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Abstract: Von Hippel Lindau (VHL) inactivation, which is common in clear cell renal cell car-
cinoma (ccRCC), leads directly to the disruption of oxygen homoeostasis. VHL works through
hypoxia-inducible factors (HIFs). Within this VHL-HIF system, prolyl hydroxylases (PHDs) are
the intermediary proteins that initiate the degradation of HIFs. PHD isoform 3′s (PHD3) role in
ccRCC growth in vivo is poorly understood. Using viral transduction, we knocked down the ex-
pression of PHD3 in the human ccRCC cell line UMRC3. Compared with control cells transduced
with scrambled vector (UMRC3-SC cells), PHD3-knockdown cells (UMRC3-PHD3KD cells) showed
increased cell invasion, tumor growth, and response to sunitinib. PHD3 knockdown reduced HIF2α
expression and increased phosphorylated epidermal growth factor (EGFR) expression in untreated
tumor models. However, following sunitinib treatment, expression of HIF2α and phosphorylated
EGFR were equivalent in both PHD3 knockdown and control tumors. PHD3 knockdown changed
the overall redox state of the cell as seen by the increased concentration of glutathione in PHD3
knockdown tumors relative to control tumors. UMRC3-PHD3KD cells had increased proliferation in
cell culture when grown in the presence of hydrogen peroxide compared to UMRC3-SC control cells.
Our findings illustrate (1) the variable effect of PHD3 on HIF2α expression, (2) an inverse relationship
between PHD3 expression and tumor growth in ccRCC animal models, and (3) the role of PHD3 in
maintaining the redox state of UMRC3 cells and their proliferative rate under oxidative stress.

Keywords: prolyl hydroxylases; renal cell carcinoma; hypoxia inducible factor 2α

1. Introduction

About 90% of kidney cancers are renal cell carcinomas (RCCs) [1], the incidence of
which has been increasing over the past decade [2]. Despite recent advances in therapy,
the mean survival duration of patients with metastatic RCC is only 13–27 months [1].
The development of effective therapies to improve these patients’ dismal prognoses requires
a better understanding of the mechanisms underlying the carcinogenesis of RCC [3].

Clear cell RCC (ccRCC) accounts for approximately 70% of all RCCs and metabolic re-
programming plays a central role in ccRCC carcinogenesis. Approximately 90% of ccRCCs
show inactivation of the von Hippel Lindau gene, VHL [1]. VHL inactivation increases the
expression levels of hypoxia-inducible factors (HIFs), which drive ccRCC carcinogenesis.
Expression of HIFα, which is oxygen-labile, and HIFβ, which is constitutively expressed,
leads to the transcription of multiple genes associated with angiogenesis, cell survival,
and glycolysis [4–6]. Of the 3 known HIFα isoforms, HIF1α and HIF2α are most important

Int. J. Mol. Sci. 2021, 22, 2849. https://doi.org/10.3390/ijms22062849 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22062849
https://doi.org/10.3390/ijms22062849
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062849
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/6/2849?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 2849 2 of 16

in the carcinogenesis of ccRCC [7]. In the presence of oxygen, HIF proteins are hydroxy-
lated on proline residues, which provides a recognition site for E3 ubiquitin ligases such
as von Hippel Lindau protein. Ubiquitination of HIF proteins leads to their subsequent
degradation by the proteasome. Hydroxylation of HIF proteins is facilitated by prolyl
hydroxylases (PHDs). Under normoxic conditions, all 3 PHD isoforms (PHD1, PHD2,
and PHD3) hydroxylate conserved proline residues in HIFα. However, the activity and
expression pattern of PHD3 is distinct from PHD1 and PHD2 [8]. PHD3 is more active
towards HIF2α than HIF1α and retains its activity even under hypoxic conditions.

PHD3 expression is downregulated in prostate and breast cancer cell lines but up-
regulated in RCC, some squamous cell carcinomas, and glioblastomas [8]. Given its role
in HIF regulation, PHD3 expression could play a significant role in ccRCC progression.
The purpose of this study was to determine the role of PHD3 in ccRCC growth in cell
culture and animal models.

2. Results
2.1. RCC Cell Lines Have Varying Levels of PHD3 Expression

We carried out RT-PCR analysis to measure the level of PHD transcripts in RCC cell
lines. This analysis revealed A-498, UMRC3, A-704, and 786-O cells had higher PHD3
expression levels than the 5 other RCC cell lines (Figure 1a,b). All cell lines had similar
PHD1 expression levels but had varying PHD2, HIF1α, HIF2α, and VHL expression
levels. Based on our previous experience with UMRC3 cells in culture [9], and A498 being
an outlier in the PHD3 expression pattern, we chose to perform shRNA knockdown of
PHD3 in UMRC3 cells in order to interrogate its effect on cell proliferation, migration,
and metabolism. UMRC3 cells transfected with PHD3 shRNA (UMRC3-PHD3KD) showed
reduced PHD3 protein expression compared with UMRC3 cells transfected with scrambled
shRNA (UMRC3-SC cells) (Figure 2a).

2.2. PHD3 Knockdown Increases Cell Migration but Not Cell Proliferation

We next sought to understand the relationship between PHD3 expression and UMRC3
cell migration in culture. Cell migration was measured using wound healing assays. Com-
plete wound closure was observed within 24 h with UMRC3-PHD3KD cells, while wound
closure was incomplete at 30 h with UMRC3-SC cells (Figure 2b). UMRC3-PHD3KD cells
also showed enhanced mobility over 12 h relative to UMRC3-SC cells in cell migration
assays (Figure 2c). Interestingly, there was no significant difference in the proliferation
rate of UMRC3-PHD3KD cells relative to UMRC3-SC cells at 24, 48, or 72 h in culture
(Figure 2d). Similar results were observed in 786-O cells where PHD3 expression was
reduced by shRNA knockdown (Figure A1).

2.3. PHD3 Knockdown Increases Tumor Growth

To determine the effects of PHD3 suppression on tumor growth, 5 million UMRC3-
PHD3KD or UMRC3-SC cells were injected into the right flank of SCID mice in 3 separate
experiments. In all experiments, the growth rate of the UMRC3-PHD3KD tumors was
significantly higher than UMRC3-SC tumors. UMRC3-PHD3KD tumors were significantly
larger than UMRC3-SC control tumors 21 and 28 days after cell injection (Figure 3a, p < 0.02
(21 days) and p < 0.0005 (28 days) with 8 to 10 animals per measurement). Spider plots for
individual animals presented in Figure A2.

2.4. PHD3 Knockdown Sensitizes Tumors to Sunitinib

Sunitinib is an orally available multi-target tyrosine kinase receptor inhibitor (TKI) that
is a first line therapy for ccRCC patients [10]. One of its main targets are vascular endothelial
growth factor (VEGF) receptors resulting in the disruption of angiogenesis signaling.
In RCC, HIF2α can play a major role in driving VEGF receptor expression [11]. To determine
how PHD3 knockdown interacts with sunitinib treatment, UMRC3-PHD3KD and UMRC3-
SC tumor-bearing mice were treated daily with sunitinib after tumor volumes reached
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approximately 100 mm3. Untreated UMRC3-PHD3KD tumors (NT) were significantly
larger than sunitinib-treated UMRC3-PHD3KD tumors (TR) (Figure 3b, p < 0.0001 with
3 to 8 animals per measurement). A larger size reduction is observed in UMRC3-PHD3KD
tumors after 12 and 16 days of sunitinib treatment compared to sunitinib-treated UMRC3-
SC tumors (Figure 3c, p < 0.002, 4 to 8 animals per measurement). Spider plots for individual
animals are provides in Figure A2.
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Figure 1. RCC cell lines show varying levels of PHD3 expression. (a) Agarose gel electrophoresis of RT-PCR products of
RNA isolated from the indicated RCC cell lines shows varying levels of the PHD3 transcript. (b) Densitometry analysis of
the gel shown in Figure 1a. Measurements are plotted as ratios of PHD1, PHD2, and PHD3 to the scaffold protein LIMD1.
Transcript signal in the A-498 lysate was found to be saturated.
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Figure 2. Effects of PHD3 knockdown in vitro. (a) Western analysis confirmed significant reduction of PHD3 expres-
sion in UMRC3 cells transfected with PHD3 shRNA (UMRC3-PHD3KD) relative to cells transfected with scrambled
shRNA (UMRC3-SC). All subsequent in vitro and in vivo experiments used the clone with highest PHD3 knockdown
efficiency. (b) Wound healing assays revealed that UMRC3-SC cells (top row) showed incomplete wound healing at 30 h,
whereas UMRC3-PHD3KD cells (bottom row) showed complete wound healing within 24 h. 6 replicates per cell line were
performed. (c) Migration assays revealed more extensive migration of UMRC3-PHD3KD cells compared to UMRC3-SC
cells over a 12 h period. (d) Sulforhodamine B assays revealed that the proliferation rates of UMRC3-PHD3KD cells and
UMRC3-SC were not significantly different at 24, 48, or 72 h (8 samples per time point per cell line).
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Figure 3. UMRC3-PHD3KD tumors grow more rapidly than UMRC3-SC tumors. (a) UMRC3-PHD3KD tumors were
significantly larger than UMRC3-SC control tumors at 21 days (* p < 0.02) and 28 days (** p < 0.0005) after cell injection.
(b) Untreated UMRC3-PHD3KD tumors (NT) were significantly larger than sunitinib-treated UMRC3-PHD3KD tumors
(TR) throughout the experiment with the greatest significance between cohorts observed 28 and 32 days post-treatment
(** p < 0.0001). (c) A replotting of the growth curves for UMRC3-SC NT, UMRC3-SC TR and UMRC3-PHD3KD TR tumors
to observe the change in tumor size between UMRC3-SC NT and UMRC3-SC TR cohorts. The combination of sunitinib
treatment and PHD3 knockdown resulted in a larger size reduction in UMRC3 tumors relative to sunitinib treatment alone.
This was readily observable in the size difference of treated versus untreated UMRC-PHD3KD and UMRC-SC tumors at
12 and 16 days (p < 0.002).

2.5. Varying HIF2α and pEGFR Expression with PHD3 Knockdown and Sunitinib Treatment

To determine the correlation between PHD3, HIF1α, and HIF2α expression, West-
ern analysis was performed on lysates from untreated tumors (NT) and tumors treated
with sunitinib (TR) (Figure 4a). Untreated UMRC3-PHD3KD tumors had lower HIF2α
expression than untreated UMRC3-SC tumors (p < 0.002 with 3 to 5 replicates per tumor
type). However, following treatment both tumor types had equivalent HIF2α expression
(Table 1). PHD3 expression was statistically lower in UMRC3-PHD3 TR tumors compared
to UMRC3-SC TR tumors (p < 0.001 with 8 to 10 replicates per tumor type).

In glioblastoma cell lines, PHD3 increases the levels of phosphorylated epidermal
growth factor receptor (EGFR) by inhibiting receptor internalization [12,13]. To determine
if pEGFR upregulation is associated with PHD3 loss in UMRC3, we performed Western
analyses on tumor lysates (Figure 4b). We observed a statistically significant increase in
pEGFR levels in untreated UMRC3-PHD3KD tumors versus untreated UMRC3-SC tumors
(p < 0.05, 4 replicates per tumor type). Equivalent expression of total EGFR was observed
in both tumor types (Figure 4c). pEGFR levels were found to be equivalent in PHD3
knockdown and scrambled tumors following sunitinib treatment.

2.6. PHD3 Knockdown Changes Cellular Redox

Prior work revealed that metabolism varies after PHD3 knockdown in cell culture
models of RCC [14]. However, using nuclear magnetic resonance (NMR) spectroscopy
metabolomic profiling, we observed no significant differences in the levels of lactate and
other metabolites between UMRC3-PHD3KD tumors and UMRC3-SC tumors (2-way
ANOVA with multiple comparisons, Table A1). However, the levels of glutamine, glu-
tathione and the spectral resonance for trimethylamine are different between the 2 tumor
types suggesting that PHD3 expression modulates glutamine metabolism and oxidative
stress. Therefore, we measured the expression of multiple proteins associated with glu-
tamine metabolism (Figure 4d–f). We observed suppressed expression of ASCT2 in both un-
treated and treated UMRC3-PHD3KD tumors compared to UMRC3-SC tumors (Figure 4d,
p < 0.01, 3 to 4 replicates per tumor type). Sunitinib-treated UMRC3-PHD3KD and UMRC3-
SC tumors showed lower GLS1 expression relative to their untreated counterparts, while a
slight reduction in GLS1 expression was observed between untreated UMRC3-PHD3KD tu-
mors compared to untreated UMRC3-SC tumors (Figure 4e). Conversely, GLS2 expression,
based on densitometry measurements, is similar in UMRC3-PHD3KD and UMRC3-SC
tumors and does not change after sunitinib treatment (Figure 4f).
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Figure 4. PHD3 knockdown reduced HIF2α expression and increased pEGFR expression in untreated tumors (NT). This
effect disappeared after sunitinib treatment (TR). UMRC3-PHD3KD tumor samples are highlighted in red boxes while
UMRC3-SC tumor samples are highlighted in black boxes. Densitometry ratio measurements of each protein over the
loading control shown in Table 1. (a) Western analysis and densitometry revealed that untreated UMRC3-PHD3KD tumors
had slightly lower PHD3 expression but significantly lower HIF2α expression (p < 0.002) compared to untreated UMRC3-SC
tumors. Western analysis and densitometry also revealed that sunitinib-treated UMRC3-PHD3KD tumors had lower
PHD3 expression (p < 0.001), but essentially equivalent HIF2α expression, relative to sunitinib-treated UMRC3-SC tumors.
(b) Western analysis revealed higher pEGFR expression in untreated UMR3-PHD3KD tumors compared to untreated
UMRC3-SC tumors (p < 0.05), which was not present after sunitinib treatment. (c) EGFR expression was similar between
UMRC3-PHD3KD and UMRC3-SC tumors in both treated and untreated cohorts. (d) Western analysis showed suppressed
expression of ASCT2 in UMRC3-PHD3KD tumors relative to UMRC3-SC tumors independent of sunitinib treatment.
In both blots, the difference in expression of ASCT2 was significant (p < 0.01). (e) GLS1 expression is slightly lower in
untreated UMRC3-PHD3KD tumors versus untreated UMRC-SC tumors. However, we observe lower overall expression of
GLS1 in all tumors (UMRC3-PHD3KD and UMRC3-SC) after sunitinib treatment. No difference in GLS1 expression was
observed between sunitinib-treated UMRC3-PHD3KD and UMRC3-SC tumor samples. (f) GLS2 expression is similar in
UMRC-PHD3KD and UMRC3-SC tumor samples and is not affected by sunitinib treatment.



Int. J. Mol. Sci. 2021, 22, 2849 6 of 16

Table 1. Densitometry measurement of PHD3, HIF1α, HIF2α, pEGFR, and EGFR over loading control protein as visualized
in Figure 4.

Tumor Type PHD3/
β-actin

HIF1α/
β-actin

HIF2α/
β-actin

pEGFR/
β-actin

EGFR/
β-actin

ASCT2/
β-actin

GLS1/
β-actin

GLS1/
Histone-H3

GLS2/
Histone-H3

UMRC3-
PHD3

NT
0.38 ± 0.15 0.40 ± 0.11 * 0.50 ± 0.15 * 0.13 ± 0.04 5.58 ± 0.57 * 0.0081 ±

0.00047 1.11 ± 0.26 1.04 ± 0.30

UMRC3-SC
NT 0.59 ± 0.03 0.44 ± 0.11 * 0.95 ± 0.27 * 0.05 ± 0.03 5.32 ± 0.87 * 0.70 ± 0.32 1.50 ± 0.48 0.79 ± 0.32

UMRC3-
PHD3

TR
* 0.21 ± 0.09 0.23 ± 0.19 0.92 ± 0.18 0.21 ± 0.15 0.50 ± 0.16 * 0.019 ±

0.024 0.48 ± 0.13 0.83 ± 0.51

UMRC3-SC
TR * 0.54 ± 0.06 0.25 ± 0.10 0.77 ± 0.42 0.23 ± 0.07 0.52 ± 0.13 * 0.81 ± 0.16 0.53 ± 0.07 0.77 ± 0.08

Average± standard deviation given for each protein. NT stands for no treatment while TR stands for sunitinib treatment. * PHD3 expression
was statistically lower in UMRC3-PHD3 TR tumors compared to UMRC3-SC TR tumors (* p < 0.001, 8 to 10 replicates per tumor type).
While HIF2α expression was statistically lower in UMRC3-PHD3 NT tumors compared to UMRC3-SC NT tumors (* p < 0.002, 3 to
5 replicates per tumor type). pEGFR expression was found to be higher in UMRC3-PHD3KD NT tumors compared to UMRC3-SC NT
tumors (* p < 0.05, 4 replicates per tumor type). ASCT2 expression was found to be lower between UMRC3-PHD3KD and UMRC3-SC
tumors in both treated and untreated cohorts (* p < 0.01, 3 to 4 replicates per tumor type).

To determine how PHD3 knockdown affects cellular redox, we determined the con-
centration of reduced glutathione (GSH) and oxidized glutathione (GSSG) in UMRC3-
PHD3KD versus UMRC3-SC tumors. A colorimeteric assay for glutathione showed that
UMRC3-PHD3KD tumors had twice the amount of GSSG and GSH relative to UMRC3-
SC tumors (Figure 5a, data are from 2 separate experiments, 8 samples per experiment,
* p < 0.005, Holm-Sidak multiple t-test method). The GSH:GSSG ratio for UMRC3-PHD3KD
tumors was smaller than that for UMRC3-SC tumors (2.6 versus 3.2 respectively), sug-
gesting increased oxidative stress in the PHD3KD tumors [15]. To further explore the
relationship between reactive oxygen species and PHD3 expression, we measured the
amount of hydrogen peroxide (H2O2) produced by UMRC3-PHD3KD and UMRC3-SC
cells. Bioluminescence assays revealed that UMRC3-PHD3KD and UMRC3-SC cells pro-
duced different concentrations of H2O2 (Figure 5b, 8 to 6 replicates per condition, p < 0.002).
In addition, we observed higher proliferation of UMRC3-PHD3KD versus UMRC3-SC cells
in the presence of H2O2 (Figure 5c). Initially, cells were grown in high concentrations of
H2O2 (156 µM to 5 mM). In both cell types, few cells were observed with concentrations of
H2O2 higher than 312.5 µM (six replicates per condition). However, higher proliferation
was observed with UMRC3-PHD3KD versus UMRC3-SC cells with H2O2 concentrations
between 25 µM to 200 µM (one-way ANOVA with Tukey multiple comparisons, data are
from 2 separate experiments, 12 replicates per condition, p < 0.05).
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3. Discussion

We observed varying levels of HIF1α, HIF2α, PHD3, and VHL expression among
9 RCC cell lines, which supports previous studies showing that RCC depends on hypoxia
pathways [1,4,6,16]. The knockdown of PHD3 in the UMRC3 ccRCC cell line led to
increased tumor growth in mouse models which was inhibited by sunitinib treatment.
This increased growth rate with PHD3 knockdown is counterintuitive if PHD3′s primary
role is the degradation of HIF proteins. These results are in contrast to Miikkulainen et al.,
who reported that the siRNA-mediated knockdown of PHD3 reduces the proliferation and
colony formation of the ccRCC cell lines 786-O and RCC4 [14]. We found no difference
in the proliferation rates of UMRC3-PHD3KD and UMRC-SC cells in culture; however,
higher proliferation in UMRC3-PHD3KD than UMRC3-SC cells occurs when cell lines
are grown in the presence of hydrogen peroxide. Both cell types had different rates of
wound healing and migration. Western blot analysis of proteins involved in hypoxia and
metabolism pathways revealed differential expression of HIF2α, GLS1, pEGFR, and ASCT2
between UMRC3-PHD3 KD and UMRC3-SC tumors. We believe these differences lead to
increases in ROS-mediated growth in UMRC3-PHD3 KD tumors and cells [17].

We found that PHD3 knockdown reduced HIF2α expression in cell culture and animal
models. Like those of Miikkulainen et al. [18], our results show that HIF2α and PHD3
expression are correlated in ccRCC. Untreated UMRC3-PHD3KD tumors had lower levels
of HIF2α expression than untreated UMRC3-SC tumors. However, both tumor types
had equivalent HIF2α expression after sunitinib treatment. The mechanistic reason for
this change is unclear. However, prospective and retrospective studies have shown that
HIF2α and sunitinib response are correlated. Depending on the study, HIF2α expression
either improves response and overall survival [19,20] or is correlated with resistance [16].
The effects of HIF2α expression on sunitinib response may depend on context. For ex-
ample, in treatment-naïve ccRCC, low HIF2α expression could drive sunitinib response.
Conversely, over time, low HIF2α expression could play a role in sunitinib resistance.

Our findings illustrate that PHD3′s ability to affect HIF2α expression is variable and
that a reduced level of HIF2α does not necessarily correlate with reduced tumor growth.
HIF2α’s downstream and upstream interactions in the hypoxia pathway are important for
understanding the overall mechanism of growth inhibition and could inform the clinical
development of HIF2α inhibitors such as PT2399. A small-molecule HIF2α antagonist,
PT2399, inhibits ccRCC growth in humans and animal models [21–24]. PT2385, an analog
of PT2399, is in a phase II clinical trial for the treatment of patients with von Hippel-Lindau
disease-associated ccRCC (NCT03108066). Cho et al. found that the sensitivity of RCC to
PT2399 is highly dependent on HIF2α levels but that certain RCC cell lines (UMRC-2, 769-P,
and SKRC-20) are insensitive to the drug both in culture and animal models, even though
all 3 cell lines have HIF2α expression and mutant VHL [23]. In addition, Chen et al. found
that sensitivity to PT2399 varied among patient-derived xenograft models of ccRCC [22].
Mutant VHL, HIF2α, and p53 clearly interact and are involved in ccRCC carcinogenesis,
but their precise roles in tumor repression and growth remain unclear [23].

Our findings on the role of PHD3 in tumor growth are in good agreement with those
seen in glioblastoma by the Acker laboratory [12,13]. They found the loss of PHD3 in glioma
cells increased EGFR signaling, increased proliferation and reduced apoptosis relative to
PHD3-expressing cells under low growth factor and starvation conditions. This function
of PHD3 was found to be independent of its proline hydroxylation activity. In addition,
this group observed increased hypermethylation of the promoter for the gene (EGLN3)
for PHD3 in glioblastoma tumors compared to normal brain. They concluded that PHD3
knockdown is a direct control mechanism to allow cancer cells to sustain tumor growth
even under normally toxic conditions such as hypoxia. Therefore, loss of PHD3 could
enhance survival in ccRCC by facilitating accelerated growth in the hypoxic environment
of the kidney. Indeed, we observed increased levels of pEGFR in UMRC3-PHD3KD tumors
compared to scrambled controls which was effectively eliminated following sunitinib
treatment. In addition, EGLN3 methylation is significantly different in kidney cancer tissue
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versus normal tissue (Figure A3, [25]) suggesting that epigenetics might play a role in
PHD3 expression in ccRCC.

microRNA has also been shown to regulate PHD3 expression [26]. MicroRNA-1205
(miR-1205) promoted cell proliferation and increased the resistance to H2O2 induced
apoptosis in castration resistant prostate cancer cell lines through its post-transcriptional
regulation of the EGLN3 gene. This effect was found to be mediated by a direct interaction
between miR-1205 with EGLN3 mRNA leading to reduced expression of PHD3. Overex-
pressing PHD3 in prostate cells expressing miR-1205 reduced proliferation and resistance
to H2O2 [26].

One of the most striking effects of PHD3 knockdown in UMRC3 cells is the effect on
intracellular glutathione concentrations. We observe twice the amount of GSH and GSSG
in UMRC3-PHD3KD tumors versus UMRC3-SC tumors. We propose that this increased
concentration of glutathione allows UMRC3-PHD3KD cells to adapt to high concentrations
of reactive oxygen species (ROS). As such, we see higher proliferation of UMRC3-PHD3KD
cells grown in the presence of H2O2 at concentrations between 25 µM to 200 µM compared
to UMRC3-SC cells. We hypothesize that PHD3 knockdown increases ROS-mediated
proliferation. However, further experiments are needed to confirm this hypothesis.

We also observe differences in the expression of glutaminolysis proteins following
PHD3 knockdown. We found that ASCT2 (also named SLC1A5), a major glutamine trans-
porter [27], was suppressed in both untreated and sunitinib-treated PHD3-knockdown
tumors. Our data suggests that PHD3 may have a role in the regulation of this trans-
porter and in glutamine metabolism overall. Glutamine metabolism is upregulated in
ccRCC [28,29] and a link between HIF2α and ASCT2 has been reported before [30]. How-
ever, in our experiments, ASCT2 expression remained low in sunitinib-treated PHD3
knockdown tumors, whereas HIF2α expression was equivalent between sunitinib-treated
PHD3-knockdown tumors and control tumors. After glutamine is transported into a cell,
it can be metabolized through several pathways, including those fueling the citric acid
cycle [31]. In the mitochondria, GLS1 converts glutamine to glutamate. We found that
PHD3-knockdown and control tumors had different levels of GLS1 expression, but this
difference was not as pronounced as that in ASCT2 expression between the 2 tumor types.
The cytoplasmic GLS2 enzyme expression is similar in sunitinib-treated and untreated
UMRC3-PHD3KD and UMRC3-SC tumors. Our data suggests that PHD3 expression affects
ASCT2 expression; however, the mechanism underlying this effect is unclear. In other
cancers, ASCT2 expression can promote tumor growth [32–35]. However, fourteen known
transporters can transport glutamine [36]; and glutamine transporter plasticity and redun-
dancy have been observed in many different cancer cells [37–39]. Additional experiments
will be required to further elucidate changes in the expression pattern of glutamine trans-
porters following PHD3 knockdown.

Our results provide an improved understanding of PHD3 and HIF2α expression in
RCC. With the generation of HIF2α and glutaminolysis inhibitors, it is vital to understand
the manner in which hypoxia pathways are regulated in a VHL mutant cancer such as
ccRCC. Indeed, the components of this pathway may provide prognostic biomarkers
to identify patient responders. Our experiments should be repeated in other ccRCC
cell lines to establish the role of PHD3 in other genetic backgrounds. Deletion of the
EGLN3 gene using CRISPR/Cas9, further interrogation of the PHD3/EGFR signaling axis,
and evaluation of the effects of PHD3 knockdown on metastatic progression in orthotopic
ccRCC animal models could further clarify PHD3′s role in this disease.

4. Materials and Methods
4.1. Cell Culture

The human RCC cell lines A-498, 786-O, ACHN, 769-P, A704, and Caki1 were obtained
from ATCC (Manassas, VA, USA), whereas the cell lines SN12C [40] and UMRC3 [9] were
developed in our institution. UMRC3, A-498, 786-O, A704, and ACHN cells were grown in
minimal essential medium; 769-P cells were grown in RPMI-1640 medium; Caki1 cells were
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grown in McCoy’s 5A medium; and SN12C cells were grown in high-glucose Dulbecco’s
modified Eagle medium. All cell lines were grown in the presence of 10% fetal bovine
serum, 300 mg/mL streptomycin, 100 U/mL penicillin, and 1 non-essential amino acids.
Short tandem repeat analysis was used to authenticate the cell lines. Cells were detached
using 0.25% trypsin with 2.21 mM EDTA. Most of the work uses human ccRCC cell line
UMRC3 [9]. This cell line was derived directly from the primary kidney tumor of a patient
with metastatic ccRCC. This cell line does have a VHL mutation [41] and injection into a
nude or SCID mouse leads to tumor formation and metastatic progression.

4.2. Reverse Transcription Polymerase Chain Reaction

Total RNA was isolated from cell pellets using the mirVana miRNA Isolation Kit
(Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer’s instructions.
RNA was quantified using ultraviolet spectrophotometry. cDNA was synthesized from
1 µg of RNA using the ThermoScript reverse transcription polymerase chain reaction
(RT-PCR) system and Platinum Taq DNA polymerase with Oligo (dT) primers (all from
Thermo Fisher Scientific). The following primers were used for RT-PCR: LIMD1: forward
5′AAGGATGGGCTCTTCCGAGT3′, reverse 5′TCTCCATGAGTGAGGCAGGA3′; PHD1:
forward 5′GAAAAAGCTCGCCACCCTG3′, reverse 5′AGGGAGAGCCTGACTTAGGG3′;
PHD2: forward 5′AGCCCAGTTTGCTGACATTGAA3′, reverse 5′ACTTTAGCTCGTGCTC-
TCTCAT3′; PHD3: forward 5′GTGGCTTCCCATCCCCAAAA3′, reverse 5′CAGGAAGTTG-
TCCAGGTAGCA3′; HIF1α: forward 5′AGGAGGATCACCCTCTTCGT3′, reverse 5′CTCC-
ATGGTGAATCGGTCCC3′; HIF2α: forward 5′GTACAATCCTCGGCAGTGTC3′, reverse 5′-
GACCCGAAAAGAGGACGGAG3′; VHL: forward 5′GAGATGCAGGGACACACGAT3′,
reverse 5′ATCCGTTGATGTGCAATGCG3′; and GAPDH: forward 5′CTCCTGTTCGACA-
GTCAGCC3′, reverse 5′TTCCCGTTCTCAGCCTTGAC3′. PCRs were repeated for 35 cycles.
The RT-PCR products were run on 2% agarose gel, stained with ethidium bromide, and im-
aged (Bio-Rad Gel-Doc System, Hercules, CA, USA).

4.3. Lentiviral Transfection

We used EGLN3 MISSION shRNA transduction particles (type SHCLNV-NM_022073,
Millipore Sigma (Burlington, MA, USA)) to knock down PHD3 according to manufacturer’s
protocol. Briefly, UMRC3 cells were seeded in 96-well plates at 5000 cells per well and
grown for 24 h. The media was then changed, and the cells were infected with lentivirus in
the presence of 5 µg/mL polybrene. After expansion and the addition of a selection marker
(8 µg/mL puromycin), multiple clones were selected and expanded. The clones were
subjected to Western blot analysis; a single clone with the lowest PHD3 expression (UMRC3-
PHD3KD) was used in all experiments. Following the same protocol, we used scrambled
shRNA lentiviral particles (sc-108080, Santa Cruz Biotechnology, Dallas, TX, USA) to create
a single clone (UMRC3-SC), which was used as the control cell line in all experiments.
Similar procedures were followed for the generation of 786-O-PHD3KD and 786-O-SC cells
used in experiments represented in Figure A1.

4.4. Wound Healing Assay

UMRC3-SC and UMRC3-PHD3KD were plated in 6-well plates. After the cells became
over confluent, a 200-µL pipette tip was used to scratch each well, and the plates were
imaged under a microscope every 6 h for up to 30 h. Each well was considered a replicate
(6 replicates per cell line). Similar procedures were used in wound healing assay with
786-O-PHD3KD and 786-O-SC cells. Plates were imaged under the microscope every 6 h
up to 24 h. (Figure A1).

4.5. Migration Assay

To assess cell migration, we used a CytoSelect 24-Well Cell Invasion Assay, Base-
ment Membrane (cat. #CBA-100, Cell Biolabs, Inc., San Diego, CA, USA) according to the
manufacturer’s instructions. Briefly, 500 µL of serum-containing media was added to the
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lower chamber of each well, and 20,000 cells in 300 µL of serum-free media were placed
in the upper chamber. After 24 h, the transwell inserts were removed and stained with
CyQuant® GR Dye supplied by the manufacturer. 3 wells per cell line were stained.

4.6. Cell Proliferation Assay

Cells were plated in a 96-well plate at 5000 cells per well. At the indicated times,
the cells in 8 wells were treated with trichloroacetic acid (10% w/v), washed, and then
treated with sulforhodamine B solution as described previously [42]. The 510 nm ab-
sorbance was measured per well using a plate reader (FLUOStar Omega, BMG Labtech,
Cary, NC, USA).

4.7. Hydrogen Peroxide Measurements in Cell Culture

Cells were plated in a 96-well plate at 5000 cells in 80 µL of solution per well. For this
assay, cells were plated in Gibco MEM media without phenol red and glutamine (51200038,
Thermo Fisher Scientific, Waltham, MA, USA) with glutamine (Millipore Sigma Aldrich,
G7513, Burlington, MA, USA) added to a final concentration of 1 mM. In addition, me-
dia contained 10% fetal bovine serum, 300 mg/mL streptomycin, 100 U/mL penicillin,
and 1× non-essential amino acids. Cells were grown for 24 h. Instructions for the Promega
ROS-Glo™ H2O2 assay (G8820, Promega, Madison, WI, USA) were followed. For the assay,
20 µL of substrate mix was added to each well and cells remained in CO2 incubator for
4 h prior to adding 100 µL of ROS-Glo detection solution, incubating for 20 min at room
temperature, and measuring the bioluminescence using a plate reader (FLUOStar Omega,
BMG Labtech, Cary, NC, USA).

4.8. Cell Proliferation Assay in the Presence of Hydrogen Peroxide

Cells were plated in a 96-well plate at 5000 cells per well. For this assay, cells were
plated in Gibco MEM media without phenol red and glutamine (51200038, Thermo Fisher
Scientific) with glutamine (Millipore Sigma Aldrich, G7513) added to a final concentration
of 1 mM. In addition, media contained 10% fetal bovine serum, 300 mg/mL streptomycin,
100 U/mL penicillin, and 1× non-essential amino acids. Media containing H2O2 was
freshly made using 30 % w/v H2O2 (9.8 M, Millipore Sigma Aldrich, H-1009) in the same
media that was used for plating the cells. Serial dilution used to generate 10 mM, 5 mM,
2.5 mM, 1.25 mM, 800 µM, 625 µM, 400 µM, 312.5 µM, 200 µM, 156.25 µM, 100 µM, 50 µM,
and 25 µM H2O2 solutions. Cells grown for 24 h and then the same amount of media
(with or with H2O2) used to plate cells was added. All final concentrations were taken as
half of the original H2O2 concentration. Cells were grown for another 24 h, media removed,
cells washed with media and then treated with Promega Cell Titer 96 Aqueous Non-
Radioactive Cell Proliferation Media (G5421, Promega). Cells sat in CO2 incubator for
90 min prior to determining the 490 nm absorbance using a plate reader (FLUOStar Omega,
BMG Labtech).

4.9. Mouse Models

All animal experiments were carried out in accordance with international standards.
All animal experimental procedures were approved by the University of Texas MD Ander-
son Institutional Animal Care and Use Committee (Protocol 1200, Approved 5/16/2017).
Male and female mice were used in all experiments. Mice were purchased from MD Ander-
son Experimental Radiation Oncology NOD scid gamma mouse colony. The colony uses
mating pairs from the Jackson Laboratory (Stock number 005557, Sacramento, CA, USA).
We subcutaneously injected 5 million UMRC3-PHD3KD or UMRC3-SC cells in 100 µL of
phosphate-buffered saline into the flanks of SCID mice. Tumors were allowed to grow for
2 weeks and then measured with calipers approximately every 4 days; tumor volume was
determined using the equation (1/2) × [length × width2]. In 2 separate experiments after
the tumors were approximately 100 mm3, the mice received 200 µL of 6.25 mg/mL sunitinib
malate dissolved in water daily by oral gavage or were left untreated. When tumors were
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larger than 1.5 cm, mice bearing UMRC3-PHD3KD or UMRC3-SC subcutaneous tumors
were humanely killed using anesthetic overdose and cervical dislocation and their tumors
were removed. The tumor tissues were immediately flash-frozen.

4.10. GSH/GSSG Assay

Flash-frozen untreated UMRC3-PHD3KD and UMRC3-SC tumor tissues were homog-
enized in ice-cold phosphate-buffered saline using a freeze/thaw cycle in liquid nitrogen
and lysis D beads (MP Biomedicals, Irvine, CA, USA). The solution was centrifuged at
4000× g for 5 min at 4 ◦C. The supernatant was transferred to a 1.5-mL centrifuge tube and
then centrifuged again at 14,000 g for 10 min at 4 ◦C. We added 300 µL of the supernatant
to 300 µL of ice-cold 5% SSA (w/v) solution (5-sulfo-salicylic acid dehydrate in 20 mL of
water). A protease and phosphatase inhibitor cocktail (cat. #78441, Thermo Fisher Scien-
tific) was added to the remainder of the supernatant, which was stored until further use.
The protein concentrations of all lysates were determined using the Pierce BCA Protein
Assay Kit (cat. #23225, Thermo Fisher Scientific). 287 µg of protein was used in each
sample. SSA-treated samples were analyzed using the Glutathione Colorimetric Detection
Kit (cat. #EIAGSHC, Thermo Fisher Scientific) according to the manufacturer’s protocol.
Absorbance at 405 nm was measured using a CLARIOstar plate reader (BMG Labtech).

4.11. Nuclear Magnetic Resonance (NMR) Based Metabolomics

We wanted to understand the changes in metabolomics between UMRC3-PHD3KD
and UMRC3-SC tumors. NMR spectroscopy was used to analyze metabolites in UMRC3-
PHD3KD and UMRC3-SC tumors. 70 mg of tumor mass used per sample. Flash-frozen tis-
sues were homogenized under liquid nitrogen using a mortar and pestle. Metabolites were
extracted from the homogenized tissues in 3 freeze/thaw cycles using an ice-cold 2:1
methanol:water solution and 500 µL of Lysing Matrix D Beads (cat. #6933, MP Biomed-
icals) as described previously [43]. The resulting solution was centrifuged at 4000× g
for 3 min. The supernatant was removed and then lyophilized to dryness, and the re-
maining metabolites were resuspended in 1X phosphate buffer with 10% deuterium oxide.
We used 3-(trimethylsilyl)-1-propanesulfonic acid-d6 (cat. #613150, Millipore Sigma) as
an internal standard for all NMR samples. All samples were run on 500 MHz Bruker
Biospin Avance III high-definition NMR instrument equipped with a Prodigy BBO cry-
oprobe. One-dimensional 1H-NMR spectra used 256 scans, spectral width of 10,245 Hz,
and water suppression performed with presaturation. Data were processed and analyzed
with MestreNova (Mestrelab Research, Santiago de Compostela, Spain) and the identi-
fication of specific resonances was determined using the Human Metabolome Database
(http://www.hdmb.ca, accessed on 18 January 2020) [44].

4.12. Western Blotting and Densitometry

Tissues or cells were lysed on ice in 1× RIPA lysis and extraction buffer (cat. #89900,
Thermo Fisher Scientific) with Halt protease inhibitor (cat. #78441, Thermo Fisher Scien-
tific). Protein concentrations were determined using the Pierce BCA Protein Assay Kit
(cat. #23225, Thermo Fisher Scientific). Total protein (20 µg) was loaded onto the gels,
and blots were developed with primary antibodies against PHD3 (ab184714, Abcam, Cam-
bridge, UK; 1:2000 dilution); HIF1α (D2U3T, Cell Signaling Technology, Danvers, MA, USA;
1:1000 dilution); HIF2α (D9E3, Cell Signaling Technology; 1:1000 dilution); fumarate hy-
dratase (ab95950, Abcam; 1:3000 dilution); EGFR (sc-373746, Santa Cruz Biotechnology,
Dallas, TX; 1:1000 dilution). pEGFR (sc-57545, Santa Cruz Biotechnology; 1:200 dilution);
glutaminase (GLS1; ab93434, Abcam; 1:1000 dilution), glutaminase 2 (GLS2; NBPI-76544,
Novus Biologicals, Littleton, CO, USA; 1:1000 dilution); alanine-serine-cysteine transporter
2 (ASCT2; ABN73, Millipore Sigma, 1:1000 dilution), and β-actin-horseradish peroxidase
(5125S or 12262S, Cell Signaling Technology; 1:5000 dilution). Image J (National Institutes
of Health, Bethesda, MD, USA) or Image Studio Lite (version 5.2, LI-COR Biosciences,
Lincoln, NE, USA) were used to perform densitometry.

http://www.hdmb.ca
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4.13. Statistical Analysis

GraphPad Prism 8 software (San Diego, CA, USA) was used to perform all statistical
analyses. Statistical significance between two cohorts was determined using unpaired
t-test or between multiple cohorts was determined using 2-way ANOVA with Sidak’s
multiple comparisons unless stated otherwise in the text. p values less than 0.05 were
considered significant.
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ccRCC clear cell renal cell carcinoma
HIF1α hypoxia inducible factor 1 alpha
HIF2α hypoxia inducible factor 2 alpha
PHD prolyl hydroxylase
VHL Von Hippel Lindau
NT not treated
TR treated with sunitinib
NMR nuclear magnetic resonance
GLS1 glutaminase 1
ASCT2 alanine-serine-cysteine transporter 2
GSH free glutathione
GSSG oxidized GSH
EGFR epidermal growth factor
pEGFR phosphorylated EGFR
GLS2 glutaminase 2
H2O2 hydrogen peroxide
ROS reactive oxygen species
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Appendix A

Table A1. Results of NMR spectroscopy of metabolites from UMRC3-PHD3KD NT and UMRC3-SC
NT tumors.

Metabolite UMRC3-PHD3KD NT UMRC3-SC NT

Metabolites Mean SEM N Mean SEM N Ratio

Valine 0.048 0.009 5 0.050 0.015 4 1.0

Lactate 1.26 0.10 5 1.4 0.4 4 0.9

Alanine 0.176 0.019 5 0.15 0.04 4 1.2

Glutamine 0.026 0.004 5 0.012 0.005 4 2.2

Acetate 0.043 0.004 5 0.039 0.005 4 1.1

Glutamate 0.179 0.015 5 0.160 0.040 4 1.1

Succinate 0.029 0.002 5 0.025 0.007 4 1.2

Fumarate 0.0022 0.0002 5 0.0014 0.0003 4 1.6

Aspartate 0.016 0.002 5 0.009 0.003 4 1.7

Triethylamine 0.046 0.015 5 0.005 0.002 4 9.2

Glutathione 0.027 0.001 5 0.014 0.002 4 2.0
Note: The ratio is the UMRC3-PHD3KD mean value divided by the UMRC3-SC mean value. Abbreviations: SEM,
standard error of the mean; N, number of samples per tumor type.
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Figure A1. 786-O cell line in vitro assays: Using viral transfection PHD3 was knocked down. (a) Western analysis 
illustrating the level of PHD3 expression in 786-O-SC versus PHD3 knockdown clones. Clone 5 used in all further 
experiments (labeled as 786-O-PHD3KD). (b) Migration assays revealed that more 786-O-PHD3KD cells than 786-O-SC 
cells migrated in 12 h (3 wells per cell type stained). (c) Wound healing assays revealed that 786-O-PHD3KD cells (bottom 
row) showed faster wound healing within 18 h compared to 786-O-SC cells (top row). 

Figure A1. 786-O cell line in vitro assays: Using viral transfection PHD3 was knocked down. (a) Western analysis
illustrating the level of PHD3 expression in 786-O-SC versus PHD3 knockdown clones. Clone 5 used in all further
experiments (labeled as 786-O-PHD3KD). (b) Migration assays revealed that more 786-O-PHD3KD cells than 786-O-SC cells
migrated in 12 h (3 wells per cell type stained). (c) Wound healing assays revealed that 786-O-PHD3KD cells (bottom row)
showed faster wound healing within 18 h compared to 786-O-SC cells (top row).
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