndrome-1. GFND2: glomerulopathy with fibronectin deposits-2. SMDCF: corner fracture type of
spondylometaphyseal dysplasia. ATFB10: familial atrial fibrillation-10. DEE39: developmental and epileptic encephalopathy-39.
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monogenic immune dysregulation (OR: 3.11–4.32). Monogenic
cardiovascular diseases showed strong enrichments of genes
prioritized for lipids and heart conditions (OR: 2.69–3.70). We
also identified pairs where Mendelian and complex traits seemed
unrelated but were indeed linked. Examples include Alzheimer’s
disease with immune dysregulation35 (OR= 7.32) and breast
cancer with insulin disorders50 (OR= 9.71). The results corro-
borate the continuum between Mendelian and complex traits.

Human genetics has proven valuable in therapeutic
development51. To evaluate their potential in drug discovery,
we examined whether RSS-NET prioritized genes are pharmaco-
logically active and clinically relevant52. We identified genes with
drug indications matching GWAS traits. One identical match is
EDNRA, a gene that is prioritized for CAD (Pbase

1 ¼ 0:57, Pnet
1 ¼

0:82 in aorta) and also a successful target of approved drugs for
cardiovascular diseases (Table 1). We identified genes with drug
indications closely related to GWAS traits. For example, TTR is
prioritized for Alzheimer (Pbase

1 ¼ 0:64, Pbma
1 ¼ 0:94) and also a

successful target of approved drugs for amyloidosis (Table 2). For
early-stage development, overlaps between drug indications and
GWAS traits may provide additional genetic confidence. For
example, HCAR3 is prioritized for HDL (Pbase

1 ¼ 0:85,
Pbma
1 ¼ 0:92) and also a clinical trial target for lipid metabolism

disorders (Table 2). Other examples include CASP8 with cancer,
NFKB2 with IBD, and DLG4 with stroke (Tables 1, 2). For some
genes we found mismatches between drug indications and GWAS
traits, which could suggest drug repurposing opportunities53. For
example, CSF3 is prioritized for AF (Pbase

1 ¼ 0:56, Pbma
1 ¼ 0:88)

and also a successful target of an approved drug for aplastic
anemia (AA). Since CSF3 is associated with various blood cell
traits in mouse54 and human55, and inflammation plays a role in
both AA and AF etiology36,37,56, it is tempting to assess effects of
the approved AA drug on AF. Mechanistic evaluations are
required to understand the prioritized therapeutic genes, but they
could form a useful basis for future studies.

Discussion
We present RSS-NET, a topology-aware method for integrative
analysis of regulatory networks and GWAS summary data. We
demonstrate the improvement of RSS-NET over existing methods
through extensive simulations, and illustrate its potential to yield
biological and therapeutic insights via analyses of 38 networks
and 18 traits. With multi-omics integration becoming a routine in
GWAS, we expect that researchers will find RSS-NET useful.

Compared with existing integrative approaches, RSS-NET has
several key strengths. First, unlike many methods that require loci
passing a significance threshold11,12,17, RSS-NET uses data from
genome-wide common variants. This potentially allows RSS-NET
to identify subtle enrichments even in studies with few significant
hits. Second, RSS-NET models enrichments directly as increased
rates (θ) and sizes (σ2) of SNP-level associations, and thus
bypasses the issue of converting SNP-level summary data to gene-
level statistics17,18,26. Third, RSS-NET inherits from RSS-E16 an
important feature that inferred enrichments automatically high-
light which network genes are most likely to be trait-associated.
This prioritization component, though useful, is missing in cur-
rent polygenic analyses13,15,24,27. Fourth, by making flexible
modeling assumptions, RSS-NET is adaptive to unknown genetic
architectures.

RSS-NET allows us to study complex trait genetics through the
lens of regulatory topology. Complementing previous con-
nectivity analyses17–19,24, RSS-NET highlights a consistent pat-
tern that genetic signals of complex traits often distribute across
genome via regulatory topology. RSS-NET further leverages
topology enrichments to enhance trait-associated gene discovery.

The topology awareness of RSS-NET in both enrichment and
prioritization analyses is enabled by a model that decomposes the
effect of a single SNP into effects of multiple (cis or trans) genes
through a regulatory network.

RSS-NET depends critically on the quality of input networks.
The more accurate networks are, the better performance RSS-
NET achieves. Currently, our understanding of regulatory net-
works remains incomplete, and most of the available networks are
algorithmically inferred17–20. Artifacts in inferred networks can
bias RSS-NET results; however, our simulations confirm the
robustness of RSS-NET when input networks are not severely
deviated from ground truth. The modular design of RSS-NET
enables systematic assessment of various networks in the same
GWAS and provides interpretable performance metrics, as illu-
strated in our comparison of PECA- and CAGE-based networks.
As more accurate networks become available in diverse cellular
contexts, the performance of RSS-NET will be markedly
enhanced.

Like any method, RSS-NET has several limitations in its cur-
rent form. First, despite its prioritization feature, RSS-NET does
not attempt to pinpoint associations to causal SNPs within
prioritized loci. For this task, we recommend off-the-shelf fine-
mapping methods57. Second, the computation time of RSS-NET
increases as the total number of analyzed SNPs increases, and
thus our simulations and analyses focused on 0.35–1.19 million
genome-wide common SNPs28,31. Relaxing the complexity will
allow RSS-NET to analyze more SNPs jointly. Third, RSS-NET
uses a simple method to derive SNP-gene relevance (cjg) from
expression quantitative trait loci (eQTL). A more principled
approach would be applying the RSS likelihood25 to eQTL
summary data (as we did in GWAS) and using the estimated SNP
effects to specify cjg. However, our initial assessments indicated
that the model-based approach was limited by the small sample
sizes of current eQTL studies9,10. With eQTL studies reaching
large sample sizes58 comparable to current GWAS1, this approach
may improve cjg specification in RSS-NET. Fourth, RSS-NET
analyzes one network at a time. Since a complex disease typically
manifests in various sites, multiple cellular networks are likely to
mediate disease risk jointly. To extend RSS-NET to incorporate
multiple networks, an intuitive idea would be representing the
total effect of a SNP as an average of its effect in each network,
weighted by network relevance for a disease. Fifth, RSS-NET does
not include known SNP-level13,24,27 or gene-level14–16 annota-
tions. Although our mis-specification simulations and near-gene
control analyses confirm that RSS-NET is robust to generic
enrichments of known features, accounting for known annota-
tions can help interpret observed network enrichments24. Our
preliminary experiments showed that incorporating additional
networks or annotations in RSS-NET increased computation
costs. Hence, we view developing computationally efficient multi-
network, multi-annotation methods as an important area for
future work.

In summary, improved understanding of complex trait genetics
requires biologically informed models beyond the standard one
employed in GWAS. By modeling context-specific regulatory
topology, RSS-NET is a step forward in this direction.

Methods
Gene and SNP information. This study used genes and SNPs from the human
genome assembly GRCh37. This study used 18,334 protein-coding autosomal
genes (http://ftp.ensembl.org/pub/grch37/release-94/gtf/homo_sapiens, accessed
January 3, 2019). Simulations used 348,965 genome-wide SNPs28 (https://www.
wtccc.org.uk), and data analyses used 1,289,786 genome-wide HapMap331 SNPs
(https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2, accessed
November 27, 2018). As discussed later, these SNP sets were chosen to reduce
computation. This study excluded SNPs on sex chromosomes, SNPs with MAF less
than 1%, and SNPs in the human leukocyte antigen region.
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Gene regulatory networks. In this study a regulatory network is a directed
bipartite graph {VTF,VTG, ETF→TG}, where VTF and VTG denote the node sets of
TFs and TGs respectively, and ETF→TG denotes the set of TF-to-TG edges, sum-
marizing how TFs regulate TGs through REs (Fig. 1b; Supplementary Note 4). Each
edge has a weight between 0 and 1, measuring the relative regulation strength of a
TF on a TG.

We inferred 38 regulatory networks from context-matched sequencing data
of gene expression (e.g., RNA-seq) and chromatin accessibility (e.g., DNAse-seq
or ATAC-seq). We obtained these PECA data from ENCODE29 (https://www.
encodeproject.org, accessed December 14, 2018) and GTEx9 (https://gtexportal.
org, accessed July 13, 2019); see Supplementary Data 1. The network-
construction software and TF-motif information are available at https://github.
com/suwonglab/PECA. The 38 networks are available at https://github.com/
suwonglab/rss-net, with descriptive statistics provided in Supplementary
Tables 9–11.

We first constructed an “omnibus” network from PECA data of 201 biosamples
across 80 cell types and tissues, using a regression-based method20. In brief, by
modeling the distribution of TG expression levels conditional on RE accessibility
levels and TF expression levels, we estimated a regression coefficient for each TF-
TG pair. We selected a TF-TG pair as the network edge if this estimated coefficient
was significantly non-zero, and divided the estimate by the maximum of estimates
for all TF-TG pairs to set a (0, 1)-scale edge weight. We also estimated a regression
coefficient for each RE-TG pair, which reflected the regulating strengths of REs on
TGs and was later used to construct context-specific networks, i.e., {Iit} in Eq. (1).
Here we defined REs as open chromatin peaks called from accessibility sequencing
data by MACS259 (https://github.com/macs3-project/MACS, accessed July
12, 2018).

With the omnibus network in place, we then constructed context-specific
networks for 5 immune cell types, 5 brain regions and 27 non-brain tissues. For
each context (tissue or cell type), we computed a trans-regulation score (TRS)

Table 2 Examples of RSS-NET highlighted genes that have not reached genome-wide significance in the GWAS Catalog1 at the
time of analysis.

Trait Gene (Role) Pbase
1 Pnear

1 Pbma
1 Pnet

1 (Network, BF) Mouse trait Therapeutic and clinical evidence

BMI NEXN (TG) 0.71 0.79 0.89 0.90 (Muscle, 9.31 × 1012) CS, Muscle Cardiomyopathy
CDX2 (TF) 0.61 0.70 0.83 0.86 (NK cell, 3.95 × 1013) DS, Growth

WAIST BSCL2 (TG) 0.80 0.68 0.87 0.87 (Esophagus, 6.78 × 10239) Adipose, Growth Berardinelli-Seip syndrome
FOXP2 (TF) 0.56 0.59 0.73 0.73 (Esophagus, 6.78 × 10239) Growth, NS Speech-language disorder-1

BC ADSL (TG) 0.76 0.80 0.91 0.92 (Aorta, 8.27 × 108) CS, Eye Adenylosuccinase deficiency
SYNE1 (TG) 0.57 0.63 0.89 0.90 (Esophagus, 6.30 × 107) Growth, Muscle AMC3, EDMD4, SCAR8

RA TAL1 (TF) 0.71 0.79 0.91 0.93 (CD4, 3.02 × 1052) Immune, Tumor Acute lymphocytic leukemia
FHIT (TG) 0.30 0.60 0.90 0.91 (CD4, 3.02 × 1052) Immune, Tumor
FLT3 (TG) 0.33 0.57 0.73 0.73 (B cell, 3.31 × 1057) Immune, Tumor Acute myeloid leukemia

IBD FHIT (TG) 0.63 0.87 0.95 0.95 (CD4, 5.32 × 1033) Immune, Tumor
GATA3 (TF) 0.85 0.83 0.94 0.94 (NK cell, 5.07 × 1035) Immune, Renal Barakat syndrome
RORA (TF) 0.66 0.78 0.87 0.90 (B cell, 1.49 × 1032) Immune, NS Intellectual disability
NFKB2 (TF) 0.74 0.85 0.84 0.88 (B cell, 1.49 × 1032) Immune Immunodeficiency, DIMS-0150*

LRBA (TG) 0.42 0.58 0.72 0.72 (NK cell, 5.07 × 1035) Immune Immunodeficiency
DOCK2 (TG) 0.38 0.53 0.71 0.71 (NK cell, 5.07 × 1035) Immune Immunodeficiency

HDL MT1G (TG) 0.10 0.09 0.98 0.98 (Liver, 2.81 × 1021) CS, Metab.
RETSAT (TG) 0.79 0.80 0.95 0.95 (Liver, 2.81 × 1021) Adipose, Metab.
ESR1 (TF) 0.77 0.82 0.95 0.95 (Liver, 2.81 × 1021) CS, Metab. Myocardial infarction
HCAR3 (TG) 0.85 0.85 0.92 0.92 (Monocyte, 4.75 × 1015) Metab. ARI-3037MO*

TNNC1 (TG) 0.48 0.45 0.78 0.78 (Liver, 2.81 × 1021) CS, Muscle Cardiomyopathy, Levosimendan*

LDL RAF1 (TG) 0.79 0.83 0.90 0.90 (Aorta, 3.71 × 1027) CS, Immune Cardiomyopathy, Semapimod*

APOA1 (TG) 0.70 0.76 0.90 0.90 (Liver, 7.66 × 1027) CS, Metab. Amyloidosis, HDL deficiency
ACADVL (TG) 0.69 0.59 0.85 0.85 (NK cell, 5.18 × 1030) Liver, Metab. VLCAD deficiency

T2D ITGB6 (TG) 0.75 0.99 0.99 0.99 (Ileum, 4.52 × 1062) Immune, Metab. Amelogenesis imperfecta type IH
HR TKT (TG) 0.65 0.67 0.92 0.93 (Aorta, 2.43 × 107) CS, Growth SDDHD
CAD OSM (TG) 0.56 0.78 0.86 0.86 (Aorta, 1.09 × 1027) Immune, Metab. GSK2330811*

TRIB1 (TG) 0.43 0.68 0.85 0.85 (Adipose, 1.67 × 1029) Adipose, Metab.
TAB2 (TG) 0.19 0.43 0.61 0.61 (CD8, 1.13 × 1025) CS Congenital heart defects

AF TPMT (TG) 0.88 0.93 0.99 0.99 (Ileum, 4.43 × 1013) Metab. Poor metabolism of thiopurines-1
RUNX1 (TF) 0.44 0.60 0.88 0.89 (Heart, 2.15 × 1014) CS, Immune Acute myeloid leukemia, FPDMM
CSF3 (TG) 0.56 0.72 0.88 0.88 (Muscle, 8.55 × 1014) Blood, Immune Interleukin-3*

LOAD CASP2 (TG) 0.99 1.00 1.00 1.00 (CD8, 8.31 × 1026) Cellular, NS Caspase-2*

TTR (TG) 0.64 0.92 0.94 0.94 (Pancreas, 3.53 × 1020) Metab. Amyloidosis, Inotersen*, Patisiran*

SCZ RORA (TF) 1.00 1.00 1.00 1.00 (Cortex, 5.39 × 10128) Neuron, NS Intellectual disability
ERBB4 (TG) 1.00 1.00 1.00 1.00 (Putamen, 7.22 × 10116) Neuron, NS Amyotrophic lateral sclerosis-19
NFIB (TF) 0.97 0.97 0.98 0.98 (Cortex, 5.39 × 10128) NS MACID
GRIK2 (TG) 0.90 0.94 0.97 0.97 (Cerebellum, 3.15 × 10129) Neuron, NS Mental retardation
SYT1 (TG) 0.84 0.89 0.93 0.93 (Cerebellum, 3.15 × 10129) Neuron, NS Baker-Gordon syndrome
ESR1 (TF) 0.80 0.84 0.93 0.93 (Colon, 1.07 × 10141) Neuron, NS Migraine
NTRK2 (TG) 0.78 0.84 0.91 0.91 (Cerebellum, 3.15 × 10129) Neuron, NS DEE58
LRRK2 (TG) 0.73 0.78 0.86 0.86 (Monocyte, 5.85 × 10131) Neuron, NS Parkinsonism, DNL151*, DNL201*

C9orf72 (TG) 0.74 0.78 0.83 0.83 (Spleen, 1.44 × 10141) Neuron, NS FTDALS1
SNCA (TG) 0.60 0.66 0.74 0.74 (Cerebellum, 3.15 × 10129) Neuron, NS Parkinsonism, BIIB054*

NEU LMBRD1 (TG) 0.42 0.66 0.94 0.94 (Ileum, 8.56 × 1022) Metab. MAHCF
PRKCQ (TG) 0.36 0.56 0.90 0.91 (Spleen, 2.13 × 1019) Immune, NS
ATP1A2 (TG) 0.33 0.39 0.76 0.78 (Putamen, 2.12 × 1019) Neuron, NS AHC1, FHM2

AMC3: myogenic-type arthrogryposis multiplex congenita-3. EDMD4: Emery-Dreifuss muscular dystrophy-4. SCAR8: autosomal recessive spinocerebellar ataxia-8. VLCAD: very long-chain acyl-CoA
dehydrogenase. SDDHD: short stature, developmental delay, and congenital heart defects. FPDMM: familial platelet disorder with associated myeloid malignancy. MACID: acquired macrocephaly with
impaired intellectual development. FTDALS1: frontotemporal dementia and/or amyotrophic lateral sclerosis. MAHCF: methylmalonic aciduria and homocystinuria of the cblF type. AHC1: alternating
hemiplegia of childhood-1. FHM2: familial hemiplegic migraine-2. The remaining abbreviations are the same as in Table 1.
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between TF g and TG t:

TRSgt ¼ 2jRgt j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTFg � fTGt

q

�∑
i
ðfREi � Bgi � IitÞ; ð1Þ

where Rgt is the correlation of TF g and TG t expression levels across all contexts;
ffTFg ; fTGt ;fREig are normalized context-specific expression (TF g, TG t) and
accessibility (RE i) levels (~y ¼ y2=ymed, where y denotes the actual accessibility or
expression level in a given context, and ymed denotes median level across all
contexts); Bgi reflects the motif binding strength of TF g on RE i, defined as the sum
of motif position weight matrix-based log-odds probabilities of all binding sites on
RE i and calculated by HOMER60 (http://homer.ucsd.edu/homer/, accessed July 12,
2018); and Iit reflects the overall regulating strength of RE i on TG t, provided by
the omnibus network. TRS naturally ranks and selects context-specific TF-TG
edges because a larger value of TRSgt indicates a stronger regulating strength of TF
g on TG t in the given context. We set (0, 1)-scale TF-TG edge weights by
computing log2ð1þ TRSgtÞ=maxði;jÞflog2ð1þ TRSijÞg.

To validate PECA-based networks and illustrate RSS-NET as a generally
applicable tool, we also analyzed 394 cell type- and tissue-specific TF-TG circuits18

inferred from independent CAGE data7,8 (http://regulatorycircuits.org/, accessed
May 8, 2019). When evaluating the similarity between PECA- and CAGE-based
networks (Fig. 5b; Supplementary Fig. 12), we used their full node and edge sets to
compute Jaccard indices. When running RSS-NET on context-matched PECA- and
CAGE-based networks (Fig. 5d; Supplementary Fig. 14), we selected top-ranked
CAGE-based edges to match PECA-based edge counts (Supplementary Table 10)
and normalized CAGE-based edge weights (~x ¼ minf1; x1=6g, where x denotes
original weight) to match the scale of PECA-based edge weights (Supplementary
Table 11).

External databases for cross-reference. To validate and interpret RSS-NET
results, we used the following external databases (accessed November 28, 2019):
GWAS Catalog1 (https://www.ebi.ac.uk/gwas/), Mouse Genome Informatics46

(http://www.informatics.jax.org/), Mendelian gene sets48 (https://github.com/
bogdanlab/gene_sets/), Online Mendelian Inheritance in Man49 (https://www.
omim.org/), Therapeutic Target Database52 (http://db.idrblab.net/ttd/).

When quantifying overlaps between RSS-NET prioritized genes and mouse or
Mendelian genes, we used all genes for each GWAS trait. We repeated the overlap
analysis under the same significance cutoff (FDR ≤ 0.1) after excluding genes
implicated in the same or later GWAS (Supplementary Table 7). Since GWAS-
implicated genes overlap significantly with phenotypically-matched mouse and
Mendelian genes (median two-sided Fisher exact P= 7.1 × 10−7), we identified
fewer discoveries as expected (mouse-human pairs: 26, Mendelian-complex pairs:
4; Supplementary Data 4–5), but we obtained consistent effect sizes nonetheless
(mouse R= 0.78, two-sided P= 8.6 × 10−73; Mendelian R= 0.89, P= 9.0 × 10−74;
Supplementary Fig. 15).

Network-induced effect size distribution. We model the total effect of SNP j on a
given trait βj as

βj � πj �N ðμj; σ20Þ þ ð1� πjÞ � δ0; ð2Þ
where πj denotes the probability that SNP j is associated with the trait (βj ≠ 0),
N ðμj; σ20Þ denotes a normal distribution with mean μj and variance σ20 specifying
the effect size of a trait-associated SNP j, and δ0 denotes point mass at zero (βj= 0).

We model the trait-association probability πj as

log10
πj

1� πj

 !

¼ θ0 þ aj � θ; ð3Þ

where θ0 < 0 captures the genome-wide background proportion of trait-associated
SNPs, θ > 0 reflects the increase in probability, on the log10-odds scale, that a SNP
near network genes and REs is trait-associated, and aj reflects the proximity of SNP
j to a network. Following previous analyses15,16,24, we let aj= 1 if SNP j is within
100 kb of any member gene (TF, TG) or RE for a given network. Equation (3)
suggests that if a cell type or tissue plays an important role in a trait then genetic
associations may occur more often in SNPs involved in the corresponding network
genes and REs than expected by chance.

We model the mean effect size μj as

μj ¼ ∑
g2Oj

wjg � γjg ; ð4Þ

where Oj is the set of all nearby or distal genes contributing to the total effect of
SNP j, wjg measures the relevance between SNP j and gene g, and γjg denotes the
effect of SNP j on a trait due to gene g. Equation (4) provides a general
decomposition of total SNP effect into gene effects through {Oj,wjg}.

Here we use a TF-TG network to specify {Oj,wjg} in Eq. (4):

μj ¼ ∑
g2Gj

½cjg
|fflfflffl{zfflfflffl}

cis

�ðγjg þ ∑
t2Tg

vgt � γjt
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

trans

Þ�;
ð5Þ

where Gj is the set of all genes within 1 Mb window of SNP j (a standard window size

used in cis-eQTL studies9,10,58), cjg measures the relative impact of a SNP j on gene g,
Tg is the set of all genes directly regulated by TF g in a given network (Tg is empty if
gene g is not a TF), and vgt measures the relative impact of a TF g on its TG t. Since a
genome-wide analysis typically involves many SNPs and genes, we fix {Tg, vgt, cjg} to
ensure the identifiability of Eq. (5). We use inferred edges and weights of a context-
specific TF-TG network20,29 to specify Tg and vgt respectively. We use context-
matched cis-eQTL9,10,58 to specify cjg (Supplementary Note 5 and Tables 12, 13).
Equation (5) suggests that the total effect of a SNP may fan out through some
regulatory network of multiple (nearby or distal) genes to affect the trait22.

We model the random effect γjg of SNP j due to gene g as

γjg �i:i:d: N ð0; σ2Þ; ð6Þ
where the SNP-level subscript j in γjg ensures the exchangeability of βj in Eq. (2);
see Supplementary Note 6. Equation (6) uses a constant σ2 for computational
convenience. Equation (6) could be modified by letting σ2 depend on functional
annotations13,27 of SNP j and context-specific expression14–16 of gene g, though
possibly at higher computational cost.

Equations (2), (4), and (6) implies a variance decomposition for SNP effect:

VarðβjÞ ¼ πj � ðσ20 þ σ2 � ∑
g2Oj

w2
jg Þ: ð7Þ

We hypothesize that Eq. (7) may provide an alternative approach to heritability
analyses13,24,27 and we plan to investigate it elsewhere.

Bayesian hierarchical modeling. Consider a GWAS with n unrelated individuals
measured on p SNPs. In practice we do not know the true SNP-level effects β :¼
ðβ1; ¼ ; βpÞ0 in Eq. (2), but we can infer them from GWAS summary statistics and
LD estimates. Specifically, we perform Bayesian inference for β by combining the
network-based prior defined by Eqs. (2)–(6) with the RSS likelihood25:

bβ � N ðbSbRbS�1
β; bSbRbSÞ; ð8Þ

where bβ :¼ ðβ̂1; ¼ ; β̂pÞ
0
, bS :¼ diagðbsÞ is a p × p diagonal matrix with

bs :¼ ð̂s1; ¼ ; ŝpÞ0 , fβ̂j; ŝjg are estimated single-SNP effect size of each SNP j and its

standard error from the GWAS, and bR :¼ ½̂rij� is the p × p LD matrix estimated from
a reference panel with ancestry matching the GWAS.

RSS-NET, defined by Eqs. (2)–(6), and (8), consists of four unknown hyper-
parameters fθ0; θ; σ20; σ2g. To specify hyper-priors, we first introduce two free
parameters {η, ρ} to re-parameterize fσ20; σ2g:

σ20 ¼ η � ð1� ρÞ � ∑
p

j¼1

πj

n̂s2j

 !�1

; σ2 ¼ η � ρ � ∑
p

j¼1

πj �∑g2Oj
w2
jg

n̂s2j

 !�1

; ð9Þ

where, roughly, η represents the proportion of the total phenotypic variation
explained by p SNPs, and ρ represents the proportion of total genetic variation
explained by network annotations {Oj,wjg}. Because n̂s

2
j approximates the ratio of

phenotype variance to genotype variance, Eq. (9) ensures that SNP effects (β) do
not rely on sample size n and have the same measurement unit as the trait. See
Supplementary Note 7 for derivation of Eq. (9).

We then place independent uniform grid priors on {θ0, θ, η, ρ} (Supplementary
Table 14). These simple hyper-priors produce accurate posterior estimates for
hyper-parameters in simulations (Supplementary Fig. 16). RSS-NET results are
robust to grid choice on both simulated and real data (Supplementary Figs. 17–18).
(If one had specific information about {θ0, θ, η, ρ} in a given setting then this could
be incorporated in the hyper-priors).

Network enrichment. To assess whether a regulatory network is enriched for
genetic associations with a trait, we evaluate a Bayes factor (BF):

BF ¼ f ðβ̂ j Ŝ; bR; a;O;W;M1Þ
f ðβ̂ j Ŝ; bR; a;O;W;M0Þ

; ð10Þ

where f( ⋅ ) denotes probability densities, a is defined in Eq. (3), {O,W} are defined
in Eq. (4), M1 denotes the enrichment model with θ > 0 or σ2 > 0, and M0 denotes
the baseline model with θ= 0 and σ2= 0. The observed data are BF times more
likely under M1 than under M0, and so the larger the BF, the stronger evidence for
network enrichment. See Supplementary Note 2 for computation details. To
compute BFs used in Fig. 5c, we replace M1 in Eq. (10) with three restricted
enrichment models (M11, M12, M13). Unless otherwise specified, all BFs reported in
this work are based on M1.

Given a BF cutoff, false positive rates vary considerably across genetic
architectures and enrichment patterns in simulations (Supplementary Table 15). As
the genetic basis of most complex traits remains unknown, we find it impractical to
fix some significance threshold. Instead we recommend an adaptive approach.
Specifically, for a given GWAS we run RSS-NET on a near-gene control network
containing all genes as nodes and no edges (i.e., aj= 1 for all SNPs within 100 kb of
any gene and vgt= 0 for all TF-TG pairs), and we use the resulting BF as the
enrichment threshold in this GWAS. Our analyses show three advantages of this
approach. First, it is adaptive to study heterogeneity such as trait differences and
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sample sizes (Supplementary Table 1). Second, it accounts for generic enrichments
of genetic signals residing near genes. Third, it facilitates comparisons with non-
Bayesian methods based on P-values (Supplementary Table 2).

Locus association. To identify the association between a locus and a trait, we
compute P1, the posterior probability that at least one SNP in the locus is associated
with the trait:

P1 ¼ 1� Prðβj ¼ 0;8j 2 locus jD; model Þ; ð11Þ
where D is a shorthand for the input data of RSS-NET including GWAS summary

statistics fbβ;bSg, LD estimates bR and network annotations {a,O,W}. See Supple-
mentary Note 3 for computation details. For a locus, Pbase

1 , Pnear
1 , and Pnet

1 cor-
respond to P1 evaluated under the baseline model M0, the enrichment model M1

for the near-gene control network, and M1 for a given TF-TG network. In this
study, we defined a locus as the transcribed region of a gene plus 100 kb up and
downstream, and we used “locus” and “gene” interchangeably.

For K networks with enrichments stronger than the near-gene control, we use
Bayesian model averaging (BMA) to compute Pbma

1 for each locus:

Pbma
1 ¼ ∑K

k¼1 P
net
1 ðkÞ � BFðkÞ

∑K
k¼1 BFðkÞ

; ð12Þ

where Pnet
1 ðkÞ and BF(k) are enrichment P1 and BF for network k. The ability to

average across networks in Eq. (12) is an advantage of our Bayesian framework,
because it allows us to assess associations in light of network enrichment without
having to select a single enriched network.

In this study we used P1 ≥ 0.9 as the significance cutoff, yielding a median false
positive rate 1.24 × 10−4 and a median false discovery rate 6.43 × 10−2 in
simulations (Supplementary Tables 16, 17). We also highlighted genes with
Pnet
1 >Pnear

1 (Fig. 6 and Tables 1, 2), because they showcase the influence of
context-specific regulatory topology on prioritizing genetic associations.

Computation time. The total computation time of RSS-NET to analyze a pair of trait
and network is determined by the number of genome-wide SNPs analyzed, the size of
hyper-parameter grid, and the number of variational iterations till convergence, all of
which can vary considerably among studies. It is thus hard to make general state-
ments about computation time. However, to give a specific example, we finished the
analysis of 1,032,214 HapMap3 SNPs and liver network for HDL within 12 hours in a
standard computer cluster (60 nodes, 8 CPUs, and 32 Gb memory per node).

The number of genome-wide SNPs analyzed (p) affects the computation time of
RSS-NET in two distinct ways. First, the per-iteration complexity of RSS-NET is
linear with p (Box 1; Supplementary Note 1). Second, a large p defines a large
optimization problem, often requiring many iterations to converge. To quantify the
impact of p on computation time, we simulated datasets from different sets of
genome-wide SNPs, analyzed them with RSS-NET on identical computers, and
compared the computation time (Supplementary Fig. 9). When p increased from
348,965 to 1,030,397, on average the total computation time was four times longer
(one-sided Wilcoxon P= 8.0 × 10−132).

Simulation overview. To assess the network-induced model for SNP effects (β) in
RSS-NET, we simulated a large array of correctly- and mis-specified β for a given
target network. Specifically, we generated “positive” datasets where the underlying
β was simulated from M1 for the target network, and “negative” datasets where β
was simulated from either M0 or the following scenarios: (1) random enrichments
of near-gene SNPs; (2) random enrichments of near-RE SNPs; (3) MAF- and LD-
dependent effect sizes; (4) M1 for edge-altered copies of the target network. For a
fair comparison in each scenario, we matched positive and negative datasets by
both the number of trait-associated SNPs and the proportion of phenotypic var-
iation explained by all SNPs. See Supplementary Figs. 1–9 for details.

We combined the simulated β with genotypes of 348,965 genome-wide SNPs
from 1,458 individuals28 to simulate phenotypes using an additive multiple-SNP
model with Gaussian noise. We performed the standard single-SNP analysis of
simulated individual-level datasets to generate GWAS summary statistics, on which
we compared RSS-NET with external methods.

External software for benchmarking. To benchmark RSS-NET this study used
the following software: RSS-E (https://github.com/stephenslab/rss, accessed Octo-
ber 19, 2018), Pascal (https://www2.unil.ch/cbg/index.php?title=Pascal, accessed
October 5, 2017) and LDSC with two sets of baseline annotations as covariates
(version 1.0.0, https://github.com/bulik/ldsc; baseline model v1.1, https://data.
broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_baseline_v1.1_ldscores.
tgz; baselineLD model v2.1, https://data.broadinstitute.org/alkesgroup/LDSCORE/
1000G_Phase3_baselineLD_v2.1_ldscores.tgz; accessed November 27, 2018). Ver-
sions of all packages and files were up-to-date at the time of analysis.

Given a context-specific TF-TG network, RSS-E and LDSC methods use the
same binary SNP-level annotations {aj} defined in Eq. (3). The interface design of
Pascal does not allow direct usage of {aj}. Here we supplied Pascal program with a
GMT file containing all member genes of a network and set SNP-to-gene window
sizes as 100 kb (“–up = 100000 –down = 100000”). In this study all external

methods were used with their default setups, which did not include the edge
information of a network.

RSS-E outputs the same statistics as RSS-NET (BF and P1). Pascal implements
two gene scoring methods (maximum-of-χ2 and sum-of-χ2) to produce gene-based
association P-values. Given gene scores, Pascal provides two gene set scoring
options (χ2 approximation and empirical sampling) to produce enrichment P-
values. LDSC methods output enrichment P-values and coefficient Z-scores,
yielding consistent results in our simulations (LDSC-baseline: R= 0.98, two-sided
P= 1.2 × 10−67; LDSC-baselineLD: R= 0.98, P= 9.1 × 10−63; Supplementary
Fig. 19). Due to the higher power shown in simulations (LDSC-baseline: average
AUROC increase= 0.012, one-sided t P= 4.0 × 10−3; LDSC-baseline LD: average
AUROC increase= 0.023, one-sided t P= 1.5 × 10−5), we used enrichment P-
values from LDSC in this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 38 network files are available at https://github.com/suwonglab/rss-net (https://doi.
org/10.5281/zenodo.4553387). Analysis results of 38 networks and 18 traits are available
at https://suwonglab.github.io/rss-net/results. Links and identifiers of other data are
specified in Methods, Supplementary Notes 5 and 8. Source data are provided with
this paper.

Code availability
The RSS-NET software is available at https://github.com/suwonglab/rss-net (https://doi.
org/10.5281/zenodo.4553387). Tutorials of installing and using RSS-NET are available at
https://suwonglab.github.io/rss-net. Results of this study were generated from MATLAB
version 9.3.0.713579 (R2017b), on a Linux system with Intel E5-2650V2 2.6 GHz and E5-
2640V4 2.4 GHz processors. Links and identifiers of other codes are specified in
Methods.
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