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Graphical Abstract

mir15a/mir16-1 cluster exerts protective effects against the progression of the car-
diac hypertrophy and dysfunction (left). During hypertrophic stress, increased
C/EBPβ downregulates the mir15a/mir16-1 cluster, resulting in up-regulation
of multiple target proteins (INSR, IGF1R, AKT3, SGK1) in cardiomyocytes,
causing increased activation of insulin/IGF1 signaling, ultimately causing car-
diac hypertrophy and dysfunction. The CHO-PEGA delivery system replenishes
mir15a/mir16-1 in the heart, attenuating cardiac hypertrophy and heat failure
(right).Meanwhile, reduced circulatingmir15a/mir16-1 levels are associatedwith
the hypertrophic degree and cardiac hypertrophy risk in patients (bottom).
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Abstract
In response to pathological stimuli, the heart develops ventricular hypertrophy
that progressively decompensates and leads to heart failure.miRNAs are increas-
ingly recognized as pathogenic factors, clinically relevant biomarkers, and poten-
tial therapeutic targets. We identified that mir15a/mir16-1 cluster was negatively
correlated with hypertrophic severity in patients with hypertrophic cardiomy-
opathy. The mir15a/mir16-1 expression was enriched in cardiomyocytes (CMs),
decreased in hypertrophic human hearts, and decreased in mouse hearts after
transverse aortic constriction (TAC). CM-specific mir15a/mir16-1 knockout pro-
moted cardiac hypertrophy and dysfunction after TAC. CCAAT/enhancer bind-
ing protein (C/EBP)β was responsible for the downregulation of mir15a/mir16-
1 cluster transcription. Mechanistically, mir15a/mir16-1 cluster attenuated the
insulin/IGF1 signal transduction cascade by inhibiting multiple targets, includ-
ing INSR, IGF-1R, AKT3, and serum/glucocorticoid regulated kinase 1 (SGK1).
Pro-hypertrophic response induced by mir15a/mir16-1 inhibition was abolished
by knockdown of insulin receptor (INSR), insulin like growth factor 1 recep-
tor (IGF1R), AKT3, or SGK1. In vivo systemic delivery of mir15a/mir16-1 by
nanoparticles inhibited the hypertrophic phenotype induced by TAC. Impor-
tantly, decreased serum mir15a/mir16-1 levels predicted the occurrence of left
ventricular hypertrophy in a cohort of patients with hypertension. Therefore,
mir15a/mir16-1 cluster is a promising therapeutic target and biomarker for car-
diac hypertrophy.
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Abbreviations: AKT, serine/threonine kinase; BNP, B-type natriuretic peptide; C/EBP, CCAAT/enhancer binding protein; CKO,
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1 INTRODUCTION

Cardiac hypertrophy and consequent heart failure are sig-
nificant causes of mortality worldwide. In response to
pathological stress such as pressure/volume overload, neu-
rohumoral stimuli, and inherited mutations, the heart
mounts a hypertrophic response characterized by enlarge-
ment of cardiomyocytes (CMs).1,2 Although initial cardiac
hypertrophy can be viewed as a compensatory response to
increase cardiac output against excessive afterload, persis-
tent hypertrophy ismainlymaladaptive, ultimately impair-
ing contractility and driving heart failure progression.3
Multiple preclinical studies have reported that blockade
of hypertrophic cardiac growth improves heart function.4
The list of identified molecular factors that contribute to
hypertrophy is growing. However, translating such molec-
ular targets to new therapies against cardiac hypertro-
phy is difficult, largely due to fundamental differences
between human and animal models. Thus, seeking the
key regulators of pathological hypertrophymost relevant to
patients is important to develop new efficacious treatment
strategies.
miRNA may provide novel diagnostic and therapeutic

tools for cardiovascular disease.5,6 It is interesting that sev-
eral of the most abundant miRNAs in the heart belong
to families, including let-7-, mir15-, mir29-, and mir30-
families,7 of which let-7-, mir30-, and mir 29-families
have been fully investigated and understood in patho-
logical ventricular remodeling.8–10 The mir15 family has
been shown to play very important roles in heart regen-
eration and development,11 but relatively few in patho-
logical stress. In addition, pathological stress influences
the production and release of miRNAs into circulation
from the heart and/or other organs, altering the circulat-
ing miRNA pool. The circulating levels of these cardiac-
enriched miRNAs, such as mir29a, correlated with hyper-
trophy and fibrosis in patients with hypertrophic car-
diomyopathy (HCM).12 Thus, whether there are more
functionally important miRNAs that serve as hypertrophic
biomarkers and carry a pathogenic role in cardiac hyper-
trophy remains to be determined.
In this study, we screened hypertrophic-associated miR-

NAs. We demonstrate the mir15a/mir16-1 cluster is nega-
tively correlated with the degree of cardiac hypertrophy
in patients with HCM. Additionally, CCAAT/enhancer
binding protein (C/EBP)β is responsible for its down-
regulation in CMs by directly binding to its promot-
ers. We demonstrate CM-specific mir15a/mir16-1 exhibits
a protective role against the development of cardiac
hypertrophy and dysfunction by suppressing insulin-
IGF1 signaling. Finally, our clinical data suggest that
serum mir15a/mir16-1 concentration may aid in determin-
ing the likelihood of left ventricular hypertrophy (LVH)
development.

Highlights

∙ Cardiomyocyte (CM)-specific mir15a/mir16-1
protects against cardiac hypertrophy and seque-
lae (e.g. heart failure) induced by pressure
overload, even aging.

∙ C/EBPβ acts as the upstream molecule
causing transcriptional downregulation of
mir15a/mir16-1 cluster in the CMs.

∙ Prospective study revealed that decreased
mir15a/mir16-1 levels are a predictive biomarker
for the occurrence of left ventricular hypertro-
phy (LVH).

2 METHODS

2.1 Study design

The overall objective of this study was to identify miR-
NAs as regulators and biomarkers of pathological car-
diac hypertrophy, and to develop a therapeutic approach
using nanoparticle-carrying miRNA delivery. We per-
formed studies in patients with cardiac hypertrophy, in
mouse models of pressure overload induced by transverse
aortic constriction (TAC), and in cultured CMs. The fol-
lowing experimental studies were designed: (a) To identify
the miRNAs associated with hypertrophic development,
we performed an unbiased circulating miRNA sequencing
in patients with HCM (with and without obstruction) and
healthy control (HC), and that was subsequently indepen-
dently validated using quantitative real-time PCR (qRT-
PCR). The relationship between serum miRNA levels and
hypertrophic severity was evaluated. These experiments
established circulating mir15a/mir16-1 cluster associated
with human cardiac hypertrophy. (b) The expression of
mir15a/mir16-1 cluster was determined in both human and
mouse hypertrophic hearts by qRT-PCR, and its cellular
localization was assessed in mouse by in situ hybridiza-
tion (ISH). In addition, we investigated the transcriptional
mechanisms of mir15a/16-1 downregulation under hyper-
trophic stress by in-silico prediction analysis, luciferase
reporter assays, and ChIP-PCR. (c) To explore the func-
tional consequences of mir15a/mir16-1 in cardiac hyper-
trophy, we generated tamoxifen-inducible, CM-specific
miRNA-knockout mice, and applied a mouse model of
pressure overload induced by TAC. Cardiac hypertrophy,
fibrosis, and heart function were evaluated by histopatho-
logical analysis and echocardiogram test. (d) A series of
bioinformatics and experimental steps were performed to
identify direct and novel targets of mir15a/mir16-1 clus-
ter, which were responsible for the effect on cardiac
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hypertrophy. (e) To determine the potential therapeutic
role, mir15a/mir16-1 cluster was delivered by nanoparti-
cles into the TAC animal model. We examined the in vitro
and in vivo effects of mir15a/mir16-1 replenishment in car-
diac hypertrophy. To further characterize the global impact
of mir15a/mir16-1 treatment, we assessed the cardiac pro-
tein profile by proteomics analysis. (f) The dysregulation
of mir15a/mir16-1 in serum and the capability of circulat-
ing mir15a/mir16-1 to predict the occurrence of LVH were
assessed by qRT-PCR and COX regression analysis in a
cohort of patients with hypertension.

2.2 Studies in patients

Serum levels of miRNAs were ascertained from HC
and patients with HCM or hypertension recruited from
Beijing Anzhen Hospital. LV tissues were obtained from
normal heart donors or patients diagnosed with OHCM
undergoing septal myotomy surgery. The Institutional
Review Board of the Institute of Biophysics and Beijing
Anzhen Hospital approved all human studies involving
cardiac tissue and blood samples. Written informed con-
sent was obtained from all participants. A detailed descrip-
tion of the study population and human sample collection
are reported in the supporting material online.

2.3 Studies in mouse model

All animal studies were performed in accordance with
protocols approved by the Animal Subjects Committee of
Beijing Anzhen Hospital. Mice carrying floxed alleles of
mir15a/mir16-1 (Mirc30tm1.1Rdf/J mice)13,14 were gifted
by Dr. Yiwei Chu (Fudan University). The mice carrying
floxed alleles of mir15a/mir16-1 were backcrossed to a
C57BL/6 background at least ten times. The generation of
Myh6-cre/Esr1+/− mice has been reported previously.15
The tamoxifen-inducible, CM-specific mir15a/mir16-1
knockout mice were generated by intercrossing the
Myh6-cre/Esr1+/− mice with Mirc30tm1.1Rdf/J mice. Left
pressure overload was induced in cardiomyocyte-specific
knockout (CKO) and wild type (WT) mice by partial
ligation of the aorta between the innominate and left com-
mon carotid arteries, causing constant and permanent
constriction. Animal details, serial echocardiography,
morphological, and immunohistochemical experiments
are reported in the supporting material online.

2.4 Statistics

Values are expressed as the mean ± SD. The Shapiro-
Wilk test was used to evaluate the normality of data

distribution. Differences between two groups were ana-
lyzed by the Student’s two-sided t-test (for normally dis-
tributed continuous variables, with log transformation as
required), theMann-WhitneyU test (for non-normally dis-
tributed continuous variables), and chi-square test (for cat-
egorical data). One-way ANOVA combined with post-hoc
Tukey’s test was used for comparisons between more than
two groups. Differences between groups over time were
evaluated using repeated measures analysis of variance.
Detailed statistical analytic methods about clinical study
are reported in the supporting material online.

2.5 Other protocols

Detailed methodology for all protocols used in this study
(including miRNA-sequencing, chromatin immunopre-
cipitation assays, luciferase reporter assays, in vitro and
in vivo delivery of mir15a/mir16-1, transcriptomic and pro-
teomics analysis, and others) is provided in the supporting
material online.

3 RESULTS

3.1 Clinical evidence demonstrating the
negative association between
mir15a/mir16-1 cluster and cardiac
hypertrophy

We designed a two-stage case-control study to investi-
gate hypertrophy-related miRNAs (Figure 1A). The demo-
graphic and clinical characteristics of the discovery and
validation samples are shown (Tables S1-S2). First, we
performed pilot miRNA-sequencing using serum from
HC (n = 9) and patients with HCM (eight obstructive
HCM [OHCM] patients and seven non-obstructive HCM
[NOHCM] patients). Nine candidatemiRNAs betweenHC
and HCM were selected based on the following three
criteria: (a) a false discovery rate-adjusted P-value <.05;
(b) fold change ≥2.0; (c) miRNA expression abun-
dance >100 reads per million (Figure 1B). Second, nine
miRNAs were tested by qRT-PCR in these 24 samples.
There are significant differences in four miRNAs (mir16-
5p, mir15a-5p, mir192-5p, and mir342-3p) between any two
of three groups (including HC vs NOHCM, HC vs OHCM,
NOHCM vs OHCM) (Figure 1C). Third, we examined
four candidate miRNAs expression in independent vali-
dation samples (53 OHCM patients, 25 NOHCM patients,
and 30 HC) by qRT-PCR. Four miRNAs exhibited consis-
tent directionality with the first qRT-PCR results in the
discovery set (Figure 1D). Using the receiver-operating
characteristic curve (ROC) and Spearman’s correlation
analyses, we calculated the discrimination ability and
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F IGURE 1 Identification of hypertrophy-related miRNAs in patients with HCM. A, Schematic description of the workflow illus-
trating the two-stage-approach involving independent samples for discovery and validation. B, Volcano plot revealing miRNA-sequencing
results comparing HCM (n = 15) versus HCs (n = 9). Individual miRNAs are displayed by the FDR-adjusted P-value and the corresponding
fold change. C, qRT-PCR espression analysis of nine candidate miRNAs in discovery samples (HCs = 9, NOHCM = 7, OHCM = 8). D, qRT-
PCR expression analysis of four miRNAs (mir15a-5p, mir16-5p, mir192-5p, and mir342-3p) in an independent validation sample (HCs = 30,
NOHCM = 25, OHCM = 53). E, Area under the receiver operating curve of 4 miRNAs (values given on the graphs) discriminating HCM ver-
sus HC, NOHCM versus OHCM. F and G, Correlation analysis of the expression of single miRNA and the interventricular septum thickness
(IVST) (F) and the left ventricular outflow tract (LVOT) pressure gradient (PG) (G) in patients with HCM (n = 93). Statistical significance was
determined by 1-way ANOVA Tukey’s post-hoc test (C and D) by Spearman’s correlation test (F and G)
Abbreviations: HC, healthy control; HCM, hypertrophic cardiomyopathy; NOHCM, non-obstructive hypertrophic cardiomyopathy;
OHCM, obstructive hypertrophic cardiomyopathy.
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correlation with hypertrophic severity of four miRNAs.
Candidate miRNAs would be selected based on the two
criteria: (a) ROC analysis: AUC > 0.7, P < .05 between
two comparisons (HC vs HCM, NOHCM vs OHCM;
(b) correlation analysis: r > 0.3, P < .05. The area under
the ROC (AUC) values of four miRNAs ranged from 0.703
to 0.908 between NOHCM and OHCM, with mir16-5p
exhibiting the greatest discriminatory power (AUC: 0.908
[95% CI 0.852-0.965, where CI is confidence interval],
P < .001) (Figure 1E). The interventricular septum thick-
ness (IVST) and the left ventricular outflow tract (LVOT)
pressure gradient (PG) serve as quantitative markers of
hypertrophic degree. Consistent and significant negative
correlations with IVST and LVOT PG were demonstrated
for mir15a-5p and mir16-5p, but a positive correlation was
demonstrated for mir192-5p and mir342-3p (Figure 1F-G).
mir16-5p exhibited the strongest correlation with hyper-
trophic degree, as evidenced by IVST (r=−0.496, P< .001)
and LVOT PG (r = −0.614, P < .001). Finally, mir15a
and mir16-5p were choosen as a good discrimination abil-
ity and correlation. mir15a-5p and mir16-5p were tran-
scribed as a cluster (mir15a/mir16-1), residing in the 13q14
chromosomal region. Both miRNAs displayed a com-
mon seed sequence and shared 80% complementarity.16
To explore circulating mir15a-5p and mir16-5p location,
we tested their expression in the exosomes isolated from
plasma from HCM patients and HC. The levels of mir15a-
5p and mir16-5p were lower in the exosomes than in
plasma, but levels in plasma-derived exosomes did not dif-
fer between HCM patients and HC (Figure S1). Collec-
tively, decreased levels of the serum mir15a/mir16-1 clus-
ter correlated strongly with hypertrophic severity in HCM
patients, suggesting that mir15a/mir16-1 cluster alteration
was likely attributable to cardiac hypertrophy.
Having demonstrated that circulating mir15a/mir16-1 is

downregulated in HCM patients, we next determined the
organ from which circulating mir15a/mir16-1 originated.
We evaluated mir15a/mir16-1 expression in cardiac tis-
sue from both humans and mice after TAC. Expression
of mir15a and mir16-1 was significantly downregulated in
OHCM patient hearts compared to that in normal control
(Figure S2A). In animals subjected to TAC, cardiac expres-
sion of both mir15a and mir16-1 rapidly declined 2 weeks
after TAC, remaining significantly downregulated there-
after (Figure S2B). Finally, to ascertain the cellular ori-
gin of cardiac mir15a/mir16-1, we determined the expres-
sion of mir15a/mir16-1 in isolated neonatal CMs, cardiac
fibroblasts, endothelial cells, and vascular smooth mus-
cle cells. Using qRT-PCR ISH, we determined CMs sig-
nificantly increased mir15a andmir16-1 expression (Figure
S3A-C).

3.2 Exploring the causative role of
mir15a/mir16-1 in hypertrophy
development

To characterize the biological role of mir15a and mir16-1
(mir15a/mir16-1) in the adult heart, we developed a
CM-specific tamoxifen-inducible mir15a/mir16-1 knock-
out mouse (mir15a/mir16-1 CKO) line by crossing
mir15a/mir16-1flox/flox and Myh6-mER-Cre mice. mir15a/
mir16-1fl/fl Myh6-Cre– mice served as control mice
(WT). After tamoxifen administration, qRT-PCR analysis
confirmed an approximate 75% loss of mir15a/mir16-1
expression in mir15a/mir16-1 CKO mouse heart, but not
in other organs (Figures S4A and S4B). Compared to WT
mice, CKOmice exhibited no noticeable change in general
morphology or baseline cardiac function before TAC. The
mir15a/mir16-1 CKO and WT mice were subjected to TAC
operation after tamoxifen administration (Figure 2A).
Serial echocardiography assessed left ventricular geom-
etry and function in WT and CKO mice before and 2, 4,
and 8 weeks post-TAC. Parameters defining cardiac hyper-
trophy increased, and cardiac function (ejection fraction
[EF]) decreased in CKO mice compared with WT mice
after TAC (Figure 2B and Table S3). We also evaluated
the echocardiography measurement in short-axis and
long-axis in WT and CKO mice at 0 and 4 weeks of TAC.
The echocardiographic parameters extracted from the
short axis were similar to those from the long axis (Figure
S5). CKO hearts harvested four and eight after TAC were
significantly larger compared to control (Figure 2C). CKO
mouse hearts exhibited increased heart weight to body
weight and tibial length (HW/BW/TL) ratios (Figure 2C),
increased expression of cardiac hypertrophy marker
(atrial natriuretic peptide [ANP]), and increased CM size
(Figures 2D and 2E). Myocardial fibrosis increased in CKO
hearts compared to WT heart (evidenced by quantitative
analysis of Masson’s trichrome staining, Figures 2F and
2G). The mRNA levels of collagen I were increased in
CKOmice at 4 and 8 weeks post-TAC (Figure 2H). Finally,
protein levels of α-SMA (a marker of myofibroblasts)
were increased in CKO mouse hearts compared to WT at
8weeks post-TAC (Figure 2I). To investigate if spontaneous
hypertrophy occurred, we regularly monitored cardiac
function in CKO mice and WT mice with aging. Impor-
tantly, CKO mice spontaneously developed concentric
cardiac hypertrophy at 36 weeks of age with an increased
left ventricular mass and IVS, and progressed to the heart
failure at 42 weeks of age with a decreased EF (Figure
S6 and Table S4). Thus, CM-derived mir15a/mir16-1 is an
endogenous negative regulator of cardiac hypertrophy and
heart failure induced by pressure overload, even aging.
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F IGURE 2 Cardiomyocyte-specific mir15a/mir16-1 knockout aggravates cardiac hypertrophy and dysfunction after TAC. A,
Cardiomyocyte-specific mir15a/mir16-1 knockout (CKO) and wild-type (WT) control mice were subjected to tamoxifen, followed by TAC
operation for 8 weeks. B, M-mode echocardiographic imaging of the heart before (0) and after (2, 4, and 8 weeks) TAC. Analysis of and
ejection fraction (EF)% of hearts of WT and CKOmice subjected to TAC (n= 8 per group). *P< .05 versusWTmice. C,Whole-mount represen-
tation of heart (Upper), representative image of heart sections stained with Masson trichrome (bottom), heart weight/body weight/tibia length
ratios in WT and CKOmice before and after (4 and 8 weeks) TAC (n= 8 per group). *P < .05 versus mice before TAC; # P < .05 versus WT-TAC.
Bars = 500 μm. D-H, WGA-stained section of left ventricles and quantification of myocyte cross-sectional area (D), ANP mRNA expression
(1.5-fold at 4 weeks, 1.5-fold at 8 weeks) (E), representative image of perivascular (F) and interestitital fibrosis (G) and quantification of fibrotic
area, Col1A1mRNA expression (1.5-fold at 4 weeks, 1.5-fold at 8 weeks) (H) in WT and CKO mice before and after (4 and 8 weeks) TAC (n = 8
per group). *P < .05 versus mice before TAC; # P < .05 versus WT-TAC. D, Bars = 50 μm; F and G, Bars = 100 μm.
I, α-SMA protein levels (1.3-fold) in heart from WT and CKO mice before and post-TAC 8 weeks (n = 4 per group). *P < .05 versus WT-TAC.
Statistical significance was determined by the two-sided t-test (B-H) or Mann–Whitney U test (I)

3.3 Novel transcription factor C/EBPβ
suppresses mir15a/mir16-1 expression in
the hypertrophic myocardium

Next, we investigated the regulation of mir15a/mir16-1
expression. Primarymir15a/mir16-1 is located in the intron
of host genes (a long noncoding RNA named DLEU2,
termed pri-mir15a/mir16-1).13,16 Using bioinformatics anal-
ysis, we predicted 99 transcription factors (TFs) poten-
tially regulating mir15a/mir16-1 expression via binding of
the pri-mir15a/mir16-1 promoter region. Utilizing previ-
ous established database (differently expressed TFs in the
OHCM patient heart compared to normal control),17 19 of
99 TFs were identified by Venn analysis. Employing qRT-
PCR analysis, we evaluated the expression of these 19 TFs
in the normal and hypertrophic hearts from humans and
the mouse TAC model. Among 19 TFs, four TFs (STAT1,
HSF1, IRF1, and C/EBPβ) were consistently upregulated.
One TF (signal transducer and activator of transcription 3
[STAT3]) was downregulated in both human and mouse
hypertrophic hearts (Figures 3A and 3B, Figures S7A and
S7B).

To determine whether five candidate TFs transcrip-
tionally regulated mir15a/mir16-1, we constructed
luciferase reporter plasmids containing an upstream
pri-mir15a/mir16-1 coding sequence. Luciferase reporter
assays revealed that ectopic overexpression of C/EBPβ or
HSF1 significantly decreased pri-mir15a/mir16-1 promoter
activity (Figure 3C). We analyzed putative response
elements of C/EBPβ or HSF1 in pri-mir15a/mir16-1, and
performed a chromatin immunoprecipitation assay which
demonstrated that C/EBPβ, but not HSF1, was enriched
in the predicted binding sites of pri-mir15a/mir16-1
(Figure 3D). Minimal enrichment was detected in
IgG isotype control experiments. We next generated a
mutant construct containing the promoter region of
pri-mir15a/mir16-1, with a mutated C/EBPβ-binding site.
C/EBPβ-induced transcription inhibition was absent in
cells transfected with mutant constructs (Figure 3E).
Electrophoretic mobility shift assay experiment further
confirmed that C/EBPβ bound the oligonucleotides with
WT C/EBPβ-binding sites from the pri-mir15a/mir16-1
promoter, whereas no binding was observed with mutant
oligonucleotides. We observed a supershift with the
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F IGURE 3 Downregulation of mir15a/mir16-1 cluster in cardiomyocytes by C/EBPβ. A, qRT-PCR indicated the expression of
STAT1 (1.9-fold), HSF1 (1.5-fold), STAT3 (0.6-fold), IRF1(1.4-fold), and C/EBPβ (1.5-fold) in human samples from representative normal control
and hypertrophic hearts (n= 6 per group). *P< .05 versus HC. B, qRT-PCR indicated the expression of STAT1 (2.5-fold), HSF1 (2.3-fold), STAT3
(0.5-fold), IRF1(1.4-fold), and C/EBPβ (1.6-fold) in hearts from mice subjected to TAC (n = 6 per group). *P < .05 versus sham operation. C,
Quantification of luciferase activity in cells with human pri-mir15a/mir16-1-luciferase reporter constructs followed by TF overexpression as
indicated (n = 3 experiments with 5 well replicates). *P < .05 versus control vector. D, Putative C/EBPβ or HSF1 binding sites are shown as
asterisks or pound signs. Consensus sequences are italicized in parentheses. PCR amplicons 1, 2, and 3 are shown as numbered lines. Chro-
matin immunoprecipitation assays were performed using IgG, C/EBPβ, or HSF1 antibody (Ab) in cells stimulated with PE (n= 3 experiments).
*P < .05 versus IgG Ab. E, Quantification of luciferase activity in cells transfected with wild-type construct of pri-mir15a/mir16-1 or its mutant
at the C/EBPβ-binding site. Luciferase values normalized to the empty vector control (n = 3 experiments with 3 well replicates). *P < .05 ver-
sus control vector. F, EMSA assay showed specific binding complexes with 293T cells transfected with C/EBPβ expression vectors (lane 2). A
weak signal was observed in non-transfected 293T cells (lane1). Supershift experiments indicated C/EBPβ-binding specificity (lane 3). Arrows
indicate specific C/EBPβ-DNA complexes (straight line) or antibody- C/EBPβ–DNA supershift complexes (dashed line). When the putative
CEBP binding site was mutated, no DNA/protein complex was observed (lanes 4-6). Bottom signals correspond to free probes. G, mir15a and
mir16-1 expression in CMs transfected with control-siRNA or C/EBPβ-siRNA subjected to PE (n= 5 per group). *P< .05 versus Control-siRNA.
Statistical significance was determined by the two-sided t-test (A, B, D, and G), by 1-way ANOVA Tukey’s post-hoc test (C), by Mann-Whitney
test (E)
Abbreviation: TSS, transcription start site.

C/EBPβ-specific antibody with nuclear extracts contain-
ing C/EBPβ (Figure 3F). Finally, we evaluated whether
C/EBPβ negatively regulated mir15a/mir16-1 expression in
CMs. Consistent with a previous report,18 phenylephrine
(PE) treatment increased C/EBPβ expression in CMs
(Figure S7C). Transfecting CMs with C/EBPβ-specific
siRNA restored the expression of mir15a/mir16-1 when
stimulated by PE (Figure 3G and Figure S7D). Collectively,
these results provide strong evidence that C/EBPβ directly
decreases mir15a/mir16-1 at the transcript level in the
hypertrophic myocardium.

3.4 Clarification of downstream
signaling mediating the anti-hypertrophy
actions of mir15a/mir16-1

Wenext performedpathway analysis involving 169 overlap-
ping putative target genes of mir15a and mir16-1 in three
databases (Targetscan version 7.1, miRDB, and miRanda,
Figure 4A). Pathways involving putative mir15a/mir16-
1 targets included multiple pro-hypertrophy pathways
(PI3K-serine/threonine kinase (AKT), mammalian target
of rapamycin (mTOR), and FOXO, Figure 4B). To identify
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F IGURE 4 mir15a/mir16-1 targetsmultiple genes of insulin/IGF1 genes.A,Venn intersection of putative target genes of hsa-mir15a-
5p and has-mir16-5p, based upon three databases (Targetscan version 7.1, miRDB, and miRanda). B, Pathway analysis based on 169 putative
targets genes. C, Putative target genes were connected in a network based on established protein-protein interactions and signaling pathways.
Nodes represent genes. Node area is the degree to which other genes interact with the given gene. D, Schematic representation of mir15a and
mir16 sequence preservation in mammals. E-H, Schematic diagram representing the potential binding sites for mir15a or mir16 in the 3′UTR of
INSR, IGF1R,AKT3, and SGK1 inmice, and the corresponding binding sites in humans. I-L,Luciferase reporterswithwild-type ormutant target
gene-UTR (INSR, IGF1R, AKT3, SGK1, respectively), were cotransfected with mimic-mir15a, mimic-mir16-1, or mimic-mir NC, respectively,
then luciferase activity was determined. Values are presented as relative fold change of luciferase activity in mimic-mir15a or mimic-mir16-1
transfection relative to luciferase activity in mimic-mirNC transfection (n = 3 experiments with 3 replicates). *P < .05 versus mimic-mirNC.
M and N, Western blot expression analysis of INSR (0.7-fold, 0.6-fold, 0.6-fold in mir15a, mir16-1, mir15a/mir16-1, respectively), IGF1R (0.7-
fold, 0.8-fold, 0.7-fold in mir15a, mir16-1, mir15a/mir16-1, respectively), AKT3 (0.6-fold, 0.5-fold, 0.5-fold in mir15a, mir16-1, mir15a/mir16-1,
respectively), SGK1 (0.8-fold, 0.8-fold, 0.8-fold in mir15a, mir16-1, mir15a/mir16-1, respectively) expression in CMs untreated (blank) or treated
with mimic-mirNC, mimic-mir15a, mimic-mir16-1, or mimic-mir15a plus mimic-mir16-1 (n = 2 experiments with 2 well replicates). GAPDH
levels served as loading control. *P < .05 versus mimic-mirNC. Statistical significance was determined by the two-sided t-test (I-L), by 1-way
ANOVA Tukey’s post hoc test (N)

the key target genes, regulatory network maps were con-
structed from the 169 target genes. Notably, AKT3, insulin
receptor (INSR), and insulin like growth factor 1 recep-
tor (IGF1R) were the most significant genes per outde-
gree size, while serum/glucocorticoid regulated kinase 1
(SGK1) shared the greatest sequence homology with the
AKT family19 (Figure 4C). mir15a and mir16-1 sequences
are highly conserved among mammals (Figure 4D). Anal-
ysis of the 3′-untranslated region (UTR) of INSR, IGF1R,
AKT3, and SGK1 revealed multiple potential binding sites
for both mir15a and mir16-1 (Figure 4E-H). Mouse INSR,
IGF1R, AKT3, and SGK1 asmir15a andmir16-1 targetswere
validated by luciferase assays. Transfection of a plasmid
containing the luciferase sequence of native INSR, IGF1R,

AKT3, SGK1 3′-UTR and a mir15a and mir16-1 mimic sig-
nificantly decreased normalized luciferase activity (Fig-
ure 4I-L). Complete inhibitionwas observedwhen all bind-
ing positions were mutated (Figure 4I-L). Western-blot
results supported the data obtained by reporter gene assays
for INSR, IGF1R, AKT3, and SGK1 inCMs (Figures 4Mand
4N). Similarly, the mir15a, mir16-1, and the combination
treatment also inhibited AKT3 protein levels in CM-like
AC16 cells (Figure S8).
We next determined the expression levels of four

mir15a/mir16-1 target genes in human and mouse hyper-
trophic hearts. Protein expression levels of INSR, IGF1R,
AKT3, and SGK1 were significantly increased in hyper-
trophic hearts compared to control (Figures 5A and 5B).
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F IGURE 5 Knockdownofmir15a/mir16-1 hyperactivates insulin/IGF1 signaling.A,Western blot analysis of target genes in human
heart samples from representative healthy control (n = 4) and hypertrophic hearts (n = 8). Bar graphs indicate quantitative levels of INSR (1.2-
fold), IGF1R (1.2-fold), AKT3 (1.3-fold), SGK1 (1.2-fold). *P < .05 versus HC. B,Western blot analysis of target genes in hearts before (0) (n = 4)
and after 4 and 8 weeks TAC (n = 3). Bar graphs indicate quantitative levels of INSR (1.3-fold at 8 weeks), IGF1R (1.3-fold at 8 weeks), AKT3
(1.2-fold at 8 weeks), SGK1 (1.2-fold at 8 weeks). *P < .05 versus before TAC. C, Western blot analysis of insulin-IGF1 signaling-related pro-
teins in hearts from WT and CKO mice before (n = 2 per group) and after 8 weeks of TAC (n = 4 per group). Bar graphs indicate quantitative
levels of INSR (1.2-fold), IGF1R (1.1-fold), AKT3 (1.2-fold), SGK1 (1.2-fold), p-IRS (1.3-fold), p-AKT (1.2-fold at 8 weeks), p-SGK (1.3-fold at 8
weeks), p-mTOR (1.1-fold at 8 weeks), p-ERK (1.1-fold at 8 weeks). *P < .05 versus WT-TAC 8W. D, Western blot analysis of proteins levels
in CMs transfected with control-siRNA or INSR, IGF1R, AKT3, SGK1-siRNA subjected to mir15a/mir16-1 inhibitor treatment (50 nM) (n = 2
experiments with 2 well replicates). E-G, CMs were transfected with control, INSR, IGF1R, AKT3, or SGK1-siRNA for 24 hours. CMs were then
treated with mir15a/mir16-1 inhibitor and PE for another 48 hours. Hypertrophy was assessed by morphological change (E, bar = 50 um), cell
surface area measurement (F), and mRNA expression of ANP (0.5-fold in INSR-siRNA, 0.4-fold in IGF1R-siRNA, 0.3-fold in AKT3-siRNA,
0.4-fold in SGK1-siRNA) and BNP (0.5-fold in INSR-siRNA, 0.4-fold in IGF1R-siRNA, 0.4-fold in AKT3-siRNA, 0.3-fold in SGK1-siRNA)
(G) (n = 5 experiments with 2 well replicates). *P < 0.05 versus control-siRNA. Statistical significance was determined by the two-sided t-test
(A and C) or by 1-way ANOVA Tukey’s post hoc test (B, F, and G)

Activated INSR and IGF1R interact with insulin recep-
tor substrate 1 (IRS1) to activate an intracellular signaling
network, including AKT, mTOR, and mitogen-activated
protein kinase 1 (ERK1)/2.20,21 We then analyzed insulin-
IGF1 signaling in the hearts of CKO and control mice post-
TAC. CKO hearts exhibited significantly increased expres-
sion of target protein, elevated IRS1/AKT/SGK phospho-
rylation, and slightly increased subsequent activation of
ERK1/2 and mTOR (Figure 5C). These data confirmed
INSR, IGF1R, AKT3, and SGK1 as novel targets of the
mir15a/mir16-1 cluster. The knockdown of mir15a/mir16-
1 increased the activation of insulin-IGF1 signaling in the
heart.
The results described above demonstrate that mir15a/

mir16-1 inhibition is sufficient to activate a hypertrophic
signaling system. The mir15a/mir16-1 inhibitor could pro-
mote CMs hypertrophy, indicated by an increase in CMs

surface area and ANP/B-type natriuretic peptide (BNP)
expression (Figure S9A-C). To further determine whether
activation of this pathway is required for hypertrophic
effect, we determined the effect of INSR, IGF1R, AKT3,
or SGK1 knockdown (by transfection with their specific
siRNA, Figure 5D) upon mir15a/mir16 inhibition-induced
hypertrophic response. The levels of four target genes
were increased in CMs transfected with mir15a/mir16-1
inhibitor compared to mir NC inhibitor (Figure S9D). CMs
treated with mir15a/mir16-1 inhibitor exhibited hyper-
trophic responses, as supported by morphological change
(Figures 5E and 5F) and expression of hypertrophic
genes (BNP and ANP) expression (Figure 5G). Impor-
tantly, the hypertrophic response was abolished by INSR,
IGF1R, AKT3, or SGK1 knockdown (Figure 5E-G). Sim-
ilar to mRNA data, BNP protein levels were decreased
in CMs when INSR/IGF1R/AKT3/SGK1 were blocked,
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respectively (Figure S9E). Taken together, these data sug-
gest INSR, IGF1R, AKT3 and SGK1 are novel target genes
contributing to mir15a/mir16-1 inhibition-mediated car-
diac hypertrophy.

3.5 Evidence supporting mir15a/mir16-1
as a novel therapeutic target against
cardiac hypertrophy

Previously, we showed that cholesterol-terminated
ethanolamine-aminated poly glycidyl methacrylate
(CHO-PEGA) nanoparticles efficiently deliver miRNA
into CMs and heart tissues.22 Employing the CHO-PEGA
carrier, we tested whether mir15a/mir16-1 replenishment
may rescue cardiac hypertrophy. CHO-PEGA was utilized
to deliver mir15a/mir16-1 or negative control miRNA (mir
NC) into cultured CMs after PE or recombinant IGF-1
(rIGF-1) treatment. Overexpression of mir15a/mir16-1 in
CMs transfected with the CHO-PEGA-mir15a/mir16-1
complex was confirmed by both ISH and qRT-PCR (Fig-
ures 6A and 6B). Furthermore, ectopic mir15a/mir16-1
overexpression inhibited CM hypertrophy induced by PE
or rIGF-1 stimuli (Figures 6C and 6D).
WT mice were subjected to TAC, followed by intra-

venous injection of CHO-PEGA-mir15a/mir16-1 or
CHO-PEGA-mir NC (Figure 6E). Neither CHO-PEGA-
mir15a/mir16-1 nor CHO-PEGA-mir NC affected macro-
scopic and histological appearance of the sham-operated
mouse hearts. Robust induction of mir15a/mir16-1 in
mouse heart was verified by qRT-PCR in animals treated
with CHO-PEGA containing-mir15a/mir16-1 4 weeks after
TAC (Figure 6F). Echocardiography revealed that the
CHO-PEGA-mir15/mir16 complex injection delayed the
onset and progression of cardiac hypertrophy, as evidenced
by decreased IVST. The CHO-PEGA-mir15/mir16 complex
was able to attenuate LV dysfunction after TAC (Figure 6G
and Table S5). After 4 weeks of TAC, the HW/BW/TL ratio
significantly increased in mice injected with CHO-PEGA-
mirNC, while CHO-PEGA-mir15/mir16-1 treated animals
manifested a blunted hypertrophic response (Figure 6H).
IncreasedCMcell surface area, fibrosis, and the expression
of hypertrophic /fibrotic genes (ANP/Col1A1) were signifi-
cantly attenuated in the CHO-PEGA-mir15/mir16-1 treated
animals compared to CHO-PEGA-mir NC (Figure 6I-M).
CHO-PEGA-mir15a/mir16-1 treatment significantly inhib-
ited both the expression of mir15a/mir16-1 target protein
and insulin-IGF1 signaling (Figure 6N).
To characterize the global impact of mir15a/mir16-1

treatment on cardiac hypertrophy, we compared the pro-
tein profiles of sham-operatedmice (Sham), and TACmice
treated with CHO-PEGA-mir NC (TAC-mir NC) or CHO-
PEGA-mir 15a/mir16-1 (TAC-mir15a/mir16-1). In total, 455

and 381 differentially expressed proteins (DEPs) were iden-
tified in TAC-mir NC versus Sham or TAC-mir15a/mir16-
1 versus TAC-mirNC (filtering criteria: P< .05; fold change
≥1.2) by proteomic analysis, respectively (Figure 6O). The
fold change of DEPs in TAC-mir NC versus Sham and
TAC-mir15a/mir16-1 versus TAC-mir NC was highly nega-
tive correlated (Pearson’s correlation coefficient=−0.742),
indicating that replenishment of mir15a/mir16-1 reversed
the protein profile induced by pressure overload (Fig-
ure 6P). Taken together, these results provide proof-of-
principle evidence that mir15a/mir16-1 may serve as a
novel therapeutic treatment for cardiac hypertrophy and
dysfunction.

3.6 Circulating mir15a/mir16-1 levels
may predict cardiac hypertrophy in
hypertensive patients

Having demonstrated that mir15a/mir16-1 downregulation
aggravated cardiac hypertrophy in the pressure overload
mouse model, we next determined the potential clinical
application of our experimental findings. We studied the
association of circulating mir15a-5p and mir16-5p levels
with the progression of LVH in a small cohort of hyperten-
sive patients without LVH at baseline (Figure 7A). Patient
characteristics are depicted in Table S6. During a median
of 18-month follow-up, 32 patients (12.3%) developed LVH.
Patients with LVH exhibited significantly lower levels of
mir15a-5p (P = .007) and mir16-5p (P < .001) than patients
without LVH (Figure 7B). This decreased expression was
unrelated to the gender, diabetes, coronary heart disease,
or obesity (Figure S10A-D). COX regression analysis was
employed to estimate the likelihood of LVH with mir15a-
5p/mir16-5p. Decreased mir15a-5p (hazard ratio [HR] 0.55,
95% CI [0.36-0.82], P= 0.004) andmir16-5p ([HR] 0.37, 95%
CI [0.23-0.60], P < .001) were significantly associated with
LVH risk, even after multivariable adjustment for impor-
tant clinical characteristics (Figure 7C). Figures 7D and
7E illustrate LVH occurrence according to mir15a-5p or
mir16-5p cutoff values. Patients with decreased mir15a-5p
or mir16-5p levels were more likely to exhibit LVH during
follow-up. Serummir15a-5p andmir16-5p levelsmay there-
fore serve as valuable biomarkers for LVH prediction.

4 DISCUSSION

In the present translational study, we make an observation
in a humandisease populationwithHCM, and confirm the
causal relationship in a mouse model with pressure over-
load and in vitro experiments, and corroborate the find-
ings in human patients. We identify that mir15a/mir16-1
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F IGURE 6 Replenishment of mir15a/mir16-1 protects against cardiac hypertrophy and failure. A, In situ hybridization of
mir15a and mir16-1 in CMs transfected with CHO-PGEA-containing mirNC or mir15a/mir16-1 for 24 hours. Scale bar = 25 μm. B, qRT-PCR
revealedmir15a andmir16-1 expression in CMs transfected with CHO-PGEA-containingmirNC ormir15a/mir16-1. *P< .05 versus CHO-PGEA-
containing mirNC.C andD,CMs transfected with CHO-PGEA-containing mirNC or mir15a/mir16-1 followed by PE at dosage of 100 nM (C) or
recombinant murine IGF1(Peprotec, #250-19) at dosage of 30 ng/mL (D) stimuli for 24 hours. Hypertrophy is assessed by sarcomere organiza-
tion (bar = 25 um) and cell surface area measurement. *P < .05 versus CHO-PGEA-containing mirNC. E, Protocol for CHO-PEGA-containing
mir15a/mir16-1 therapy in the mouse TAC heart hypertrophy model. F, qRT-PCR revealing cardiac mir15a and mir16-1 expression in mice sub-
jected to CHO-PEGA-mirNC or mir15a/mir16-1 treatment for 4 weeks (n = 8 per group). *P < .05 versus CHO-PEGA- mirNC. G, M-mode
echocardiographic imaging and EF analysis of mice treated with CHO-PEGA-mir NC or CHO-PEGA-mir 15a/mir16-1 before and after 2 and
4 weeks TAC. #P< .05 versus CHO-PEGA-mir NC-TAC.H-M,Whole-mount representation of heart and heart weight/body weight/tibia length
ratios (H), WGA stained section of left ventricles and quantification of myocyte cross-sectional area (I), ANP mRNA expression (0.5-fold at 4
weeks) (J), representative image of perivascular (K) and interestitital fibrosis (L) and quantification of fibrotic area, Col1A1 mRNA expression
(0.6-fold at 4 weeks) (M) in mice treated with CHO-PEGA-mir NC or CHO-PEGA-mir15a/mir16-1 before and after 4 weeks TAC (n = 6 per
group). *P < .05 versus mice before TAC; # P < .05 versus CHO-PEGA-mir NC-TAC. I, Bars = 50 μm; K and L, Bars = 100 μm. N, Western
blot analysis of insulin-IGF1 signaling-related proteins in hearts from CHO-PEGA-mirNC or mir15a/mir16-1 treated mice after 4 weeks of TAC.
Bar graphs indicate quantitative levels of INSR (0.7-fold), IGF1R (0.7-fold), AKT3 (0.8-fold), SGK1 (0.8-fold), p-IRS (0.2-fold), p-AKT (0.8-fold),
p-SGK (0.9-fold), p-mTOR (0.7-fold), p-ERK (0.1-fold) (n = 6 per group). *P < .05 versus CHO-PEGA-mir NC-TAC. O,Heatmap demonstrating
differentially expressed proteins among sham-operation mice (Sham), TAC mice treated with either CHO-PEGA-mir NC (mir NC-TAC), or
mir15a/mir16-1 (mir15a/mir16-1-TAC) (n = 3 per group). P, A representative scatter plot of protein expression fold-change in mir15a/mir16-TAC
versus mir NC-TAC (y-axis) and mirNC-TAC versus Sham (x-axis). Each point represents a log2 (fold-change) value for a protein. Statistical
significance was determined by the two-sided t-test (B-D and F-N)
Abbreviation: PCC, Pearson’s correlation coefficient.

levels are negatively correlated with hypertrophic sever-
ity in HCM patients. Hypertrophic stress downregu-
latesmir15a/mir16-1 transcription via aC/EBPβ-dependent
mechanism. We combine in vivo and in vitro studies to
demonstrate that miR15a/mir16-1 represses insulin/IGF1
signaling, preventing cardiac hypertrophy and dysfunction
development. Decreased mir15a/mir16-1 levels are inde-
pendently associated with LVH occurrence in patients.
Our results suggest that mir15a/mir16-1 cluster is a novel
biomarker and anti-hypertrophic regulator during hyper-
trophic heart failure, with promise as a therapeutic target.

We identify that mir15a/mir16-1 is produced primar-
ily by CMs. Its expression is significantly decreased in
both human and mouse hypertrophic hearts. Decreased
mir15a/mir16-1 production during hypertrophic stress
decreases cardiac mir15a/mir16-1 release into circula-
tion. Circulating mir15a/mir16-1 levels are significantly
decreased in HCM patients compared to HC, and are neg-
atively correlated with hypertrophic severity. Importantly,
patients with low mir15a/mir16-1 levels were at high risk
for the occurrence of LVH. LVH is an important marker
of target organ damage in hypertension, and precedes the
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F IGURE 7 Decreased mir15a/mir16-1 levels associated with LVH in hypertensive patients. A, Flow diagram for assessing the
predictive value of serum mir15a-5p and mir16-5p for LVH incidence in hypertensive patients. B, qRT-PCR analysis of mir15a-5p and mir16-
5p expression at admission in hypertensive patients with (n = 32) or without (n = 228) incidental LVH during follow-up. C, Univariate and
multivariate Cox regression analyses of mir15a-5p and mir16-5p levels for incident LVH. Model 1 was adjusted for diabetes mellitus, coronary
heart disease, body mass index, and estimated glomerular filtration rate, and LVmass index at admission; model 2 was adjusted for medication
treatment of β-blockers, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, calcium antagonists, and diuretics. D and E,
The prognostic values of mir15a-5p or mir16-5p levels for LVH were determined by Kaplan-Meier and log-rank test. Statistical significance was
determined by the two-sided t-test (B), by Cox regression analysis (C), by log-rank test (D and E)

incidence of adverse cardiac events.23,24 Identification of a
biomarker with a predictive value for LVH in hypertensive
patients is important, because it is not regularly identified
whether LVH develops during any given antihypertensive
regimen. These clinical results provide strong evidence
underlining the association of decreased mir15a/mir16-1
with pathological cardiac hypertrophy.
The regulatory mechanism of mir15a/mir16-1 expres-

sion is unknown. We have provided consistent evi-
dence identifying C/EBPβ as an inhibitory TF regulating
mir15a/mir16-1 in CMs. Surprisingly, STAT3, reportedly
upstream of mir16,25 did not affect the promoter activity of
mir15a/mir16-1. Previous studies only reported increased
mir16 expression during STAT3 knockdown, not provid-
ing evidence that STAT3 directly regulates mir15a/mir16-
1 at the transcript level.25,26 C/EBPβ, a leucine zipper
transcription factor, is pivotal in the regulation of heart
development27 and physiological28 and pathological car-
diac hypertrophy.18 Of interest, a constitutive upregula-
tion of C/EBPβ has been described in PE-treated CMs,
as well as in hearts subjected to pressure overload.18 We
observe increased C/EBPβ in hypertrophic hearts of HCM
patients. C/EBPβ knockout in CMs produced a pheno-
type similar to that of anti-hypertrophy,18 as observed

in mir15a/mir16-1 overexpressed CMs. Mice heterozy-
gous for C/EBPβ (C/EBPβ+/–) developed cardiac hyper-
trophy to lesser extent, and are resistant to cardiac dys-
function in response to pressure overload or pregnancy
stress compared to WT.18,28 Some cardiac phenotypes
seen in C/EBPβ+/– mice may derive from upregulated
mir15a/mir16-1 expression. Our results implicate involve-
ment of the C/EBPβ-mir15a/mir16-1 axis in pathologic
hypertrophy development.
We provide a concrete causative link between downreg-

ulated mir15a/mir16-1 and cardiac hypertrophy develop-
ment. Pressure overload-induced cardiac hypertrophy was
exacerbated by CM-specific mir15a/mir16-1 knockdown,
strongly suggesting that mir15a/mir16-1 is an essential pro-
tector of cardiac hypertrophy. Consistent with this, replen-
ishment of mir15a/mir16-1, using nanoparticle-carried
miRNAs in mice subjected to TAC, shows the decreased
cardiac hypertrophy and cardiac function improvement.
We provide the compelling evidence that multiple key
components of insulin-IGF1 signaling (including INSR,
IGF1R, AKT3, and SGK1) are targeted by mir15a/mir16-
1. It is interesting that the identified multiple targets
of mir15a/mir16-1 form a cooperative network regulat-
ing hypertrophy. Upon binding to their ligands, insulin
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and IGF1 receptors undergo auto-phosphorylation, which
in turn interact with IRS1/2 proteins and other binding
partners to activate the PI3K-AKT signaling pathway. SGK
is highly homologous to AKT, sharing similar upstream
activators and downstream targets. BothAKTand SGKcan
regulate the pro-growthmTOR pathway. In turn,mTORC2
phosphorylates AKT at hydrophobicmotif S473, andmam-
malian target of rapamycin complex 1 (mTORC1) phospho-
rylates SGK at the hydrophobic motif S422, leading to their
full activation.29 Studies using pressure overload or spon-
taneously hypertensionmodel, reported that the activation
ofmTOR signaling is essential for cardiac hypertrophy.30,31
Overexpression of IGF1R,32 AKT3,33 and SGK134 was also
associated with marked cardiac hypertrophy and dysfunc-
tion.
Moreover, in response to mechanical overload, patho-

logical processes, including CMs loss and, impaired fatty
acid utilization, promoted the transition from compen-
sated hypertrophy to contractile dysfunction and heart
failure.35,36 In this study, proteomics revealed thatmultiple
myocardial fatty acid oxidation (MFAO)-related pathways
(i.e. fatty acid degradation/metabolism/elongation) were
significantly downregulated in TAC-induced hearts, a pat-
tern similar to previous reports.37 Importantly, decreased
MFAO-related pathwayswere restored after replenishment
with mir15a/mir16-1 (Figure S11). Thus, mir15a/mir16-1
CKO mice exhibited increased compensated hypertro-
phy at 4 weeks and decreased LV systolic function at 8
weeks after TAC, which might indicate that mir15a/mir16-
1 knockdown not only aggregated cardiac hypertrophy
but also accelerated the progression from compensated
hypertrophy into HF. In addition, we and others demon-
strated that downregulated mir15a/mir16-1 promoted car-
diac fibrosis in the pathological condition.38 Although
current identified target genes did not directly regu-
late fibrosis, previous study reported that mir15 family
inhibited the pro-fibrotic pathway by targeting TGFBR1
and several other genes within transforming growth fac-
tor (TGF)β pathway (including SMAD Family Mem-
ber 3 [SMAD3]/7/8).39 Thus, the multiple targets of
mir15a/mir16-1 form a cooperative network for regulat-
ing hypertrophy, decompensated transition of hypertro-
phy, and cardiac fibrosis.
Despite the exciting current findings that the

mir15a/mir16-1 cluster serves to negatively regulate
pathological cardiac hypertrophy, there are several limi-
tations in our study that warrant further discussion and
which will require future follow-up studies. First, we
found the association between mir15a/mir16-1 cluster
and cardiac hypertrophy in HCM patients, but tested
its pathological role in the animal model of pressure
overload-induced cardiac hypertrophy. However, it
is worth noting that the intermediary molecular events

involved in HCM, including calcineurin, MAPK and TGFβ
pathways are also activated in pressure overload-induced
cardiac hypertrophy.40 Second, it should be noted that
mir15a/mir16-1 modulate angiogenesis. Previous studies
from the Emanueli C group revealed that mir15a/mir16-1
inhibited neovascularization in limb ischemia by impair-
ing the survival/migration of circulating proangiogenic
cells and the expression of angiopoietins.41,42 ThemiRNAs
are known to work in a context-dependent manner and
in different scenarios. The mir15a/mir16-1 expression
appeared altered in different heart disease setting, upreg-
ulation in ischemic myocardium and, downregulation
in hypertrophic myocardium. The potential suppressed
angiogenetic response due to the excessive overexpression
of mir15a/mir16-1 may need to be avoided. Finally, the
mir15a/mir16-1 bio-distribution in the internal organs
showed the high accumulations in the heart, liver, and
kidney after CHO-PEGA-mir15a/mir16-1 treatment (Fig-
ure S12), suggesting that system delivery of CHO-PEGA-
mir15a/mir16-1 could achieve cardiac enrichment but
lacked cardiac-specific ability. Thus, cardiac-targeting
delivery requires further study.
In conclusion, we provide the first evidence that cir-

culating mir15a/mir16-1 levels negatively correlate with
hypertrophic severity and predict the occurrence of
LVH. mir15a/mir16-1 protects against pathological car-
diac hypertrophy and sequelae (e.g. heart failure) by
repressing insulin/IGF1 signaling. Nanoparticle-carrying
mir15a/mir16-1 treatment decreases cardiac hypertrophy
and improves cardiac function in an experimental animal
model of pressure overload. Our study exhibits important
clinical implications for both the treatment and prediction
of cardiac hypertrophy.
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