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The task of sketch face recognition refers to matching cross-modality facial images from

sketch to photo, which is widely applied in the criminal investigation area. Existing works

aim to bridge the cross-modality gap by inter-modality feature alignment approaches,

however, the small sample problem has received much less attention, resulting in

limited performance. In this paper, an effective Cross Task Modality Alignment Network

(CTMAN) is proposed for sketch face recognition. To address the small sample problem,

a meta learning training episode strategy is first introduced to mimic few-shot tasks.

Based on the episode strategy, a two-stream network termed modality alignment

embedding learning is used to capture more modality-specific and modality-sharable

features, meanwhile, two cross task memory mechanisms are proposed to collect

sufficient negative features to further improve the feature learning. Finally, a cross task

modality alignment loss is proposed to capture modality-related information of cross task

features for more effective training. Extensive experiments are conducted to validate the

superiority of the CTMAN, which significantly outperforms state-of-the-art methods on

the UoM-SGFSv2 set A, set B, CUFSF, and PRIP-VSGC dataset.

Keywords: sketch face recognition, cross-modality gap, small sample problem, image retrieval, feature alignment

1. INTRODUCTION

Face recognition plays an important role in law enforcement agencies (Lin et al., 2018). However,
there are many cases where police cannot capture photos of a suspect, but eyewitnesses can help
forensics draw a facial sketch. Sketch face recognition is the process of matching facial sketches to
photos (Méndez-Vázquez et al., 2019); it has wide application in the criminal investigation area
(Wang and Tang, 2009).

Sketch face recognition is challenging due to the largemodality gap between photos and sketches
and small sample problem. Photos depict the real-life environment. They have bothmacro edge and
micro texture information. Sketches are usually hand-drawn (Wang and Tang, 2009) by forensic
artists or composited (Galea and Farrugia, 2018) via computer software programs like EFIT-V
and IdentiKit. They primarily contain macro edge information with minimal texture information.
Moreover, due to the privacy protection problem and the time-consuming efforts of sketch drawing,
amount of the paired sketch-photo data is limited, resulting in limited sketch face recognition
performance. As a result, reducing the modality gap as much as possible has been important target
in few shot sketch face recognition.
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Several research studies have been devoted to reducing the
modality gap, where it was divided into intra-modality (Gao
et al., 2008b; Zhang et al., 2015) and inter-modality methods
(Fan et al., 2020; Peng et al., 2021). For intra-modality methods,
they aim to reduce the domain gap by transforming a sketch
(photo) to a photo (sketch) first, and then using traditional
homogeneous face recognition methods to match the resultant
photos with the original photos. However, such methods usually
contain undesirable artifacts (Zhang et al., 2015). Inter-modality
methods aim to extract modality-invariant features to obtain
promising performance. However, for small sample problem,
these features usually are not optimal. Although several few-shot
methods (Jiang et al., 2018; Dhillon et al., 2019) have achieved
comparable performance on several benchmark datasets, they are
not designed for sketch face recognition specifically and ignore an
unavoidable fact that there exist modality shifts between sketch
and photo domain.

In this paper, a Cross Task Modality Alignment Network
(CTMAN) is proposed for sketch face recognition to address the
above problem. Inspired by few-shot learning methods (Jiang
et al., 2018), we introduced a meta learning training episode
strategy to alleviate the small sample problem, several different
tasks are built by the training episode strategy, then modality
related query set and support set are designed to incorporate
modality information. Based on these tasks, a two-stream
network termed modality alignment embedding learning (MAE)
is used to extract discriminative modality alignment features.
Since mining important negative samples are important for few
shot learning (Robinson et al., 2021), two cross task memory
mechanisms are further proposed to obtain the cross task support
set, thus the cross task support set can collect more sufficient
hard negative features crossing different tasks (episodes), and
the cross task modality alignment losses are computed over the
cross task support set to enhance the discrimination of feature
representations. Finally, by computing the distance between the
query set and cross task support set, a cross task modality
alignment loss is proposed to further guide the MAE to learn
modality related features. Similar to Matching Networks (Xu
et al., 2021) and Prototypical Networks (Snell et al., 2017), our
proposed method can be seen as a form of meta-learning, in
the sense that we compute the cross task domain alignment
loss dynamically from new training tasks (episodes). The main
difference between training episode strategy for few-shot learning
and batch learning for traditional deep learning methods is that
the label of identity in a different batch is fixed and in different
episode is flexible.

Note that CTMAN is different from other sketch face
recognition schemes, such as Domain Alignment Embedding
Network (DAEN) (Guo et al., 2021). The main differences
between the CTMAN and the DAEN are as follows: (1) CTMAN
uses a two-stream network to extract discriminative modality
alignment feature, the two-stream network consists of a ResNet50
backbone, the non-local blocks and the generalized mean (GeM)
pooling layers. DAEN uses a traditional one-stream ResNet18
network to extract discriminative feature; (2) CTMAN proposes
a cross task memory mechanism and cross task support feature
set to collect more sufficient hard negative features by crossing

different tasks and compute the cross task modality alignment
losses over the query feature set and cross task support feature set.
DAEN computes the modality alignment losses over the query
feature set and support feature set.

Our major contributions can be summarized as follows:
by utilizing the cross task information, we propose a
CTMAN method to extract modality alignment discriminative
representation under the small sample settings, achieving the
competitive sketch face recognition performance. Furthermore,
we design a cross task memory mechanism to obtain the updated
cross task support set to collect more sufficient hard negative
features by crossing different tasks. On the one hand, through
manipulation of enqueue and dequeue, cross task memory
mechanism can collect more sufficient hard negative features by
crossing different tasks. On the other hand, by combining these
hard negative features, the cross task support feature set is built
for computing the cross task modality alignment losses to further
enhance the discrimination of feature representations. The cross
task modality alignment losses are computed over the query
sketch feature set and cross task support feature set, they enhance
feature representations by mining the modality relations between
the sketch domain and photo domain. Extensive experimental
results show that our proposed CTMAN outperforms the state-
of-the-art methods on three benchmark datasets. Especially, on
UoM-SGFSv2 set A and set B, our model achieves a significant
improvement of 8.51 and 11.9% Rank-1, respectively, which
greatly accelerates the sketch face recognition research.

The rest is arranged as follows. Previously related researches
are briefly reviewed in Section 2. In Section 3, the CTMAN is
introduced in detail. In Section 4, the experimental results on the
UoM-SGFSv2 Set A, Set B, and CUFSF datasets are fully analyzed,
and Section 5 concludes.

2. RELATED WORK

In this section, related sketch face recognition methods are
reviewed. Since few-shot learning methods are related to our
proposed method, these methods are also reviewed.

Sketch face recognition methods can be broadly divided
into inter-modality and intra-modality methods. Eigen-
transformation (Galea and Farrugia, 2015), Bayesian framework
(Wang et al., 2017a), and Generative Adversarial Network (GAN)
(Wang et al., 2017b) are representative intra-modality methods.
Under the assumption that sketches and the corresponding
photos are reasonably similar in appearance, the Eigen-
transformation (Galea and Farrugia, 2015) used a linear
combination of photos (or sketches) to synthesize whole images.
Wang et al. (2017a) proposed a Bayesian framework to consider
relationships among neighboring patch images for neighbor
selection. With the development of GAN, many methods utilize
GAN to transform a sketch into a photo. For example, Wan
and Lee (2019) proposed a residual dense U-Net generator
and a multitask discriminator for sketch face generation and
recognition simultaneously. However, these methods do not
emphasize inter-personal differences, causing performance
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reduction when data samples are limited, moreover, these
methods are computationally expensive (Zhang et al., 2015).

Traditional inter-modality methods include the local binary
pattern (LBP) (Bhatt et al., 2010), histogram of averaged
orientation gradients (HAOG) (Galoogahi and Sim, 2012), and
logGabor-MLBP-SROCC (LGMS) method (Galea and Farrugia,
2016). Bhatt et al. (2010) used extended uniform circular LBP
descriptors to characterize sketches and photos. The HAOG
(Galoogahi and Sim, 2012) is a gradient orientation based face
descriptor, it was proposed to reduce the modality difference by
the fact that gradient orientations of macro edge information
are more modality invariant than micro texture information. By
utilizingmultiscale LBP and log-Gabor filters, Galea and Farrugia
(2016) proposed LGMSmethod to extract local and global texture
representations for sketch face recognition. Recently, many
works attempt to address the cross-modal matching problem
by deep learning methods benefiting from the development of
deep learning (Mittal et al., 2015; Peng et al., 2019, 2021; Fan
et al., 2020). Mittal et al. (2015) proposed a deep belief model to
learn a feature of photos and then fine-tuned it for sketch face
recognition. By introducing a soft face parsing approach, Peng
et al. (2021) proposed a soft semantic representation method
to extract contour level and soft semantic level deep features.
They also proposed a deep local feature learning approach
to learn compact and discriminant local information directly
from original facial patches. Fan et al. (2020) presented a
Siamese graph convolution network by building cross-modal
graphs for face sketch recognition. However, the success of these
deep learning approaches neglects the small sample problem to
some extent.

By using a 3-D morphable model to synthesize both photos
and sketches to augment the training data, Galea and Farrugia
(2018) utilized a fine-tuned VGG-Face network and a triplet
loss to determine the identity in a query sketch by comparing
it to a gallery set. Guo et al. (2021) designed a training episode
strategy to alleviate the small sample problem and proposed
a domain alignment embedding loss to guide the network to
learn discriminative features. Recently, few-shot learning has
become appealing choice to deal with a small sample problem.
Metric based meta-learning method and hard samples mining
method are representative methods for few-shot learning. Metric
based meta-learning method raises the learning level from data
level to task level, and it learns the embedding from newly
labeled tasks instead of the whole training dataset in each
episode. Vinyals et al. (2016) proposed a matching network
by using an attention mechanism to predict the class of query
sets from labeled support sets. Wang J. et al. (2018) proposed
a Siamese network by minimizing a pairwise similarity metric
between within-class samples. By regarding each image as a
graph node, Garcia and Bruna (2017) designed a Graph Neural
Network to learn the information transmission task in an
end-to-end manner. For the hard samples mining technique,
Zhong et al. (2019) utilized the instance invariance technique
in domain adaptation to construct positive exemplar memory.
Wang et al. (2019) proposed a cross batch memory to provide
a rich set of negative samples by using a dynamic queue of mini-
batches. Robinson et al. (2021) developed an efficient and easy

to implement sampling technique for selecting hard negative
samples with few computational overheads. Although the
above hard samples mining methods have achieved competitive
performance on several representative small sample dataset, they
do not consider the modality gap between sketch images and
photo images.

3. PROPOSED METHOD

In this section, we detail the proposed CTMAN. Several training
episodes are randomly selected from the training set to mimic
few shot tasks, and modality related query set and support set
are designed to incorporate domain information inmeta learning
training episode strategy stage. In each training episode, we use
a MAE network to extract discriminative features to obtain the
modality alignment query feature set and support feature set. On
the basis of the support feature set, to further alleviate the small
sample problem, we propose two cross task memory mechanism
to obtain the cross task support set to collect sufficient hard
negative features crossing different tasks. Finally, a cross task
modality alignment loss is computed over the query feature set
and cross task support feature set and a modality alignment loss
is computed over the query feature set, and support feature set.
Figure 1 shows the proposed CTMAN in one training episode.

3.1. Meta Learning Episode Training
Strategy
Due to the privacy protection problems and the time consuming
efforts of sketch drawing, amount of the paired sketch-photo data
is limited. Inspired by the few shot learning methods (Vinyals
et al., 2016; Snell et al., 2017; Jiang et al., 2018; Guo et al.,
2021), a meta learning training episode strategy is introduced to
incorporate modality information by sampling image pairs and
classes from the training set.

Given a training set Dtr = {S, P} =

{(s1, y1), · · · , (sN , yN), (p1, y1), · · · , (pN , yN)}, where
P = {(pi, yi)}

N
i=1 are photo images and S = {(si, yi)}

N
i=1 are

sketch images, N is the number of subjects, yi is the class label,
si and pi(i = 1 :N) share same label yi. The meta learning
training episode classes B = {t1, . . . , tb} ⊂ {1, · · · ,N} is
randomly selected to form the meta learning training episode or
task Dt = {(st1, y

t
1, 1), · · · , (s

t
b
, yt

b
, b), (pt1, y

t
1, 1), · · · , (p

t
b
, yt

b
, b)},

where st
k
= sik , p

t
k
= pik , y

t
k
= yik , k = 1, · · · , b, yt

k
is original

label corresponding to st
k
and pt

k
, and k is the current label

corresponding to st
k
and pt

k
in the current training episode. For

each training epoch, the meta learning training episode Dt will
be randomly formulated T times (D1, · · · ,DT) to mimic the
few-shot task.

In each training episode Dt , a query set Qt =

{(st1, 1), · · · , (s
t
b
, b), (pt1, 1), · · · , (p

t
b
, b)} is builded. For

sti ∈ Qt ,i = 1, · · · , b, the corresponding photo support
set is builded by Stp = {(pt1, y

t
1, 1), · · · , (p

t
b
, yt

b
, b)}. For

pti ∈ Qt , the corresponding sketch support set is builded
by Sis = {(st1, y

t
1, 1), · · · , (s

t
b
, yt

b
, b)}.
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FIGURE 1 | Cross task modality alignment network (CTMAN) for sketch face recognition. In each training episode, CTMAN first embeds sketch and photo images

into feature space by modality alignment embedding (MAE) network to obtain query feature set Qf and support feature set (Sfs and Sfp). Then, it proposes two cross

task memory mechanism Mp and Ms to obtain the cross task support feature set (Ŝfs and Ŝfp). Finally, a cross task modality alignment loss (LCPDL + LCSDL) is

computed on the query feature set and cross task support feature set, a modality alignment loss (LPDL + LSDL) is computed on the query feature set and the support

feature set, and the final loss is computed over the cross task modality alignment loss and modality alignment loss.

3.2. Modality Alignment Embedding
Learning
Since two-stream network structure has been widely used in
cross-modality person re-identification and achieved comparable
performance (Ye et al., 2020), here we introduce a two-stream
feature extraction network structure (Ye et al., 2021) termed
MAE network F(·) = [Fs(·), Fp(·)] for sketch face recognition to
capture more modality-specific and modality-sharable features.
The overall structure of MAE for sketch face recognition is
illustrated in Figure 2. The structure of ResNet50 (He et al., 2016)
pre-trained on ImageNet is adopted as a backbone for MAE, and
the fully connected layer is removed. The MAE contains two
blocks, the first block is designed specifically for two modalities
in order to capture modality-specific information while the
remaining blocks are shared to learn modality-sharable features.
The first block contains a convolutional layer, a batchnorm layer,
a relu layer, and a maxpooling layer. The remaining blocks
contain 4 residual modules and 4 non-local attention blocks
(Wang et al., 2017c), each residual module follows a non-local
attention blocks, the final non-local attention block follows a
pooling layer, the output of the pooling layer is adopted for
computing loss function in the training and inference stage. Since
sketch face recognition is a cross modal fine-grained instance
retrieval, the widely-used max-pooling or average pooling cannot
capture the domain-specific discriminative features (Ye et al.,

2021), here we adopt a GeM pooling (Radenovic et al., 2017) for
the pooling layer.

In each training episode Dt , a query set Qt , a photo
support set Stp, and sketch support set Sts are given.
F(·) = [Fs(·), Fp(·)] embeds them to the query feature set
Qf = {(Fs(s

t
1), 1), · · · , (Fs(s

t
b
), b), (Fp(p

t
1), 1), · · · , (Fp(p

t
b
), b)} =

{(f ts1, 1), · · · , (f
t
sb
, b), (f tp1, 1), · · · , (f

t
pb
, b)}, photo support

feature set Sfp = {(Fp(p
t
1), y

t
1, 1), · · · , (Fp(p

t
b
), yt

b
, b)} =

{(f tp1, y
t
1, 1), · · · , (f

t
pb
, yt

b
, b)}, and sketch support feature set Sfs =

{(Fs(s
t
1), y

t
1, 1), · · · , (Fs(s

t
b
), yt

b
, b)} = {(f ts1, y

t
1, 1), · · · , (f

t
sb
, yt

b
, b)},

respectively.

3.3. Cross Task Modality Memory
Mechanism
Mining important negative samples are important for few shot
learning (Robinson et al., 2021) and metric learning (Wang
et al., 2019), for collecting sufficient informative negative pairs
from each episode, inspired by Wang et al. (2019), through the
manipulation of enqueue and dequeue. We propose a cross task
photo memory mechanism Mp and a cross task sketch memory
mechanism Ms to record the deep features of recent episodes,
allowing the model to collect sufficient hard negative pairs across
multiple tasks. By computing the mean value of within class
sample of the Mp and Ms, a cross task photo support feature set
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FIGURE 2 | The overall structure of MAE for sketch face recognition.

Ŝfp and a cross task sketch support feature set Ŝfs are obtained for
computing the cross task modality alignment losses to enhance
the discrimination of feature representations.

Suppose M is the memory size of Mp and b < M, the

Mp = {(f p1, y1), · · · , (f pM , yM)} and Ŝfp are builded and updated

as follows: in the first m episode, the MAE is warmed up first
to reach a local optimal field, Mp = {(f p1, y1), · · · , (f pM , yM) =

{(fmp1 , y
m
1 ), · · · , (f

m
pb
, ym

b
), (0, 0), · · · , (0, 0)}, Ŝfp = Sfp =

{(fmp1 , y
m
1 , 1), · · · , (f

m
pb
, ym

b
, b)}. Then, for the following task, the

features and original labels of the current task ofMp are enqueued
and entities of the earliest task are dequeued. For example, for
the (m + 1)th episode, if 2b ≤ M, the Mp is updated by Mp =

{(fmp1 , y
m
1 ), · · · , (f

m
pb
, ym

b
), (fm+1

p1 , ym+1
1 ), · · · , (fm+1

pb
, ym+1

b
), (0, 0),

· · · , (0, 0)}, else if 2b − M = k ≥ 0, Mp =

{(fm
p(k+1)

, ym
k+1

), · · · , (fm
pb
, ym

b
), (fm+1

p1 , ym+1
1 ), · · · , (fm+1

pb
, ym+1

b
)}.

The Ŝfp is updated by Ŝfp =

{(f̂m+1
p1 , ym+1

1 , 1), · · · , (f̂m+1
pb

, ym+1
b

, b)}, for each f̂m+1
pi with

label ym+1
i , suppose there exist qi with-in class feature in Mp

selected by label ym+1
i , then f̂ tpi is computed by

f̂m+1
pi =

1

qi + 1
(

∑

yn=ym+1
i ,f pn 6=fm+1

pi

f pn + fm+1
pi ). (1)

Likewise, a cross task sketch memory mechanism Ms =

{(f s1, y1), · · · , (f sM , yM)} and a cross task sketch support feature

set Ŝfs = {(f̂ ts1, y
t
1, 1), · · · , (f̂

t
sb
, yt

b
, b)} can be builded in a similar

way, suppose there exist hi with-in class feature inMp selected by

label yti , f̂
t
si is computed by

f̂ tsi =
1

hi + 1
(

∑

yn=yti ,f sn 6=f tsi

f sn + f tsi). (2)

3.4. Cross Task Modality Alignment Loss
Based on the above meta learning training episode strategy and
cross task modality memory mechanism, a cross task modality
alignment loss is proposed and a modality alignment loss is
used to guide the F(·) to learn discriminative modality alignment
features. In each training episode, the query feature set Qf =

{(f ts1, 1), · · · , (f
t
sb
, b), (f tp1, 1), · · · , (f

t
pb
, b)}, photo support feature

set Sfp = {f tp1, y
t
1, 1), · · · , f

t
pb
, yt

b
, b), and sketch support feature

set Sfs = {f ts1, y
t
1, 1), · · · , f

t
sb
, yt

b
, b) are extracted by the MAE

learning F(·) first. Then, the cross task photo support feature set

Ŝfp = {(f̂ tp1, y
t
1, 1), · · · , (f̂

t
pb
, yt

b
, b)} and cross task sketch support

feature set Ŝfs = {(f̂ ts1, y
t
1, 1), · · · , (f̂

t
sb
, yt

b
, b)} are builded by cross

task modality memory mechanism.
For a sketch feature f tsi in query feature set Qf , its probability

distribution over the cross task photo support set Ŝfp can be
formulated by a softmax function over b cross task photo
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features:

P(k|f tsi) =
exp(−||f tsi − f̂ t

pk
||)

∑b
j=1 exp(−||f tsi − f̂ tpj||)

, (3)

where ||·|| is the Frobenius norm, P(k|f tsi) refers to the probability
of sti belonging to the class k.

By summarizing the probability P(k|f tsi), i = 1, · · · , b on the
Qf , the cross task sketch modality embedding loss is denoted as
follows:

LCSDL =
1

b

b∑

i=1

− log P(k|f tsi), (4)

Similarly, the cross task photo modality embedding loss LCPDL is
denoted as follows:

LCPDL =
1

b

b∑

i=1

− log P(k|f tpi) =
1

b

b∑

i=1

− log(
exp(−||f tpi − f̂ tsk||)

∑b
j=1 exp(−||f tpi − f̂ tsj||)

), (5)

Combine Equations (4) and (5), the cross task modality
alignment loss is computed by the sum of the cross task
sketch domain embedding loss and the cross task photo domain
embedding loss:

LCDL =
1

2
(LCPDL + LCSDL)

=
1

2b
(

b∑

i=1

− log P(k|f tpi)+

b∑

i=1

− log P(k|f tsi)).

(6)

To further extract discriminative modality alignment features,
the probability distribution of Qf over the photo support set Sfp
and sketch support set Sfs are also computed as follows:

P1(k|f
t
si) =

exp(−||f tsi − f t
pk
||)

∑b
j=1 exp(−||f tsi − f tpj||)

, (7)

P1(k|f
t
pi) =

exp(−||f tpi − f t
sk
||)

∑b
j=1 exp(−||f tpi − f tsj||)

, (8)

Finally, the modality alignment loss is computed by the sum of
the sketch domain embedding loss LPDL and the photo domain
embedding loss LSDL:

LDL = LPDL + LSDL =
1

2b
(

b∑

i=1

− log P1(k|f
t
pi)+

b∑

i=1

− log P1(k|f
t
si)), (9)

Combine Equations (6) and (9), the final loss is computed by
the weight sum of the cross task modality alignment loss and the
modality alignment loss:

L =
1

2
(LDL + λLCDL)

=
1

2b
(

b∑

i=1

− log P1(k|f
t
pi)+

b∑

i=1

− log P1(k|f
t
si))

+
λ

2b
(

b∑

i=1

− log P(k|f tpi)+

b∑

i=1

− log P(k|f tsi)).

(10)

where λ is the trade-off parameter.

3.5. Learning and Inference
For each episode, we update the parameter of MAE by the solving
following optimization problem:

min
w

L =
1

2
(LDL + λLCDL). (11)

The detailed process of loss computation is provided in
Algorithm 1, which can be optimized with back-propagation
algorithm. As for inference, after extracting the probe feature
set and gallery feature set from the well-trained MAE network
F(·) = [Fs(·), Fp(·)], for each sketch feature Fs(s

e) in probe
feature set, we compute Euclidean metric among the Fs(s

e) and
the gallery feature set {Fp(p

1), · · · , Fp(p
n)} , the corresponding

nearest gallery sample pei is the matched photo image.

Algorithm 1: Loss computation of CTMAN.

Input: training episode Dt = {(st1, y
t
1, 1), · · · , (s

t
b
, yt

b
, b),

(pt1, y
t
1, 1), · · · , (p

t
b
, yt

b
, b)}.

1 Build a query set Qt , a photo support setStp, and a sketch

support set Sts by Section 3.1;
2 Build a query feature set Qf , a photo support feature setSfp,

and a sketch support feature set Sfs by Section 3.2;

3 Build a cross task photo support feature set Ŝfp and a cross

task sketch support feature set Ŝfs by Section 3.2;

4 Compute the cross task modality alignment loss LCDL and
modality alignment loss LDL by Equation (6) and
Equation (9), respectively;

5 Compute L by Equation (11) ;
Output: L.

4. EXPERIMENT

The proposed CTMAN is evaluated through extensive
experiments on the UoM-SGFSv2 dataset (Galea and Farrugia,
2018) and the CUHK Face Sketch FERET Database (CUFSF)
dataset (Mittal et al., 2015). Extensive ablation analysis is
conducted to verify effectiveness of each contribution of the
CTMAN. Finally, the proposed method is compared with other
most recent competing methods on sketch face accuracy.
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TABLE 1 | Experiment setup, UoM-SGFS set A* is UoM-SGFS set A, MEDS -II,

FEI, and LFW, and UoM-SGFS set B* is UoM-SGFS set B, MEDS -II, FEI, and

LFW.

Setup Training set Test set Train/pairs Probe Gallery

name

S1 UoM-SGFSv2 set A UoM-SGFS set A* 450 150 150+1521

S2 UoM-SGFSv2 set B UoM-SGFS set B* 450 150 150+1521

S3 CUFSF CUFSF 500 694 694

S4 PRIP-VSGC PRIP-VSGC 48 75 75

4.1. Dataset
The UoM-SGFSv2 database (Galea and Farrugia, 2018) consists
of 600 paired sketch and photo samples. The 600 photos come
from the Color-FERET database (Rallings et al., 1998), for each
of the 600 photos, two viewed sketches were drawn by computer.
One viewed sketch was drawn using EFIT-V software manually
operated by an artist, and the other was further edited utilizing
the Image editing software, thus, the other is closer in appearance
to the photos. The UoM-SGFSv2 set A consists of 600 photos,
and the 600 sketches is drawn using the EFIT-V software, and

the UoM-SGFSv2 set B consists of the 600 photos and the other
600 sketches. The CUFSF dataset contains 1,194 subjects, each
subject has one photo image with illumination changes coming
from the FERET database (Rallings et al., 1998) and one sketch
image created by an artist. This database is challenging due to the
different illumination conditions of the photo images and several
exaggerations of the sketch images. The PRIP-VSGC dataset
contains 123 subjects, each subject has one photo that comes
from the AR dataset (Martinez and Benavente, 1998), and one
sketch created by an Asian artist by utilizing the Identi-Kit tool.

Based on the above three datasets, four experimental setup are
performed. S1 setup and S2 setup are based on the UoM-SGFSv2
set A and B, respectively, and the partition protocols in Galea
and Farrugia (2018) are followed. The training set consists of 450
randomly selected subjects, and the test set contains the rest 150
subjects. When tested, the 150 sketch images form the probe set
and 150 photo images form the gallery set, to mimic the mug-
shot galleries, the gallery set is further extended to 1,521 subjects.
These 1,521 subjects include 199 subjects from the FEI dataset1,

1Available at: http://fei.edu.br/~cet/facedatabase.html.

FIGURE 3 | Examples of cropped images from the UoM-SGFSv2 dataset, the top, middle, and bottom row are photo images, sketch images from set A and set B,

respectively.
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FIGURE 4 | Examples of cropped images from the CUFSF dataset, the top and bottom row are photo and sketch images, respectively.

509 subjects from the MEDS-II dataset2, and 813 subjects from
the LFW dataset.3 The S3 setup is based on the CUFSF dataset
and follows the protocols by Mittal et al. (2015). The training
set consists of 500 randomly selected subjects, and the test set
contains rest 694 subjects. When tested, the 694 sketch images
form the probe set and 694 photo images form the gallery set. All
approaches are calculated over 5 train/test set splits. The S4 setup
is based on the PRIP-VSGC dataset and follows the protocols
by Mittal et al. (2015). The training set consists of 45 randomly
selected subjects, and the test set contains the rest 75 subjects.
All approaches are calculated over 5 train/test set splits. Table 1
details four experimental setups.

4.2. Implementation Details
Sketch and photo images are aligned, cropped, and reshaped to
256×256 by using the MTCNN (Zhang et al., 2016). Figures 3, 4
depict representative cropped images from the UoM-SGFSv2 and

2Available at: http://www.nist.gov/itl/iad/ig/sd32.cfm.
3Available at: http://vis-www.cs.umass.edu/lfw/.

TABLE 2 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S1 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 78.67 96.00 99.20

w/o GeM 74.53 96.00 99.33

w/o CTM 76.67 95.60 99.33

w/o CTM&MLS 57.47 87.47 95.73

baseline 54.93 86.93 95.33

CUFSF dataset. Representative data augmentation techniques
including random cropping, filling, horizontal flipping, and
normalization are employed in the training stage. Specifically,
we first pad the images on all sides with the 10 value, next
crop the given image at a random location to 256 × 256, then
horizontally flip the images randomly with a probability of 0.5,
finally normalize the images with mean value of (0.5, 0.5, 0.5)
and SD value of (0.5, 0.5, 0.5). Adam optimizer (Kingma and
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Ba, 2014) with (β1,β2) = (0.5, 0.999) is utilized to optimize the
MAE learning network, the learning rate is set to 0.0001. The total

TABLE 3 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S2 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 85.73 98.13 99.33

w/o GeM 82.13 98.13 99.60

w/o CTM 85.33 98.00 98.93

w/o CTM&MLS 70.80 93.07 97.60

baseline 69.20 93.07 98.00

TABLE 4 | Results of the CTMAN, w/o GeM, w/o CTM, w/o CTM&MLS, and

baseline on the S3 setup.

Methods Rank-1 (%) Rank-10 (%) Rank-50 (%)

CTMAN 90.06 98.70 99.39

w/o GeM 85.85 98.65 99.34

w/o CTM 89.25 98.73 99.36

w/o CTM&MLS 83.86 97.90 99.34

baseline 80.66 97.35 99.45

training episode is set to 60, the training episode T is set to 100,
the training episode classes b is set to 28, and the memory sizeM
is set to 512. The trade-off parameter λ is set to 0.5 empirically.
The firstm episode is set to 30.

4.3. Results and Analysis
4.3.1. Ablation Study
To verify the effectiveness of each component of the proposed
CTMAN, we compare CTMAN with w/o GeM, w/o CTM, w/o
CTM&MLS, and baseline approach. To verify the effectiveness
of the GeM pooling layer, for w/o GeM, the GeM pooling
layer is replaced by the traditional maxpooling layer. To verify
the effectiveness of the cross task memory mechanisms, for
w/o CTM, in each training episode, the cross task modality
alignment loss computed by the cross task support feature set
is removed, and the loss function is set to Equation (9). To
verify the effectiveness of the meta learning training episode
strategy, for w/o CTM&MLS, on the basis of w/o CTM, the meta
learning training episode strategy and corresponding loss are
further removed, it uses the traditional batch training process,
and extracts features by MAE learning, then a batch norm layer
and linear layer transform the feature into a vector of class logits,
the loss is set to cross-entropy loss, the batch size is set to 28,

FIGURE 5 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S1 setup, images in red box are the groundtruth.
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FIGURE 6 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S2 setup, images in red box are the groundtruth.

and the epoch is set to 60. For the baseline, on the basis of w/o
CTM&MLS, the MAE learning is further removed, it extracts
features by the ResNet50 network pretrained on ImageNet. Note
that each method uses the same parameter settings and partition
protocols to make experiments fair.

Tables 2–4 show the performance of the CTMAN, w/o GeM,
w/o CTM, w/o CTM&MLS, and baseline on the S1, S2, and
S3 setup. Figures 5–7 visualize the top five matching photos
of CTMAN, w/o CTM, w/o CTM&MLS and baseline on the
S1, S2, and S3 setup, respectively, images in red box are the
groundtruth. As shown in Figures 5–7, we visualize the effect
of the four approaches to evaluate our CTMAN’s recognition
performance intuitively. For each figure, the first line shows
the matching results for the proposed method, the second line
depicts the results of the w/o CTM, the third line depicts the
results of the w/o CTM&MLS, and the final line depicts the
result of the baseline. Results show that all methods are lower
on the more difficult S1 setup than the S2 setup, and our
CTMAN outperforms the w/o GeM, w/o CTM, w/o CTM&MLS,
and baseline in three datasets, demonstrating the effectiveness
of each contribution of the CTMAN. Compared to baseline,
w/o CTM&MLS gains higher performance, illustrating the
effectiveness of theMAE learning. Compared to w/o CTM&MLS,
w/o CTM gains higher accuracy, illustrating the effectiveness of
the meta learning training episode strategy. Compared to w/o

CTM, CTMAN gains better performance, demonstrating the
effectiveness of the cross task memory mechanism. Compared
to w/o GeM, CTMAN gains higher accuracy, illustrating the
effectiveness of the GeM pooling layer.

4.3.2. Comparison to the State-of-the-Art Methods
For the first two setup, performance of the CTMAN with the
CTMAN*, CTMAN-ResNet18, PCA (Turk, 1991), ET(+PCA)
(Tang and Wang, 2004), EP(+PCA) (Galea and Farrugia, 2015),
LLE(+PCA) (Chang et al., 2004), CBR (Hu et al., 2013), D-RS
(Klare and Jain, 2015), CBR+D-RS (Klare and Jain, 2015), LGMS
(Galea and Farrugia, 2016), HAOG (Galoogahi and Sim, 2012),
VGG-Face (Parkhi et al., 2015), DEEPS (Galea and Farrugia,
2018), Xu’s (Xu et al., 2021), DLFace (Peng et al., 2019), SSR (Peng
et al., 2021), and DAEN (Guo et al., 2021) methods are reported
in Tables 5, 6. The performance of these compared approaches
is directly from Galea and Farrugia (2018), Xu et al. (2021),
Peng et al. (2019), Peng et al. (2021), and Guo et al. (2021).
The extended gallery set in Galea and Farrugia (2018) consists
of part images of the FEI, MEDS-II, Multi-PIE (Gross et al.,
2010), and FRGC v2.04 datasets, these images are frontal and
have high quality. Our extended gallery set (Galea and Farrugia,
2018) consists of part images of the FEI, MEDS-II, and LFW

4http://www.nist.gov/itl/iad/ig/frgc.cfm.
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FIGURE 7 | The top five matching photos of CTMAN, w/o CTM, w/o CTM&MLS, and baseline on the S3 setup, images in red box are the groundtruth.

datasets, images of the LFW dataset are captured under the
unconstrained environment, they may not be the best replaced
images for the Multi-PIE and FRGC datasets. Since images of
FRGC and Multi-PIE are not available, Peng et al. (2019) extend
the gallery set by 1,180 photos of the XM2VTS dataset (Messer,
1999), 3,098 photos of CAS-PEAL dataset (Gao et al., 2008a),
and 3,000 photos of LFW dataset, here we further extend the
gallery set in Section 4.1 to 2,277 subjects, the 2,277 subjects
include 150 test subjects, 1,521 subjects from the former extend
gallery set in Section 4.1 (199 subjects from the FEI dataset,
509 subjects from the MEDS-II dataset, and 813 subjects from
the LFW dataset), 188 subjects from the CUHK dataset (Wang
and Tang, 2009), 123 subjects from the AR dataset (Martinez
and Benavente, 1998), 295 subjects from the XM2VTS dataset
(Messer, 1999), selected photos in CUHK, AR, and XM2VTS
datasets are taken from the constrained environment. Figure 8
shows several cropped images in the following datasets: (top row)

sketch in UoM-SGFSv2, photo in UoM-SGFSv2, FEI, MEDS-
II, LFW, (last row) Multi-PIE, FRGC v2.0, CUHK, AR, and
XM2VTS. As shown in Figure 8, selected photos in CUHK, AR,
and XM2VTS datasets are frontal and have neutral expressions
and with minimal shadows and occlusions, these images may be
the better replacement for the Multi-PIE and FRGC datasets.

The CTMAN* means CTMAN tested on the extended gallery
set with 2,277 photos. For CTMAN-ResNet18, it replaces the
ResNet50 backbone of the CTMAN by ResNet18 backbone. The
VGG-Face and PCA are traditional face recognition methods,
ET(+PCA), EP(+PCA), and LLE(+PCA) are intra-modality
methods, the LGMS, HAOG, DEEPS, Xu’s, DLFace, SSR, and
DAEN are inter-modality methods. As shown in Tables 5,
6, the proposed CTMAN achieves the best performance, it
outperforms the second 8% and 12% on rank-1, suggesting
the superior performance of CTMAN in the challenging UoM-
SGFSv2 dataset. Compared to the UoM-SGFSv2 set B, the
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FIGURE 8 | Examples of cropped images in the following datasets: (top row) sketch in UoM-SGFSv2, photo in UoM-SGFSv2, FEI, MEDS-II, LFW , (last row) Multi-PIE,

FRGC v2.0, CUHK, AR, and XM2VTS.

TABLE 5 | Comparison experiment results on the S1 setup.

Type Methods Rank-1 Rank-10 Rank-50

(%) (%) (%)

Face recognition methods VGG-Face 9.33 31.07 59.73

PCA 2.80 8.40 17.73

Intra-modality methods ET+PCA 8.40 30.00 54.53

EP+PCA 12.53 35.60 62.80

LLE+PCA 6.93 24.67 43.60

Inter-modality methods LGMS 21.87 51.20 72.40

CBR 5.73 18.80 43.33

D-RS 22.13 49.33 69.87

D-RS+CBR 25.87 56.00 76.27

HAOG 13.60 37.33 52.67

DEEPS 31.60 66.13 86.00

Xu’s 62.00 92.30 -

DLFace 64.80 92.13 -

SSR 70.16 94.60 -

DAEN 68.53 92.40 97.47

Proposed CTMAN-ResNet18 76.67 96.53 98.93

CTMAN* 77.60 96.00 99.07

CTMAN 78.67 96.00 99.20

accuracy of all approaches are lower on the challenging UoM-
SGFSv2 set A. Performance of the inter-modality methods is
generally better than the intra-modality methods on the UoM-
SGFSv2 set A and B because the performance of intra-modality

TABLE 6 | Comparison experiment results on the S2 setup.

Type Methods Rank-1 Rank-10 Rank-50

(%) (%) (%)

Face recognition methods VGG-Face 16.13 48.00 72.80

Intra-modality methods ET+PCA 12.13 39.07 63.47

EP+PCA 15.20 48.27 70.00

LLE+PCA 10.53 31.60 53.53

Inter-modality methods LGMS 21.87 51.2 72.40

CBR 7.60 25.47 48.27

D-RS 40.80 70.80 86.40

D-RS+CBR 42.93 75.87 90.13

HAOG 21.60 42.27 57.07

DEEPS 52.17 82.67 94.00

Xu’s 76.00 95.8 -

DLFace 72.53 94.8 -

SSR 73.83 95.10 -

DAEN 74.00 95.20 99.07

Proposed CTMAN* 85.60 98.13 99.20

CTMAN 85.73 98.13 99.33

The CTMAN* means CTMAN tested on the extended gallery set with 2277 photos.

is a traditional simple method and depends on the quality of
the generated image heavily, resulting in degradation of the
performance. Despite the VGG-Face method achieving state-of-
the-art performance for traditional face recognition, it generally
yields poor performance for sketch face recognition in the lower
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TABLE 7 | Comparison experiment results on the S3 setup.

Type Methods Rank-1 (%)

Intra-modality methods MWF 74.00

Fast-RSLCR 75.94

Wan’s 70.00

Inter-modality methods Transfer deep feature learning 72.38

CMML 75.94

CDFL 81.30

CMTDML 83.86

Proposed CTMAN 90.06

TABLE 8 | Comparison experiment results on S4 setup.

Type Methods Rank-10%

traditional methods SSD 45.30

Attribute 53.10

deep learning methods Transfer Learning 52.00

DAEN 63.20

proposed CTMAN 65.33

ranks, demonstrating the challenging modality gap between
photos and sketches. In each batch, training sketch and photo
images are randomly selected from the training set, they may
not be paired. Instead, we randomly select sketch and photo
images paired in each episode. Furthermore, the batch size and
epoch used in the two methods were different, these differences
may cause the performance gap. Compared to CTMAN,
CTMAN* shows comparable performance and outperforms
other compared methods, demonstrating the robustness of the
CTMAN. CTMAN-ResNet18 outperforms DAEN by a large
margin, demonstrating the effectiveness of the proposedmethod.

For the third setup, the performance of the CTMAN with the
MWF (Zhou et al., 2012), Fast-RSLCR (Wang N. et al., 2018),
Wan’s (Wan and Lee, 2019), CMML (Mignon and Jurie, 2012),
CDFL (Jin et al., 2015), Transfer Deep Feature Learning (Wan
et al., 2019), and CMTDML (Feng et al., 2019) methods are
reported in Table 7. Performance of these compared approaches
are directly from Feng et al. (2019). Fast RSLCR, MWF, Wan’s
are intra-modality methods while CDFL, CMML, Transfer
Deep Feature Learning, and CMTDML are representative inter-
modality method. As shown in Table 7, the proposed CTMAN
achieves the highest performance, it outperforms the second by
nearly 6% on rank-1, which shows the robustness of CTMAN on
the CUFSF dataset.

For the fourth setup, the performance of the CTMAN with
the SSD (Mittal et al., 2014), Attribute (Mittal et al., 2017),
Transfer Learning (Mittal et al., 2015), and DAEN (Guo et al.,
2021) methods are reported in Table 8. The performance of these
compared approaches are directly fromMittal et al. (2015),Mittal
et al. (2017), and Guo et al. (2021). The SSD and Attribute
are traditional methods, whereas Transfer Learning and DAEN
are deep learning methods. As shown in Table 8, the proposed

CTMAN achieves the highest performance, it outperforms the
second by nearly 2% on rank-1, which shows the effectiveness of
CTMAN on the PRIP-VSGC dataset.

5. CONCLUSION

In this paper, the CTMAN is proposed for sketch face
recognition. By introducing a meta learning training episode
strategy, a MAE learning and proposing a cross task memory
mechanism, a query feature set, two support feature set and
two cross task support feature set and have been extracted
to incorporate modal information as well as mimic few-shot
tasks, then a cross task modality alignment loss and a modality
alignment loss have computed on the above feature set to
guide the network to learn discriminative features. Extensive
experiments have been conducted on the UoM-SGFSv2, CUFSF,
and PRIP-VSGC datasets. Ablation studies have illustrated
the effectiveness of the meta training episode strategy, MAE
learning, cross task memory mechanism, and cross task modality
alignment loss. Comparisons with extensive inter-model and
intra-model sketch face recognition approaches have validated
the superiority of the CTMAN.
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