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The prerequisites for responsible cannabis use are at the heart of current inquiries into cannabis decriminalization by policy

makers as well as academic and nonacademic stakeholders at a global scale. Δ9-tetrahydrocannabinol (Δ9-THC), the prime

psychoactive compound of the cannabis sativa, as well as cannabimimetics that resemble the pharmacological properties and

psychological effects of Δ9-THC, lend themselves handsomely to the preclinical scrutiny of reward-related behavior because

they carry marked translational value. Although a functional dichotomy of the psychological effects of Δ9-THC (rewarding

versus aversive) has been abundantly reported in place conditioning (PC) paradigms, and might be best attributed to a dose-

dependence of Δ9-THC, most PC studies with Δ9-THC feature no significant effects at all. Therefore, after decades of rig-

orous research, it still remains undetermined whether Δ9-THC generally exerts rewarding or aversive effects in rodents.

Here, we set out to extrapolate the commonly alleged dose-dependence of the rewarding and aversive effects of Δ9-THC
from the existing literature, at the behavioral pharmacological level of analysis. Specifically, our meta-analysis investigated:

(i) the alleged bidirectional effects and dose-dependence of Δ9-THC in the PC test; (ii) methodological inconsistencies

between PC studies; and (iii) other pharmacological studies on cannabinoids (i.e., dopamine release, anxiety, stress, condi-

tioned taste aversion, catalepsy) to substantiate the validity of PC findings. Our findings suggest that: (i) Δ9-THC
dose-dependently generates rewarding (1 mg/kg) and aversive (5 mg/kg) effects in PC; (ii) an inconsistent use of

priming injections hampers a clear establishment of the rewarding effects of Δ9-THC in PC tests and might explain the seem-

ingly contradictory plethora of nonsignificant THC studies in the PC test; and (iii) other pharmacological studies on Δ9-THC

substantiate the dose-dependent biphasic effects of Δ9-THC in PC. A standardized experimental design would advance ev-

idence-based practice in future PC studies with Δ9-THC and facilitate the pointed establishment of rewarding and aversive

effects of the substance.

[Supplemental material is available for this article.]

Pathological cannabis use has been recognized by current nosolo-
gies as the continued compulsive consumption of cannabis in spite
of clinically relevant psychological (e.g., impaired goal-directed
behavior, criminal activity) and social consequences (e.g., cessa-
tion of recreational activities with the family or peers, failures in
significant life roles). Cannabis Use Disorder is incorporated into
the dimensional category of Substance-Related and Addictive
Disorders of the DSM-5 (2014), and Cannabis Related Disorders
are an integral part of the Mental and Behavioral Disorders due
to Psychoactive Substance Use category of the ICD-10 (2016).

The recently proposed causation-based Research Domain
Criteria Project (RDoC, Insel et al. 2010) might accommodate
transdiagnostic, neurobiological mechanisms underpinning the
formation and maintenance of pathological cannabis use in the
positive valence system. This domain spans the following con-
structs: approach motivation, initial responsiveness to reward
attainment, sustained/longer-term responsiveness to reward at-
tainment, reward learning, and habit. These constructs represent
a temporal progression of reward processing and, in their abnormal
form, might also underlie the development of reward dysfunction
and ensuing obsessive substance use and addictive behaviors. This

temporal course pays close attention to the hedonic response an
organism initially elicits to the reward stimulus’ psychoactivity
(“liking”), to the incentive value that motivates an increased like-
lihood of future engagement with the reward (“wanting”), and to
related positive reinforcing properties of the reward and learning
of reward-outcome contingencies that, in the long term, may
contribute to the development of physical and psychological de-
pendence, habitual, impulsive, and compulsive behavior, and
withdrawal responses upon reward unavailability (Berridge et al.
2009; Baskin-Sommers and Foti 2015).

This review commences with a brief introduction into the
endocannabinoid system (ECS) and its role in reward-related and
addictive behaviors. We proceed by outlining the parameters of
place conditioning (PC) paradigms. The primary objective of this
review is to disentangle the dose-dependent effects of Δ9-THC in
PCparadigms in terms of place preference (CPP), conditioned place
aversion (CPA), and lack of effects.
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The endocannabinoid system
The neuromodulatory ECS is the prime neurobiological system
that is involved in the mediation of the rewarding and reinforcing
effects of Δ9-THC (Mechoulam et al. 2014; Gould 2015). This sys-
tem comprises the G-protein coupled cannabinoid receptors type
1 (CB1R), type 2 (CB2R), and GPR55, ionotropic TRPV1 receptor,
their endogenous ligands (endocannabinoids), and the related
synthesizing and degrading enzymes (Di Marzo et al. 2015;
Morales and Reggio 2017; Zou and Kumar 2018). Δ9-THC shows
a comparable affinity to both CB1Rs (Ki-values ranging from 5.05
to 80.3 nM) and CB2Rs (Ki-values ranging from 3.13 to 75.3 nM;
Pertwee 2008), and may also bind to GPR55 (Brown 2007).
Furthermore, Δ9-THC-associated aversive effects were recently
linked not only to CB1R (Monory et al. 2007), but also to CB2Rs
(Han et al. 2017).

Another category of cannabinoids that is of great translational
interest, and which has received considerable attention in the last
decade, is synthetic cannabinoids (Pintori et al. 2017). Cannabimi-
metics, a group of synthetic cannabinoids that echo the pharmaco-
logical properties and rewarding effects of Δ9-THC, are part of a
recent wave of new psychoactive substances (NPS) that are fre-
quently used for recreational purposes (Miliano et al. 2016).
However, the consumption of cannabimimetics is associated
with much higher health risks than natural cannabinoids (e.g.,
extended psychoactivity, more side effects; Fattore and Fratta
2011; Brents and Prather 2014). Some of the most prominent
synthetic cannabinoids are R-(+)-WIN55212, (−)-CP55940, and
HU-210 (HU), all three of which binding among others to CB1R.
Studies on consequences of synthetic cannabinoids on PC are sur-
prisingly scarce compared to Δ9-THC and will thus not be further
considered by us.

Cannabinoids and reward
Recent articles that reviewed the putativemechanisms linking can-
nabinoids to addictive behaviors have emphasized the genetic
(López-Moreno et al. 2012; Szutorisz and Hurd 2018), molecular
(Solinas et al. 2008; Panlilio et al. 2013; D’Addario et al. 2014),
and cellular (Sidhpura and Parsons 2011; Covey et al. 2015;
Parsons and Hurd 2015; Busquets-Garcia et al. 2018) levels of anal-
ysis, and have specified the involvement of the ECS in drug, food,
social, and sexual reward processing (Solinas et al. 2008; Fattore
et al. 2010a; Tarragon and Moreno 2018), with drug intake being
prioritized over natural rewards in drug addictions (Hyman et al.
2006; Edwards and Koob 2010). Taking a behavioral pharmacolog-
ical slant on cannabinoids and addictive behavior, further reviews
have synthesized cross-species evidence for the existence of re-
warding (“liking”) and reinforcing (“wanting”) effects of cannabi-
noids and their pharmacological efficiency (Tanda and Goldberg
2003; Murray et al. 2007; Haney 2008; Panlilio et al. 2010). As for
the reinforcing properties of cannabinoids, reviews have delineat-
ed the unidirectional and reciprocal modulatory relationship of
cannabinoids with substances of abuse (Maldonado et al. 2006;
Serrano and Parsons 2011; Johnson and Lovinger 2016; Sloan et
al. 2017) such as nicotine (Gamaleddin et al. 2015; Scherma et al.
2016), opioids (Cooper and Haney 2009), ethanol/alcohol (Ló-
pez-Moreno et al. 2010; Pava and Woodward 2012; Kleczkowska
et al. 2015), and psychostimulants like cocaine (Hayase 2017)
and amphetamines (Wiskerke et al. 2008; Su and Zhao 2017).
While analyses of cannabinoid modulation of the reinforcing ef-
fects of substances of abuse have unearthed a crucial role of the
ECS (Tzschentke 2007; Wills and Parker 2016), the defining action
of cannabinoid agonists is of utmost interest to current inquiries
into responsible cannabis consumption by policy makers and
academic and nonacademic stakeholders. Moreover, most of
the listed articles contain summarized data ascertained in self-

administration paradigms that rest on distinct operant learning
mechanisms and advance our knowledge of the reinforcing effects
(i.e.,“wanting”) of cannabinoids. Yet, other behavioral assays are at
hand to exclusively tackle the rewarding effects of CB1R agonists,
and Δ9-THC specifically, based on Pavlovian learning. These assays
are valuable tools that aid the development of amechanistic expla-
nation of the initial responsiveness to Δ9-THC reward attainment
(i.e., “liking”). The most prominent of such paradigms is the Place
Conditioning test (PC; Mackintosh 1974; Bardo and Bevins 2000;
Bevins and Cunningham 2006). The PC has ubiquitously yielded a
CB1R- and dose-dependence of rewarding biphasic (relaxation ver-
sus anxiety/paranoia) conditioned effects (Cooper and Haney
2008, 2009; Sanchis-Segura and Spanagel 2006; Tzschentke 2007;
Murray andBevins 2010), thereby hinting at the particular suitabil-
ity of this test for cannabinoid pharmacological behavioral
research.

Conditioned place preference and avoidance
The PC paradigm is the most popular form of conditioned prefer-
ence procedures and can operationalize rewarding and aversive ef-
fects of a substance. In this test, an animal—typically a rodent—is
exposed to a behavioral apparatus in which it encounters two or
three compartments, separated by removable doors (Tzschentke
2007). Variations in apparatus design complicate conclusive result
interpretation, and partially explain differences in outcome studies
in PC paradigms (Murray and Bevins 2010). We will succinctly in-
troduce some of the fundamental PC experimental variables to fa-
miliarize the “uninformed” reader (cf. Fig. 1).

Compartments
In a two-compartment setting, each of the equally sized chambers
accommodates distinctive environmental cues—of visual, tactile,
and/or olfactory nature—to provide the animal with a unique per-
ception of each area. In drug-induced PC, a substance/drug (un-
conditioned stimulus) is associated with one compartment (i.e.,
the drug-paired compartment, DPC, conditioned stimulus) and a
vehicle is paired with the other compartment (vehicle-paired com-
partment, VPC). In three-compartment settings, the chambers at
either end are slightly larger than the concentric box (nonpaired
compartment), which remains as a neutral place of retreat, and
only the two side compartments are used for drug- and
vehicle-pairings.

Procedural designs
In an unbiased design the administered drug is associated with a
compartment that is arbitrarily chosen by the experimenter, irre-
spective of any innate preference of the animal for one of the
two compartments. In a biased design, an initial preference for ei-
ther of the two conditioning compartments represents a crucial
variable (Sanchis-Segura and Spanagel 2006), and the drug is either
paired with the preferred or nonpreferred compartment. Several
studies have concluded that unbiased procedures and balanced ap-
paratus construction is crucial, specifically for cannabinoid-related
PC research (Cunningham et al. 2003; Roma and Riley 2005;
Murray and Bevins 2010).

Phases
The entire PC procedure is divided into three distinct phases: pre-
exposure, conditioning, and testing. During preexposure, the ani-
mal is placed in the nonpaired compartment (NPC) of the
three-compartment apparatus or at the transition between the
DPC and VPC in the two-compartment apparatus, and can gain
free access to all compartments. Consequently, rodents get

THC and reward-related behavior

www.learnmem.org 447 Learning & Memory



accustomed to the environmental cues associated with the com-
partments (no drugs being administered), the time spent in the
DPC and VPC is measured, and an initial preference for the com-
partments is tested. In the conditioning phase, rodents are admin-
istered the drug or vehicle before being introduced into the
drug-paired or the VPC for 30 min. These pairings of drug and ve-
hicle with the different compartments are repeated in an alternat-
ing fashion over several days (trials) to augment the conditioning
process. Some studies administer an additional drug injection 1
or 2 d before starting with the conditioning procedure to provide
a preexperience of the drug effects (drug priming), which is sup-
posed to ameliorate possible aversive responses to the drug. In
the test phase, the development of an approach or avoidance of
theDPC is tested in a drug-free state. Analogous to the preexposure,
the rodents are placed in the center of the apparatus.

Quantification methods
A CPP of the administered substance is established when the ani-
mal spends either significantly more time in the DPC after condi-
tioning than before (i.e., test versus preexp. DPC) or spends
significantly more time in the DPC than in the VPC during test
(i.e., DPC versus VPC). A conditioned place aversion (CPA) is estab-
lished when the animal spends either significantly less time in the
DPC after conditioning than before (i.e. test versus preexp. DPC) or
spends significantly less time spent in the DPC than in the VPC
during test (i.e., DPC versus VPC) (Tzschentke 2007). In a three-
compartment setting, the time spent in the NPC is in most studies
not included into the measurement of CPP or CPA.

Dose-dependence of the rewarding effects of Δ9-THC
Behavioral pharmacological studies in rodents traditionally ascer-
tain the efficiency of cannabinoids through assessment of the tet-

rad, which comprises (i) decreased
locomotion (e.g., open-field test, hole-
board), (ii) decreased body temperature,
(iii) increased analgesia (e.g., hot plate or
tail immersion test), and (iv) increased
catalepsy (e.g., bar test). Other than for
the tetrad (Monory et al. 2007), tests of
fear and anxiety have revealed a biphasic
nature of Δ9-THC pharmacological action.
Low doses of CB1R agonists (≤1 mg/kg)
tend to induce anxiolytic and hence po-
tentially rewarding effects (Moreira and
Wotjak 2010), whereas high doses (>1
mg–10 mg/kg) and pharmacological
blockage of CB1R (Marsicano et al.
2002) engender anxiogenic (Viveros et
al. 2005; Patel and Hillard 2006; Micale
et al. 2013) and psychotogenic (Bhatta-
charyya et al. 2009, 2010) effects.

PC studies on highly addictive
drugs, such as psychostimulants and
opiates (e.g., heroin), clearly reveal the
rewarding properties of these drugs
(marked establishment of CPPs). It also
seems to be well-established that natural
and synthetic cannabinoids produce
CB1R-dependent CPA in high doses and
CPP in lower doses (Murray et al. 2007;
Murray and Bevins 2010;Wills and Parker
2016; Pintori et al. 2017). However, even
though the bidirectional effects of
Δ9-THC on PC might be ascribed to a

dose-dependence, what still remains apparently inconclusive is
that most studies with Δ9-THC feature no significant effects on
PC at all.

Lead questions
The principal question of this study revolves around the general-
ity of the rewarding or aversive effects of Δ9-THC in rodent PC
studies and the reasons for the frequently observed inefficacy of
treatment. Specifically, our meta-analysis: (i) weighs the evidence
for the hypothesized bidirectional effects (rewarding versus aver-
sive) and dose-dependence of Δ9-THC, in the PC paradigm,
(ii) contains an examination of methodological inconsistencies
between studies, and (iii) relates the findings from PC experi-
ments to other pharmacological studies on cannabinoid pharma-
cology (i.e., dopamine release, anxiety, stress, conditioned taste
aversion, catalepsy).

Materials and Methods

Inclusion/exclusion criteria for the systematic review
The selection of studies in the present analysis is aimed at shifting
the focus of current review activities to the most relevant transla-
tional research on cannabinoids and reward-related behavior.
Therefore,wehave targeted PC studies (two- or three-compartment
PC apparatus) that solely used exogenous cannabinoid administra-
tion (without any pre-, co-, or post-treatment with any other sub-
stances) via intraperitoneal (i.p.) and intravenous (i.v.) injections
in rodents (mice and rats), with food and water ad libitum. Food
intake and energy balance are known to modulate the metabolism
of endocannabinoids (Matias and Di Marzo 2006; Cristino et al.
2014), which is why research with deprivational protocols has
been excluded. Studies on other substances have also evinced
that food restriction appears to exert crucial, long-lasting in-
fluences on PC procedures which even persist in mice re-fed ad

A

B

Figure 1. Schematic illustration of the PC paradigm. (A) 2-compartment apparatus. (B) 3-compart-
ment apparatus. Conditioned place preference (CPP) is established by either significantly more time
spent in the drug-paired compartment (DPC) after conditioning than before (i.e., test versus preexp.
DPC) or significantly more time spent in the DPC than in the vehicle-paired compartment (VPC)
during test (i.e., DPC versus VPC). Conditioned place aversion (CPA) is operationalized by either signifi-
cantly less time spent in the DPC after conditioning than before (i.e., test versus preexp. DPC) or signifi-
cantly less time spent in the DPC than in the VPC during test (i.e., DPC versus VPC). In a
three-compartment setting, the time spent in the nonpaired compartment (NPC) is in most studies
not included into the measurement of a CPP or CPA.
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libitum (Cabib et al. 2000). Furthermore, a pulmonary route of ad-
ministration makes use of an intriguing approach, given that
humans prevalently consume cannabis through inhalation (i.e.,
by smoking). However, compared to i.p. or i.v. injections, the
pulmonary uptake of vaporized substances produces qualitatively
different effects on behavior, most presumably due to pharmacoki-
netic differences (Manwell et al. 2014).Moreover, due to the lack of
evidence about plasma concentration that results from pulmonary
administration protocols, a comparison of dose-response-rela-
tionships with i.p. and s.c. treatment is practically impossible.
Therefore, such studies were also discounted in the present article.
Furthermore, as PC studies with Δ9-THC almost exclusively resort
to male rodents and only few assessed age-dependencies, we did
not factor in sex and age as methodological traits. The systemic lit-
erature search was conducted using several databases, including
Web of Science, Scopus, and Pubmed. Search terms encompassed:
Δ9-THC, THC, cannabinoid receptor type 1, CB1R, cannabinoids,
cannabis, reward, addiction, behavior, dose, dosage, CPP, CPA,
and PC.

All selected PC studies are listed in the Supplemental Material
(Supplemental Table 1), juxtaposing different methodological
traits concerning test animals (species, strain) and procedural as-
pects of PC (drug compound, dose, priming, PC design [biased, un-
biased], number of compartments, PC quantification method).
The total amount of PC experiments conducted with Δ9-THC
and considered in this article encompasses 73 assessments.
When referring to individual PC experiments and their results, it
must be noted that each group of animals, which was exposed to
a different treatment or procedure, was counted separately—
including the groups belonging to the same study.

Methodology of the meta-analysis
Here, dose-dependent differences of Δ9-THC were first tested be-
tween the selected PC assessments, establishing either a CPP,
CPA, or no significant effects (NEs). Second, upon discovering
that significant differences in dose dependence could only be es-
tablished by comparing CPAs with CPPs and CPAs with NEs, it re-
mained questionable why there are no significant differences
between CPPs and NEs. To further examine the high cooccurrence
of CPPs and NEs at similar dose-ranges, procedural parameters oth-
er than the dose of Δ9-THC were tested for differences. To this end,
five methodological parameters were more closely scrutinized:
(rat-)strain, drug priming, PC design (biased versus unbiased), PC
quantification method, and number of compartments. Kruskal–
Wallis test followed by Dunn’s multiple comparison tests were ap-
plied for dose-dependence comparisons (CPPs versus CPAs versus
NEs) and the χ2 test for procedural differences (CPPs versus NEs).
Third, to further substantiate that Δ9-THC exerts positive internal
states at low doses and negative internal states at high doses, the
dose-dependence of CPPs and CPAs were compared with animal
studies assessing other Δ9-THC behavioral and physiological traits.
To this end, studies on Δ9-THC-induced stress (corticosterone
secretion), catalepsy, conditioned taste aversion, and anxiety
(anxiogenic-like effects) were selected to substantiate causality be-
tween CPA findings and high doses of Δ9-THC. Conversely, studies
on the anxiolytic-like effects of Δ9-THC, on Δ9-THC-induced dopa-
mine release in the mesocorticolimbic system, and on Δ9-THC
self-administration (SA) were consulted to conceivably corroborate
a causal link between CPP and low doses of Δ9-THC. Wilcoxon
signed rank test (one-sided question) were used for dose-
dependent comparisons (PC versus other Δ9-THC pharmacological
effects). Statistical significance was accepted if P < 0.05.

Results

Dose-range
The dose range of Δ9-THC in all considered PC experiments ex-
tends from a minimal concentration of 0.01 mg/kg to a maximal
concentration of 20 mg/kg. Altogether 45 PC assessments with
Δ9-THC administration were conducted with rats (62%) and

28 with mice (38%). The highest amount of PC experiments for
both mice and rats results in the dose range of 0 mg/kg < dose≤ 1
mg/kg (>50%), followed by the dose range of 1 mg/kg < dose≤ 5
mg/kg (>35%), and only very few studies at concentrations higher
than 5 mg/kg (Fig. 2A).

Efficacy of treatment
By far the majority of studies (>50%) failed to reveal any effect of
Δ9-THC at all (NE; Fig. 2A), and only aminority reported the occur-
rence of CPP or CPA (∼25%, each; Fig. 2A).

Parametric analysis of CPP
Inmice, all experiments were conducted by using an unbiased CPP
designwith an apparatus consisting of three compartments, except
for one study with an unstated design. In rats, CPP was established
with an unbiased design as well (except one study not stating the
design). Only the number of compartments differs with five exper-
iments using a two-compartment and three experiments using a
three-compartment apparatus. To estimate CPP, the time spent
in the DPC during preexposure and the test-phase (test versus pre-
exp. DPC)was compared in allmouse assays (100%) and in sixwith
rats (67%). The prevailingly used strains in mice were CD-1 (67%),
and in rats Long-Evans (33%) and Wistar (44%).

A

B

C

Figure 2. Prevalence and dose-dependency of CPP, CPA, and nonsignif-
icant effects (NE) with Δ9-THC. (A) The majority of studies has been per-
formed with doses ≤1 mg/kg, and failed to reveal any effect at all (NE).
(B) Dose-dependent distribution of CPPs, aversions (CPA), and no signifi-
cant effects (NE) with Δ9-THC [KW(3) = 24.12, (***) P < 0.0001, Kruskal–
Wallis, followed by Dunn’s multiple post hoc test]. (C) Studies with drug
priming show a bias toward the development of CPP, whereas studies
without drug priming often fail to reveal any effect [χ2(1) = 6.352,
($) P = 0.0117].
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Parametric analysis of CPA
Virtually no priming injections were administered in both mice
and rats. Δ9-THC conditioning with mice was undertaken by pre-
dominantly using an unbiased design. Likewise, an unbiased
design was mostly used with rats (82%). A three-compartment ap-
paratus was prevailingly used withmice (88%). In contrast, four as-
sessments with three compartments (36%) and seven with two
compartments (64%)were performed in rats. Inmice, CPAwas pre-
dominantly determined by comparing the time spent in the com-
partment during preexposure and test phase (test versus preexp.
DPC; 88%). On the contrary, both test versus preexp. DPC and
DPC versus VPC test comparisons were performed in rats. The
used rat strains were Wistar, Long–Evans, Sprague–Dawley, and
Lister Hooded. In mice, C57BL/6J, F4, and F5 generation back-
crosses to C57BL/6 and 1:1 hybrids of 129/SV and C57BL/6J were
used in addition to CD-1 mice.

Parametric analysis of experiments with no significant

effects (NEs)
Except for a few biased assessments with rats (28%),most studies in
mice and rats used the unbiased design. Again the three-
compartment setup predominated studies inmice, but was applied
only inhalf of the rat studies. Datawere analyzed by comparing the
time spent in the DPC during preexposure and test phase in the
majority of studies. The strains used in these nonsuccessful exper-
iments in rats were mainly Sprague–Dawley (40%) and Wistar
(44%), and CD-1 in mice (64%).

Δ9-THC dose-dependence of CPPs, CPAs, and NEs
A dose-dependent distribution of PC experiments is illustrated sep-
arately for CPPs, NEs, and CPAs in Figure 2B. CPPs were established
with doses ranging from 0.075 to 4 mg/kg (mice: 1 mg/kg; rats:
0.075–4 mg/kg). CPAs, on the other hand, were implemented at
doses reaching from 1 to 20 mg/kg (mice: 5–20 mg/kg; rats: 1–15
mg/kg). Nonsuccessful experiments range from 0.01 to 10 mg/kg
(mice: 0.3–10 mg/kg; rats: 0.01–10 mg/kg). The median values
for CPAs are 5 mg/kg compared to 1 mg/kg for CPPs and NEs.
We tested for systematic dose effects in CPPs, NEs, and CPAs,
and obtained significant group differences (KW(3) = 24.12, P <
0.0001), indicating that animals treated with higher doses of
Δ9-THC more often developed CPA than CPP or NE (Fig. 2B).

Comparison of methodological implementations between

CPPs and NEs
As a dose-related comparison did not reveal significant group dif-
ferences between CPPs and NEs, we compared other procedural
measures such as rat strains, drug priming, PC designs, PC quanti-
fications, and the number of compartments between experiments
resulting either in CPP or NE. No other procedural traits were sig-
nificantly different between CPPs and NEs, except for priming in-
jections (priming: χ2(1) = 6.352, P = 0.0117; cf. Fig. 2C).

Dose-dependence of appetitive versus aversive effects

of Δ9-THC in other animal studies
To investigate the putative causal link between the dose ranges of
Δ9-THC and the establishment of a CPP or CPA, PC findings with
Δ9-THC were dose-dependently compared with other pharmaco-
logical effects of Δ9-THC (i.e., increase in dopamine release,
anxiolytic-/anxiogenic-like effects, corticosterone secretion, con-
ditioned taste aversion, and catalepsy). The studies on these phar-
macological effects are listed, along with their findings, in
Supplemental Table 2. The dose-dependent comparison of the
aforementioned results with PC findings on Δ9-THC is illustrated

in Figure 3. Dopamine release and anxiolytic-like effects induced
by Δ9-THC seemed appropriate to be taken as indicators for “pleas-
ant” effects, given that the release of dopamine in the mesolimbic
system is generally acknowledged to play a crucial role in reward
and reinforcement, while the anxiolytic-like effects provide an al-
leviation of fear and anxiety. On the other hand, we referred to
traits such as Δ9-THC-induced anxiogenic-like effects, corticoste-
rone secretion, conditioned taste aversion, and catalepsy as indica-
tors for “unpleasant” effects.

The dose-ranges of dopamine release (0.15 mg/kg≤ dose≤
5 mg/kg) and anxiolytic-like effects (0.075 mg/kg≤ dose≤
1.5 mg/kg) tendentially corresponded to the dose range of CPPs
(0.075 mg/kg≤ dose≤ 4 mg/kg). In contrast, the dose ranges of
anxiogenic-like effects (0.5 mg/kg≤ dose≤ 10 mg/kg), corticoste-
rone secretion (2 mg/kg≤ dose≤ 20 mg/kg), conditioned taste
aversion (0.56 mg/kg≤ dose≤ 32 mg/kg) and catalepsy (10 mg/
kg≤ dose≤ 50 mg/kg) overlapped rather with the dose-range of
CPAs (1 mg/kg≤ dose≤ 20 mg/kg) than with CPPs (0.075 mg/kg
≤ dose≤ 4 mg/kg; Fig. 3). However, both the dose ranges of
dopamine release and anxiolytic-like effects on one hand and the
dose ranges of anxiogenic-like effects, corticosterone secretion,
and conditioned taste aversion on the other overlapped with the
dose-range of NEs (Fig. 3).

In relation to the median of CPPs (1 mg/kg) and NEs
(1 mg/kg), the medians of anxiogenic-like effects (2.5 mg/kg), cor-
ticosterone secretion (5 mg/kg), conditioned taste aversion
(2.5 mg/kg), and catalepsy (17.5 mg/kg) lay above it. As opposed
to this, themedian of anxiolytic-like effects (0.34mg/kg) lay below
it and that of dopamine release (1mg/kg) equaled it. Taking instead
themedian of CPAs as a reference point (5mg/kg), it is notable that
themedian of corticosterone secretion equaled it. Furthermore, the
onlymedian that lay above the median of CPAs is that of catalepsy
(Fig. 3). To test for significant difference between the dose-
dependency of CPPs and CPAs and the dose-dependency of the
other pharmacological effects of Δ9-THC, a Wilcoxon signed rank
test (one-sided question) was applied. While on one hand the
test revealed that the doses of Δ9-THC for dopamine release and
anxiolytic-like effects were significantly different from the median
dose of Δ9-THC to establish CPAs (5mg/kg), it evinced on the other
hand that the doses of Δ9-THC for corticosterone secretion, condi-
tioned taste aversion, and catalepsy (but not for anxiogenic-like ef-
fects) were significantly different from the median dose of Δ9-THC
to establish CPPs (1 mg/kg) (Fig. 3).

Figure 3. Other dose-dependent appetitive (green) and aversive (red)
effects of Δ9-THC. Results of individual experiments/ groups are plotted
as black dots (median values as black lines); statistics: Wilcoxon signed
rank test (one-sided question), P < 0.05 versus median of CPA and CPP,
respectively. Median values of CPPs (1 mg/kg), CPAs (5 mg/kg), and
NEs (1 mg/kg; cf. Fig. 2B) are incorporated as green, red, and gray
dashed lines, respectively; dose ranges of CPPs, CPAs, and NEs are illustrat-
ed in the respective (yet fainter) colors. # (red) p < 0.05 versus median of
CPA, # (green) p < 0.05 versus median of CPP (Wilcoxon signed test).
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Discussion

Despite the considerable progress made in the neurosciences to
study themechanistic underpinnings of the pharmacology of can-
nabinoids, studies on Δ9-THC continue to provide seemingly in-
conclusive findings, which hamper an explanation of cannabis
reward, not to mention cannabis addiction. Here, we sought to in-
vestigate the effects of Δ9-THC on the PC procedure to sharpen our
knowledge of the contended involvement of exogenous cannabi-
noids in reward-related processes (specifically the “liking” domain)
that are allegedly affiliated to drug addiction. Data substantiated
(i) the dose-dependence of the bidirectional effects of Δ9-THC on
PC (CPPs at low doses [1 mg/kg] versus CPAs at high doses
[5 mg/kg]), (ii) identified significant methodological inconsisten-
cies between CPPs and NEs with Δ9-THC, specifically regarding
the application of priming injections, and (iii) elucidated the con-
formity of PC findings with other pharmacological effects of
Δ9-THC (dopamine release, anxiety, stress as indexed by increased
corticosterone secretion, conditioned taste aversion, and catalep-
sy), thus exhaustively corroborating the validity of CPPs and
CPAs as a dose-dependent measure for the rewarding and aversive
effects of Δ9-THC.

Dose-dependence
Considering that cannabis is expected to have highly rewarding
properties, it is surprising that slightly more studies reported the
occurrence of CPA rather than CPP. The dose-dependent juxtapo-
sition of CPPs, CPAs, and NEs clearly demonstrated that the dose
ranges of NEs markedly overlap with the dose ranges of CPPs
and, in part, also CPAs. When testing for significant group differ-
ences, it was possible to reveal that animals treated with higher
doses of Δ9-THC more often developed a CPA than a CPP or NE.
This finding is in accordance with common conjectures, stating
that high doses of Δ9-THC elicit aversive effects (Murray et al.
2007; Murray and Bevins 2010). In line with the evidence that
Δ9-THC exerts bidirectional effects in a dose-dependent manner
(Valjent et al. 2002; Murray et al. 2007; Murray and Bevins 2010;
Rey et al. 2012), post-hoc group comparisons yielded significant
differences in dose range between CPPs (occurring rather at low
doses Δ9-THC) and CPAs (occurring rather at high doses
Δ9-THC). However, when comparing these two groups with the
dose range of NEs, only CPAs could be set apart, while no signifi-
cant difference in dose-dependence between CPPs and NEs was
found. This is unexpected considering that the PC paradigm has
entrenched itself as an adequate procedure to assess both reward-
ing and aversive effects of drugs (Sanchis-Segura and Spanagel
2006; Tzschentke 2007; Murray and Bevins 2010). Furthermore,
given that cannabis is such a highly desired recreational drug
and that even self-administration studies have unambiguously
shown that squirrel monkeys readily self-administer Δ9-THC
(Tanda et al. 2000; Justinova et al. 2003, 2004), it seems hardly
comprehensible why the rewarding effects of Δ9-THC are rather
tricky to unveil in PC studies with rodents. However, the high
incidence of NEs and the overlapping dose range with CPP is con-
form with the assumption that Δ9-THC has only weak reinforcing
properties, at least in rodents, compared to other psychotropic
drugs (Justinova et al. 2005). The situation might be different, if
an experiment would be performed with stressed animals in an
anxiety-like state, where low doses of Δ9-THC may ameliorate
the negative affect (Riebe et al. 2012; Micale et al. 2013; Bedse
et al. 2017; Patel et al. 2017) and, if combined with a distinct
test compartment, might favor the development of CPP. The pos-
sibility that Δ9-THC interferes with cognitive processes, and thus
hinders the establishment of CPP is rather unlikely, given the oc-
currence of memory-dependent CPA at higher doses.

Procedural differences between CPPs and NEs with Δ9-THC
We also assessed whether the failure to induce CPP at lower doses
(0 mg/kg < dose≤ 1 mg/kg) relates to procedural differences in
studies reportingCPP versusNE. Among themanyparameters con-
sidered, only drug priming injections seem to favor CPPs versus
NEs. Pretreatment with a drug prior to PC (priming) is an acknowl-
edged way to habituate animals to the injection procedure and ef-
fects of the drug. This is expected to diminish possible aversive
effects, which might occur in drug-naïve animals (Valjent and
Maldonado 2000; Quinn et al. 2008). Some PC studies also clearly
showed that priming injections can play a critical role in avoiding
NEs. For instance, in a 1 mg/kg Δ9-THC PC study (Valjent and
Maldonado 2000), two separate PC assessments were implement-
ed: Animals not pretreated with the drug before the assessment
(no priming) showedno significant effects on PC, whereas priming
resulted in a CPP, suggesting that there appeared to be a higher sus-
ceptibility in animalswith a drug preexperience to develop a signif-
icant behavioral response (CPP) to low doses of Δ9-THC, than in
naïve animals. The exact molecular underpinnings of drug
priming are not clear. Theymay include intracellular signaling pro-
cesses (Cannich et al. 2004) and receptor desensitization/internal-
ization (e.g., Dudok et al. 2015).

PC versus other pharmacological effects of Δ9-THC
Leaving all nonsignificant PC findings aside, CPPs was clearly as-
cribed to low doses of Δ9-THC (median: 1 mg/kg) and CPAs to
high doses of Δ9-THC (median: 5 mg/kg). When other behavioral
and neurochemical readouts are considered, there is a remarkable
overlap in the dose-response relationship with appetitive (e.g.,
dopamine release in the mesolimbic system, anxiolytic effects), re-
spectively aversive consequences of Δ9-THC treatment (e.g., anxio-
genic effects, increased corticosterone secretion, conditioned taste
aversion). The reduction in locomotor activity and the incidence of
catalepsy (Monory et al. 2007; Viñals et al. 2015) at high Δ9-THC
concentrations may not only cause discomfort to the animals,
but also interfere with information gathering and, thus, learning
processes.

If the biphasic consequences of CB1R agonists on anxiety-like
behavior (Rey et al. 2012) can be generalized to other behavioral
tasks, low doses of Δ9-THCmay promote CPP via CB1R on cortical
glutamatergic neurons, whereas high doses induce CPA via CB1R
on GABAergic neurons. Hence, CB1R on different neuronal popu-
lations hold the balance between appetitive and aversive behavior.
It is conceivable that drug priming may shift this balance toward
appetitive behavior, likely by differentially affecting CB1R signal-
ing on GABAergic versus glutamatergic neurons. Future studies
should use cell-type specific CB1knockout mice to validate those
assumptions.

Procedural design to pointedly establish a CPP or a CPA
Overall, we can say that the PCparadigm is a validmethod to assess
the dose-dependent biphasic nature of Δ9-THC, even though it re-
mains rather tricky to unveil the rewarding effects of Δ9-THC. This
intricacymay, in part, be ascribed to the rather weak rewarding and
reinforcing effects of Δ9-THC. However, the comparability of PC
findings and thus their evaluation are also significantly hampered
by the differences in PCmethodology. Thus, it is crucial that future
PC studies prevailingly resort to standardized and entrenched
procedures.

In light of our findings, we suggest a procedural design to
pointedly establish both a CPP as well as CPA.We limit our sugges-
tions to the methodological traits evaluated in the meta-analysis
alongside with a few other traits, which have proven to be suitable
parameters in past studies (Box 1).
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Sex and age
Specific knowledge about the sex-dependence of the rewarding ef-
fects of Δ9-THC is sketchy, given that PC studies with Δ9-THC have
been conducted almost exclusively with male rodents (Hempel
et al. 2017). This rather ungrounded negligence of sex differentia-
tion is an issue that needs to be addressed in future PC studies. In
fact, sex-differences in cannabis use have become a rather current
topic: A growing number of women has been reported to use can-
nabis more frequently and with a higher propensity to develop
cannabis use disorder than men (Cooper and Craft 2018). This
might be interrelated with findings showing that women use can-
nabis at a faster rate, that they exhibit a higher sensitivity to its re-
inforcing effects, and that they develop more severe withdrawal
symptoms than men (Marusich et al. 2014; Cooper and Craft
2018).

Preclinical studies have yielded sex-dependent differences in
CB1R density and G-protein activation (Rubino and Parolaro
2011; Cooper and Craft 2018). Furthermore, it has been specified
that female animals self-administer synthetic cannabinoids faster
and at higher rates than males and are more susceptible to drug
and cue-induced reinstatement (Fattore et al. 2007, 2010b;
Hempel et al. 2017). The implications of these findings are not
yet entirely clear. Albeit, sex might be an important factor in-
volved in the increased sensitivity to the rewarding as well as rein-
forcing properties of cannabinoids (Fattore et al. 2007, 2010b;
Hempel et al. 2017) and the development of stronger withdrawal
symptoms in females (Harte-Hargrove and Dow-Edwards 2012).
However, more studies investigating the putative sexual dimor-
phism of cannabinoid reward and reinforcement are needed on
both physiological and behavioral levels, in order to uncover the
underlying mechanisms.

The need of further investigations applies likewise to the
age-dependence of the rewarding effects of Δ9-THC. Even though
few in number, the existing studies clearly show a trend of
adult rodents perceiving the effects Δ9-THC as more aversive
than adolescents (Schramm-Sapyta et al. 2007; Quinn et al.
2008; Pandolfo et al. 2009). Cannabis use and the development
of cannabis use disorder are more frequent in adolescent users rel-
ative to middle-aged and older adults (Haug et al. 2017). Thus, it

would be reasonable to assess the relation between the afore-
described trend, observed in preclinical studies, with human
behavior more in depth. For this, more physiological and behavio-
ral studies on the relation between age and cannabis reward are
required.

Conclusions

Δ9-THC holds the potential to induce both CPP and CPA, depend-
ing on the dose. The high incidence of negative findings, however,
speaks against strong reinforcing properties of Δ9-THC and might
result from competing appetitive versus aversive consequences of
the treatment, which outbalance each other. Drug priming seems
to shift the balance toward appetitive consequences, since it favors
the occurrence of CPP. Future studies should consider animals of
both sexes at different developmental stages (e.g., adolescence
versus adulthood) and internal states (e.g., stressed versus non-
stressed, food-restricted versus ad libitum fed) to more closely
resemble the situations in humans. At the same time, more
effort has to be done to disentangle the rewarding properties of
Δ9-THC in terms of “liking” versus “wanting” (e.g., by using self-
administration paradigms).
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