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SNARE complex in axonal guidance and 
neuroregeneration

Soluble N-Ethylmaleimide Sensitive Factor 
(NSF) Attachment Protein REceptor (SNARE) 
Proteins and Neurite Outgrowth 
Neuronal differentiation, axonal growth and guidance in-
volve coordinated changes in the cellular cytoskeleton, pro-
tein and membrane trafficking processes. Early neurite out-
growth appears to involve protein trafficking machineries 
responsible for exocytosis to the plasma membrane utilizing 
many mechanisms that are also found in non-neuronal cells. 
These membrane trafficking events are usually directed to-
wards several neurites, but can also be switched to concen-
trate on the growth of a single axon. 

Membrane transport to the axonal growth cone is vital 
for the axon to grow, develop and move. Axonal membrane 
transport is mediated by the same machinery that governs 
vesicular trafficking in other parts of the cell. This machin-
ery works in four steps: (1) Budding, in which coat proteins 
mediate the junction between a membrane donor compart-
ment and motor proteins that direct the transport of vesicles 
through the cytoskeleton; (2) Movement, when the vesicle 
moves towards its destination along a cytoskeletal track via 

molecular motors; (3) Tethering of the vesicle with its target 
membrane; and (4) Fusion of transmembrane SNAREs (on 
apposing membranes (Cai et al., 2007). 

SNAREs are a large family of small membrane proteins 
(with more than 60 members in mammalian cells), charac-
terized by the presence, in almost all of them, of the about 
60 amino acid SNARE domain. SNARE proteins are related 
to three different neuronal protein families: vesicle associ-
ated membrane protein (VAMPs), Syntaxins, and synapto-
somal associated proteins (SNAPs) (Ungar and Hughson, 
2003). Mechanisms mediated by SNARE proteins are highly 
conserved and many of the SNARE proteins present in in-
vertebrates are conserved in vertebrates (Teng et al., 2001). 
SNARE proteins were originally identified for their ability 
to regulate vesicle release at mature synapses (Chen and 
Scheller, 2001). In fact, the spontaneous and calcium guided 
interaction between members of the SNARE family allows 
for the quantal release of neurotransmitters at the synaptic 
cleft, which in turn guarantees the efficacy in synaptic trans-
mission (Sudhof, 2013). 

Membrane fusion is thought to occur by the formation 
of a SNARE complex through the association of specific 
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SNARE proteins: a SNARE on a transport vesicle (v-SNARE) 
assembles with its/their cognate SNARE-binding partner 
on the appropriate target membrane (t-SNARE). Associa-
tion between SNAREs is carried out through their SNARE 
domains and is highly regulated in vivo by several accessory 
proteins. Members of the Vesicle Associated Membrane Pro-
tein (VAMP) subfamily act as v-SNAREs whereas proteins 
from the Syntaxin and SNAP subfamilies act as t-SNAREs. 
The best characterized SNARE complex is the one that me-
diates the Ca2+ dependent neurotransmitter exocytosis at the 
synaptic cleft. It consists of a four-helical bundle formed by 
the v-SNARE Vamp2, and the t-SNAREs Stx1 and Snap25. 
However, other types of SNARE complexes can also be 
formed in different cells or for different functions. For ex-
ample, spontaneous synaptic vesicle release seems to depend 
mostly on the v-SNARE Vamp7 instead of Vamp2 (Kavalali, 
2015). Differentiating the evoked release of neurotransmit-
ters from the spontaneous secretion of vesicles maybe nec-
essary for the communication among neurons. Also, tonic 
exocytosis, occurring after repetitive stimulation of vesicle 
release, requires Vamp4 instead of Vamp2 and other types 
of proteins that allow for the recruiting of the recycling pool 
of synaptic vesicles and not of the readily releasable pool. In 
another example, exocytosis in glial cells needs mostly the 
interaction among Stx1, SNAP23, and VAMP3 (cellubrevin) 
(Schubert et al., 2011). In addition, diverse SNARE complex 
composition accounts for the differential sorting of AMPA 
(at excitatory synapses) and GABA (at inhibitory synaps-
es): [SNAP25-STX1A/B-VAMP2] and [SNAP23-STX1A/
B-VAMP2] respectively (Gu et al., 2016). And, regulated 
exocytosis of the AMPA receptor during long term potentia-
tion involves a unique SNARE fusion machinery containing 
STX3 (Jurado et al., 2013). So, differential composition/con-
figuration of SNARE complexes can mediate different func-
tions both in the same cell and at distinct cell types (Kasai et 
al., 2012; van Keimpema and Kroon, 2015). 

Neurite outgrowth involves the addition of new mem-
brane, mainly at the tips of elongating axonal processes, 
coordinated with a dynamic cytoskeletal elongation. Exo-
cytosis of diverse membrane vesicles of around 150 nm in 
diameter called plasmalemma precursor vesicles (PPVs) or 
growth cone particles (GCPs) is believed to contribute to is 
the supply of new membrane in developing axons. In sym-
pathetic neurons and PC12 cells, lysosomal and enlargeo-
some exocytosis, respectively, have been described to be also 
involved in neurite outgrowth (Arantes and Andrews, 2006; 
Colombo et al., 2014). Recently, a non-vesicular mechanism 
consisting on a lipid flow from the endoplasmatic reticulum 
(ER) in close apposition to the plasma membrane has been 
proposed to account for bulk neurite outgrowth in cultured 
cells (Petkovic et al., 2014). This non-vesicular mechanism 
involved in membrane expansion requires SNARE proteins 
Sec22b and Stx1 to generate a SNARE bridge that contribut-
ed to plasma membrane expansion (Arantes and Andrews, 
2006; Petkovic et al., 2014). 

Evidence for the implication of SNAREs in neurite out-
growth date from around two decades ago, essentially from 
in vitro experiments. First, Snap25 requirement in axonal 
outgrowth was demonstrated by using inhibitory antisense 
oligonucleotides which prevented neurite elongation (Os-
en-Sand et al., 1993). Subsequent reports using different 
approaches, either employing botulinum toxins or protein 
overexpression confirmed the involvement of Snap25 in 
neurite outgrowth and sprouting (Morihara et al., 1999; 
Shirasu et al., 2000). However, mice deficient for Snap25 did 
not display neural circuitry defects, suggesting the existence 
of compensatory mechanisms in action by other members 
of the SNARE family. Consistent with this idea Stx1a, Stx3, 
Stx6, Stx13, Snap23, Vamp2, Vamp4 and Vamp7 have also 
been implicated in neurite outgrowth in roles that vary from 
membrane trafficking to early endosomal and trans-Golgi 
network trafficking, exocytosis of endosomes and PPVs (Ig-
arashi et al., 1996; Hirling et al., 2000; Shirasu et al., 2000; 
Zhou et al., 2000; Martinez-Arca et al., 2001; Darios and 
Davletov, 2006; Kabayama et al., 2008; Colombo et al., 2014; 
Grassi et al., 2015). 

Evidence for differential SNARE protein expression and 
function, which can affect the neuronal growth in different 
cell types, is starting to appear. The best example constitutes 
the contribution of different isoforms of syntaxin1 protein 
during embryonic development. In mice, loss of function 
of STX1A and STX1B give rise to different phenotypes. 
Whereas STX1A mice have apparently just minor problems, 
STX1B ones die at early post-natal age. These observations 
have been attributed to isoform differences, expression pat-
tern and function (Ruiz-Montasell et al., 1996; Kofuji et al., 
2014; Mishima et al., 2014; Wu et al., 2015).

Taken together, all these results indicate that more exper-
iments are needed to clarify the involvement of the SNARE 
complexes in exocytosis during neurite outgrowth.

SNARE Proteins and Endocytosis
As previously mentioned, SNARE proteins have been main-
ly known to be involved in vesicle release, both in the course 
of neurotransmission and during the elongation and guid-
ance of the growth cone in development. However, recent 
findings indicate that SNARE proteins contribute also to 
the endocytic process, mainly after vesicle release at mature 
synapses. Endocytosis is needed to recover synaptic vesicles 
from places on the membrane in which they previously 
fused. In neurons, two types of endocytosis are generally 
accepted: a slow, clathrin-dependent endocytosis requiring 
the classical endocytic proteins as dynamin, AP2 and auxilin 
(Dittman and Ryan, 2009) and a fast endocytosis, necessary 
for a faster retrieval of vesicles and proteins as needed for 
kiss and stay or kiss and run mechanisms of release (Smith 
et al., 2008). During fast endocytosis synaptic vesicles would 
keep their identity and also localization. Slow or fast endo-
cytosis are differently activated at synapses matching the 
activity of the specific synapse and its physiological require-
ments (Smith et al., 2008; Watanabe et al., 2013).

One of the first findings involving SNARE proteins in 
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endocytosis was found in Saccharomyces cerevisiae, where 
when abolishing the function of a t-SNARE, belonging to 
the syntaxin protein family, the early steps of the endocyt-
ic pathway were imbalanced (Seron et al., 1998). A more 
critical analysis on the different types of endocytosis in the 
nervous system showed that fast endocytosis was blocked 
knocking down Vamp2 in mouse hippocampal synapses 
(Deak et al., 2004), while abolishing Snap25 at cultured 
hippocampal neurons did not avoid sucrose induced dye 
uptake by endocytosis (Bronk et al., 2007). These results 
appeared to be in conflict with some others in which cleav-
age of synaptobrevin/Vamp2 with tetanus toxin at a giant 
nerve terminal, the calyx of Held, blocked slow endocytosis 
(Hosoi et al., 2009) whilst Snap25 was shown to mainly reg-
ulate slow-endocytosis in rat cultured hippocampal synapses 
(Zhang et al., 2013).

Another study examined all these findings and together 
with their experiments came to the conclusion that Vamp2 
is needed for both slow and fast-endocytosis, as well as 
Snap25 and Stx1, suggesting the importance of all vesicular 
and membrane-targeted SNARE in this important process 
(Xu et al., 2013).

The next steps will be to understand which are the molec-
ular interactions allowing SNARE proteins to differentially 
participate in exocytosis and endocytosis. At the moment, it 
has been suggested that the N-terminus of the SNARE motif 
of Vamp2 binds to the ANTH domain of endocytic adaptors 
AP180 and Clathrin Assembly Lymphoid Myeloid leukemia 
(CALM), both of which are involved in endocytosis (Koo et 
al., 2011; Miller et al., 2011). SNAP-25 is able to bind to in-
tersectin, another endocytic protein, with the same strength 
it binds to Stx1 (Okamoto et al., 1999). Finally, Stx1 may 
interact with dynamin, a GTPase mediating vesicle fission 
after endocytosis (Galas et al., 2000). Overall, more experi-
ments are needed to explore the role of SNARE proteins in 
endocytosis as it might be of great interest also in elucidat-
ing processes occurring during axonal regeneration.

The SNARE Complex in Axonal Guidance in 
Vertebrates and Invertebrates 
Axonal growth cone navigation involves the coordination of 
cytoskeletal rearrangements with the regulation of adhesion 
components and membrane trafficking. The growth cone 
is a unique structure capable of guiding axons to their final 
destinations. Within the growth cone, extracellular guid-
ance cues are interpreted and then transduced into physical 
changes and axonal movement. Growth cones are filled 
with vesicles and express most SNARE and exocyst proteins 
(Sabo and McAllister, 2003; Yuan et al., 2003; Condeelis et 
al., 2005; Chernyshova et al., 2011; Fujita et al., 2013). Many 
reports indicated that vertebrate axon guidance mechanisms 
require the participation of SNARE-mediated exocytosis 
for chemoattraction and endocytosis for repulsion (Cotrufo 
et al., 2011, 2012; Zylbersztejn et al., 2012; Tojima et al., 
2014). For example, the vSNARE VAMP2 is required for 
L1-mediated chemoattraction and for Sema3A-induced che-
morepulsion in vivo (Tojima et al., 2007; Zylbersztejn et al., 
2012). Compatible with this, Vamp2 deficient mice show a 

disorganized corpus callosum similar to the loss of Sema3A 
(Zylbersztejn et al., 2012). Furthermore, Stx1 and Vamp7 
are required for Netrin-1-mediated attraction of axons and 
migrating neurons, whereas Vamp2 function is dispensable 
in this process in cultured mouse neurons (Cotrufo et al., 
2011, 2012). However, Snap25 and Vamp2 deficient mice 
show virtually no neural circuitry defects but display a se-
vere alteration of evoked synaptic activity (Schoch et al., 
2001; Molnar et al., 2002; Washbourne et al., 2002). And 
TI-VAMP-deficient mice display behavioural defects but no 
alterations in gross brain morphology (Danglot et al., 2012). 
In addition, the knock-out (KO) mice currently available 
for Syntaxin-1A (Stx1a) isoform show only mild cognitive 
defects and a normal brain structure (Fujiwara et al., 2006). 
And mice KO for the other Stx1 isoform, Stx1b, revealed 
that STX1B is dispensable for the formation of the mouse 
neuromuscular junction (NMJ) but required to maintain the 
efficiency of neurotransmission (Wu et al., 2015). Accord-
ingly, it was suggested that Stx1a and Stx1b are functionally 
redundant, leading to the need of creation of a double KO 
mouse by removing both isoforms. Recently, Vardar and 
colleagues achieved this and showed that Stx1 is essential for 
the maintenance of developing and mature neurons and also 
for vesicle docking and neurotransmission (Vardar et al., 
2016). However, no analysis of axonal guidance phenotypes 
was performed in Stx1 double knockout mice. So, currently 
there is a clear need for more animal models that can clarify 
the different results obtained from in vivo genetic approach-
es versus ex vivo petri dish experiments. 

Recently, this has been studied using chick and Drosophila 
melanogaster embryos, two models amenable for gene ma-
nipulation followed by in vivo analysis of axonal guidance. 
In both model systems, the participation of SNARE proteins 
in the development of the peripheral nervous system (PNS), 
in particular in the guidance of motor axons has been an-
alysed (Barrecheguren et al., 2017). It was shown that loss-
of-function of SNARE proteins leads to severe guidance 
phenotypes in motor axons highlighting a role for neu-
rotransmitter-related SNARE proteins in motor axon guid-
ance in both vertebrates and invertebrates (Barrecheguren et 
al., 2017).

Drosophila melanogaster presents neural expression of 
SNARE complex components homologous to the vertebrate 
complex (DiAntonio et al., 1993; Cerezo et al., 1995; Schul-
ze et al., 1995; Risinger et al., 1997; Moussian et al., 2007). 
Mutations in components of the core SNARE complex give 
rise to synaptic transmission and neurotransmitter release 
phenotypes (Broadie et al., 1995; Schulze et al., 1995; Lit-
tleton et al., 1998). In addition, the Drosophila Syntaxin1 
homologue, Syntaxin1A (Syx1A) has been reported to affect 
the properties of neuronal membranes (Schulze and Bellen, 
1996). Drosophila embryos mutant for Syx1A presented 
defects in axonal navigation and fasciculation (Barreche-
guren et al., 2017). These findings show that defects linked 
to SNARE protein downregulation are clearly connected to 
axonal guidance mechanisms. Previous in vitro studies indi-
cated that various SNARE proteins are required for axonal 
guidance mechanisms linked to Netrin1/DCC and Class 
III Semaphorins/Plexins (Tojima et al., 2007; Cotrufo et al., 
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2011, 2012), thereby suggesting that the coupling of guid-
ance receptors to the cell machinery regulating exocytosis 
is a common mechanism in axonal guidance. Results in fly 
embryos are in accordance with an interaction of Drosophila 
Syx1A with frazzled (fra, the fly DCC homolog). However, 
Syx1A motor axon phenotypes are stronger than the fra 
phenotypes, and also resemble phenotypes in line with beat-
Ia or unc-5 compound guidance mutants (Fambrough and 
Goodman, 1996; Labrador et al., 2005; Zarin et al., 2014). 
This suggests that Syx1A may collaborate with axonal guid-
ance pathways other than Netrin/Frazzled. Accordingly, 
in Drosophila embryos a genetic interaction was detected 
between Syx1A and Robo pathway components (Barreche-
guren et al., 2017). 

Taking together the knowledge generated from using 
these many different model systems and approaches and 
taking advantage of the conservation of SNARE protein 
function between vertebrates and invertebrates, two main 
models have arisen to incorporate the involvement of 
SNARE proteins in axonal growth and guidance. These try 
to incorporate how guidance signals coordinate spatio-tem-
porally the new membrane addition with the cytoskeletal 
rearrangements despite many of the details not being well 
understood yet.

One model proposes that SNARE proteins participate in 
signalling receptor trafficking (Figure 1A). In this model, 
the blockade of a particular SNARE protein will affect the 
exocytic delivery and/or the endocytic receptor turnover 
and, consequently, affect the chemotropic response. This 
model has been postulated to account for Vamp2 action 
during Sema3A chemorepulsion (Zylbersztejn et al., 2012) 
and for the regulation of Robo1 surface expression on com-
missural axons in vertebrates (Philipp et al., 2012). Howev-
er, in other systems alternative mechanisms may operate. 
Another model proposes that SNARE proteins participate in 
the clustering of receptors onto a specific part of the growing 
growth cone (Figure 1B). This model accounts for the Ne-
trin-1/DCC-mediated attraction of axons depending on Stx1 
and Ti-Vamp/Vamp7 (Cotrufo et al., 2011). In this system, 

the blockade of SNARE proteins does not affect the delivery 
of the receptor DCC to the plasma membrane. As Stx1 phys-
ically associates with DCC and this association is enhanced 
by the binding of the ligand, Netrin-1 activation of DCC 
receptors results in ligand dependent clustering of DCC/
Stx1 complexes in activated membrane domains. It has been 
postulated that the membrane expansion at these domains 
will be produced by the fusion of exocytic vesicles mediated 
by Stx1–Ti-Vamp/Vamp7 association (Cotrufo et al., 2011). 
The molecular details explaining why in this scenario Stx1 
recruits Ti-Vamp vesicles and not Vamp2 ones, as occurs 
during neurotransmission, are still not known. There is the 
possibility that both models can be in play to control axon 
guidance, the SNARE complex acting in receptor trafficking/
turnover but also being responsible for receptor clustering 
onto specific parts of the growing growth cone.

Overall, studies on SNARE proteins in axonal guidance, 
have presented conflicting data regarding the implication 
of these proteins directly in axonal guidance at the midline, 
but seem to suggest that motor axon guidance depends on a 
functional SNARE complex, which is conserved from inver-
tebrates to vertebrates (Barrecheguren et al., 2017). Current 
models are missing more studies on the involvement of the 
SNARE complex in axonal guidance in the midline of both 
vertebrates and invertebrates.

The SNARE Complex in Neuroregeneration
Injury to the nervous system damages axons, causing their 
retraction, a widespread loss of synaptic connections, and 
consequently a deficit of function that can be devastating 
to the overall organism. Axonal regeneration after damage 
requires the axon to repair its damaged membrane, redis-
tribute or manufacture what it needs in order to survive, and 
grow and form new synapses within a more mature, com-
plex environment. For nerve repair to work and regenera-
tion to occur, distinct events have to occur in a coordinate 
manner. First, anterogradely transported vesicles accumu-
late at the axons, while others are generated at the severed 
end to restore a selective barrier to the cut axon. Then, ret-
rograde transport of vesicles along microtubules informs 

Table 1  GeneBank nomenclature for the Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex proteins appearing in this 
article 

Homo sapiens Rattus norvergicus Mus musculus Gallus gallus Drosophila melanogaster

Syntaxins
STX1A Stx1a Stx1a STX1A  Syx1A
STX1B Stx1b Stx1b STX1B -
STX2 Stx2 Stx3 STX2 -
STX3 Stx3 Stx3 STX3 -
Vamp (vesicle associated membrane protein)
VAMP1 Vamp1 Vamp1 VAMP1  Syb (Synaptobrevin)
VAMP2 Vamp2 Vamp2 VAMP2  n-Syb (neuronal Synaptobrevin)
VAMP7 Vamp7 Vamp7 VAMP7 Vamp7
Snap (synaptosome associated protein)
SNAP25 Snap25 Snap25 SNAP25 Snap25 

We kept the human nomenclature for generic mentions to SNARE proteins and each species nomenclature when referring to specific model 
organisms. Stx: Syntaxin; Syx1A: Syntaxin1A.
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the cell body that damage has occurred in the distal axon. 
Finally, membrane addition to a newly formed growth cone, 
or to the axonal membrane is required to promote axonal 
re-growth and elongation (Tuck and Cavalli, 2010). 

The molecular mechanisms that support axon repair and 
growth clearly parallel the mechanisms that mediate syn-
aptic vesicle trafficking and neurotransmitter release within 
uninjured axons, especially during embryonic development. 
Specifically, both require calcium, SNARE proteins and 
their effectors and cytoskeletal remodelling. Members of the 
SNARE machinery appear to regulate not only vesicle fusion 
to promote axon resealing but also axonal membrane exten-
sion and regrowth (Bloom and Morgan, 2011). For instance, 
syntaxin13 (Stx13) expression was increased by injury of 
mouse sciatic nerves in vivo and knockdown of Stx13 in cul-
tured DRG neurons prevented axonal growth and regenera-
tion (Cho et al., 2014).

Most of what we know about SNARE-mediated vesicle 
exocytosis comes from studies of synapses within uninjured 
axons (Augustine et al., 1999; Lin and Scheller, 2000; Pang 
and Sudhof, 2010). Here, calcium entering at the synapse 
binds to its sensor, synaptotagmin-1. Synaptotagmin then 
interacts with the SNARE complex, comprising the plas-
ma membrane proteins syntaxin and SNAP-25 and the 
vesicle-associated membrane protein VAMP-2/ synapto-
brevin-2, and in doing so triggers vesicle fusion and neu-
rotransmitter release. Similarly, after injury to squid and 
crayfish axons, membrane sealing also requires the functions 
of Syntaxin and Synaptotagmin (Detrait et al., 2000). And 
regenerating photoreceptors can regulate the expression of 
a proper set of synaptic vesicle proteins with VAMP being 
present in all stages of regenerative growth (Yang et al., 
2002). Therefore, a model emerges indicating that the crit-
ical requirements for ensuring proper membrane sealing 
and axon extension after injury include iterative bouts of 
SNARE mediated exocytosis, endocytosis, and functional 
links between vesicles and the actin cytoskeleton, similar to 
the mechanisms utilized during synaptic transmission.

Insights into the role of SNAREs in neuroregeneration 

may come from regenerating model organisms. In geckos 
(Gekko japonicus), SNAP25 has been shown to be involved 
in spinal cord regeneration by promoting outgrowth and 
elongation of neurites (Wang et al., 2012). In tiger salaman-
ders (Ambystoma tigrinum), regenerating adult photore-
ceptors require autonomous VAMP expression, whereas 
SNAP-25 is undetectable (Yang et al., 2002). In worms 
(Caenorhabditis elegans), axonal regeneration is promoted 
by alternative splicing of Syntaxins (Chen et al., 2016). More 
studies are needed in these model organisms to bring on a 
clearer picture of the role of SNAREs in neuroregeneration 
(Table 1).

Future Directions 
Despite the evidence indicating the implication of several 
SNARE members in neurite outgrowth and axon guidance, 
their precise role in these processes is far from being well 
understood. The main challenges for future research in this 
field are: i) to characterize in detail the precise composition 
and function of SNARE complexes participating in neurite 
outgrowth/axon guidance. This could be achieved using 
imaging techniques such as Fluorescence Resonance Ener-
gy Transfer (FRET) or single molecule detection in living 
cells together with genetic and biochemical strategies; ii) to 
understand how different SNARE members are selectively 
regulated and how their action is coordinated with other 
events relevant in neurite outgrowth/axon guidance; and, iii) 
to confirm whether and how the nature of cargo molecules, 
whose transport/sorting is mediated by SNARE complexes, 
is relevant during the neurite/axon guidance processes. This 
can be achieved using different model systems, from cell 
culture to in vivo whole organism analysis. Studies using 
genetically amenable model organisms such as Drosophila 
melanogaster in parallel to vertebrate models are starting to 
prove to be extremely useful in dissecting the function of 
SNARE proteins in nervous system development (Barreche-
guren et al., 2017).

Last but not least, we believe that SNARE function to be ex-
tremely relevant in axonal regeneration. Therefore, strategies 

Figure 1 Schematic representation of the different models implicating the Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) 
complex in axonal guidance. 
(A) SNARE proteins participate in signalling receptor trafficking. (B) SNARE proteins participate in the clustering of receptors onto a specific part 
of the growing growth cone.
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modulating the activity of SNARE proteins in lesioned axons 
can potentially be useful in the establishment of new thera-
pies to enhance membrane insertion at the cut axonal edges, 
thereby potentiating neuronal repair and regeneration.
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