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Abstract 

Background:  Recently genomic selection (GS) has emerged as an important tool for plant breeders to select 
superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of 
expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model 
by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) 
to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; 
fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2.

Results:  In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were 
genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross 
validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). 
However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model.

Conclusions:  The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be 
improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could 
accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.

Keywords:  Canopy temperature, NDVI, Genomic prediction, Multi-trait genomic prediction, Spike partitioning index, 
Fruiting efficiency
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Background
Phenotypic selection is widely used in most of the con-
ventional plant breeding programs. However, this 
method is both labor and time-intensive as it involves 
screening for traits of interest across several years and 
environments [1–3]. Marker-assisted selection (MAS) 
has become an important part of modern breeding 

programs. It conventionally uses few molecular mark-
ers or large-effect QTLs and is mostly useful for traits 
governed by a small number of major genes [4, 5]. Most 
traits of interest are complex and are controlled by many 
genes, and thus the application of MAS in a practical 
breeding program may not be successful while working 
with many quantitative traits [6, 7]. Genomic selection 
(GS) is an indirect selection approach that improves the 
accuracy of marker-assisted selection (MAS) by using 
genome-wide markers that can capture QTL with both 
large and small effects [8, 9]. Genomic selection builds a 

Open Access

*Correspondence:  mababar@ufl.edu
1 Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL 32611, 
USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08487-8&domain=pdf


Page 2 of 13Shahi et al. BMC Genomics          (2022) 23:298 

model using phenotypic and genotypic data from a set of 
breeding lines called training population (TP). The model 
is then used to estimate the genetic values called genomic 
estimated breeding value (GEBV) of a set of tested lines 
called validation population (VP) that only have geno-
typic data [1, 4, 10, 11]. Genomic selection decreases 
the breeding cycle by selecting the progeny in the early 
stages or before being tested in field experiments based 
on GEBV. The rapid advancement of next-generation 
sequencing (NGS) methods like genotype-by-sequencing 
(GBS) has made it feasible to identify and genotype many 
SNPs across the entire genome in many crops including 
wheat [6, 12]. Genomic selection will also likely increase 
gain per unit cost by reduced genotyping cost per data 
point and reduced number of lines to be phenotyped 
[4, 13]. As a result, GS is being implemented widely in 
breeding programs to improve genetic gain and expe-
dite cultivar development by reducing cycles of selection 
[1, 14]. Prediction accuracy is estimated as a correlation 
between GEBV and the phenotypic value of a trait [13]. 
Prediction accuracy is influenced by various factors such 
as models used, the number of markers (marker density), 
QTL numbers, training population size (sample size), 
population structure and relatedness among individuals 
in TP and VP, and the heritability of a trait, etc. [1, 15, 
16]. Several statistical models have been proposed and 
used to implement GS. The parametric methods include 
ridge regression best linear unbiased prediction (rrBLUP) 
[17], genomic best linear prediction (GBLUP) [18], least 
absolute shrinkage and selection operator (LASSO) [19], 
and Bayesian-based methods: Bayesian ridge regression 
(BRR) [20], Bayes A, Bayes B, and Bayesian LASSO [21]. 
Likewise, non-parametric methods include reproducing 
kernel Hilbert spaces regression (RKHS) [22], neural net-
works [23], and random forests [24]. There is variation in 
prediction accuracies due to differences in their assump-
tions and algorithms concerning the variances of com-
plex traits [6].

Physiological traits (PT) such as normalized difference 
vegetation index (NDVI) and canopy temperature (CT) 
are indicative of stress-resilient genotypes with efficient 
photosynthesis and respiration processes [25, 26]. Pre-
vious studies have reported significant correlations of 
these traits with grain yield (GY). A negative correlation 
between CT and GY has been reported in wheat under 
terminal heat stress conditions [26, 27]. NDVI has also 
been shown to be associated with wheat GY in differ-
ent environments [26, 28–31]. The development of high 
throughput phenotyping (HTP) platforms makes it pos-
sible to screen a large number of genotypes in a short 
time at an affordable cost [26, 28, 32]. These PTs are good 
candidates to be used as indirect selection tools to select 
superior genotypes with stress tolerance and high yield 

potential [26, 33, 34]. Multi-trait (MT) genomic predic-
tion is a strategy that incorporates one or more second-
ary traits that correlate with the primary trait to predict 
the accuracy of selecting a primary trait [8, 35, 36]. If a 
trait of interest has low heritability, MT- GS can be used 
to take the advantage of correlated traits with higher 
heritability to increase the predictive ability of traits of 
interest [36, 37]. It is also very useful if correlated traits 
are easier and more cost-effective to be phenotyped than 
the primary traits [38]. In most plant breeding programs, 
breeders usually collect phenotypic data of several traits, 
which enables them to take advantage of information 
from correlated traits along with genotypic information 
[39]. MT-GS methods have recently been applied due 
to increased prediction accuracies when the correlated 
traits are incorporated into the model [36, 37, 40–42] and 
showed the improved predictive ability of GY in wheat 
by including physiological traits [42–45]. In addition to 
yield, MT-GS has also been used to improve the predic-
tive ability of other traits such as grain end-use quality 
[46], dry matter yield and water-soluble carbohydrates 
[47], and baking quality [48]. The main objectives of this 
study were to compare the relative performance of ST 
and MT-GS models and determine whether incorpo-
rating in-season physiological traits (NDVI and CT) in 
prediction models can improve the predictive ability of 
primary traits including HI, GN, GY, FE, and SPI.

Results
Analysis of variance
A combined ANOVA showed significant genotypic and 
environmental effects on correlated secondary traits, CT 
and NDVI, but genotype-by-environment interaction 
(G × E) was not significant (Table 1). However, genotypic, 
environmental, and G × E effects on all other primary 
traits (HI, GY, GN, SPI, and FE) were significant.

Table 1  Mean squares of the combined analysis of variance 
across different environments for primary and secondary traits

HI harvest index, GY grain yield in kg ha− 1, GN grain number m− 2, SPI spike 
partitioning index, FE fruiting efficiency in grains g− 1 of spike dry weight at 
anthesis+ 7 days, NDVI normalized difference vegetation index, CT canopy 
temperature in o C
a , b, csignificant at 0.05, 0.005 and 0.001 levels, respectively

Traits Genotype G Environment E Interaction G X E

HI 0.00753c 1.33432c 0.00440c

GY 1604151c 284430102c 1125063b

GN 13979431c 1820498352c 10631742a

SPI 0.00419c 0.33176c 0.00334c

FE 1147.4c 8185.1c 1531.6c

NDVI 43.8c 12,681.6c 17.7

CT 1.7a 3733.3c 1.4
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Basic summary and heritability
A wide range of variations for all traits was observed 
across all environments. The distribution of adjusted 
means (BLUEs) is shown in Fig. 1. The genotypes showed 
continuous variations for different traits. Table  2 lists 
the range, mean, standard deviation, and heritability for 

HI, GY, GN, SPI, FE, TGW, CT, and NDVI collected in 
different environments. The highest mean HI value was 
found in BLUEQ17 (0.46), and the lowest mean HI was 
found in BLUEC18 (0.42) (Table 2). The GY mean values 
ranged from 5047 kg ha− 1 (BLUEQ18) to 4483 kg ha− 1 
(BLUEC18) (Table 2). Similarly, the mean values ranged 

Fig. 1  Distribution of adjusted means (BLUEs) for 5 traits in four datasets: A BLUEQ17, B BLUEQ18, C BLUEC18, and D BLUEAll

Table 2  Summary of adjusted means, range, standard deviation (SD), and heritability (H2) for phenotypic traits evaluated

HI harvest index, GY grain yield in kg ha−1, GN Grain number m−2, SPI spike partitioning index, FE fruiting efficiency in grains g− 1 of spike dry weight at 
anthesis+ 7 days, NDVI normalized difference vegetation index, CT canopy temperature in o C

BLUEQ17 BLUEQ18 BLUEC18 BLUEAll H2

Traits Mean Range SD Mean Range SD Mean Range SD Mean Range SD

HI 0.46 0.41–0.53 0.06 0.44 0.40–0.52 0.07 0.42 0.37–0.5 0.07 0.44 0.37–0.53 0.05 0.38

GY 4650 4271–5338 676 5047 4490–6130 646 4483 3920–5714 604 4752 3920–6130 680 0.34

GN 8012 6018–13,597 2226 13,212 6050–18,807 2976 105,861 5338–17,411 3203 10,630 5338–18,807 2098 0.28

SPI 0.32 0.15–0.44 0.06 0.34 0.17–0.40 0.04 0.28 0.13–0.43 0.05 0.28 0.13–0.44 0.05 0.26

FE 44 26.5–72.9 9.4 49.6 24.5–72.4 13.8 43.2 24.5–93.3 11.7 41.6 24.1–68.3 7.7 0.25

NDVI 0.64 0.48–0.79 0.07 0.58 0.45–0.72 0.05 0.65 0.47–0.70 0.02 0.62 0.45–0.79 0.07 0.64

CT 27.7 25.1–30.2 1.4 26.7 24.5–31.5 1.14 28.6 23.3–32.7 1.8 27.1 23.0–32.7 0.54 0.37
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from 8012 (BLUEQ17) to 13,212 (BLUEQ18) for GN, 
from 0.28 (BLUEC18) to 0.34 (BLUEQ18) for SPI, from 
43.2 (BLUEC18) to 49.6 (BLUEQ18) grains g− 1 of spike 
dry weight at anthesis+ 7 days for FE (Table 2), from 0.58 
(BLUEQ18) to 0.65 (BLUEC18) for NDVI, and from 26.7 
(BLUEQ18) to 28.6 °C (BLUEC18) for CT (Table 2). The 
range of broad-sense heritability was large, with the high-
est for NDVI (0.64) followed by HI (0.38), CT (0.37), and 
GY (0.34), with the lowest for GN (0.28), SPI (0.26), and 
FE (0.25) (Table 2).

Phenotypic correlations
NDVI showed positive correlations with HI (0.14* to 
0.41***), GY (0.30** to 0.46**), GN (0.20** to 0.42**), 

SPI (0.11 to 0.19**) and FE (0.09 to 0.16**), whereas 
CT showed negative correlations with HI (− 0.05 to 
− 0.23**), GY (− 0.15** to − 0.34**), GN (− 0.18** to 
− 0.37**), SPI (− 0.01 to − 0.21**) and FE (− 0.03 to 
− 0.14*) (Table  3). The correlation range was wide 
(0.09 to − 0.46***) between CT and NDVI. Har-
vest index had strong positive correlations with GY 
(0.50*** to 0.63***), GN (0.42*** to 0.50***), SPI (0.26** 
to 0.40**) and (FE 0.35** to 0.51***). Likewise, GY had 
positive and significant correlations with GN (0.76***-
0.87***), SPI (0.08** to 0.34**) and FE (0.27** to 
0.48***). GN also had significant positive correlations 
with SPI (0.06 to 0.38**) and FE (0.47*** to 0.54**). SPI 
was negatively correlated with FE (− 0.1 to − 0.50***).

Table 3  Pearson’s correlation coefficient between phenotypic traits by using best linear unbiased estimates in four datasets, A) 
BLUEQ17; B) BLUEQ18; C) BLUEC18; D) BLUEAll

HI harvest index, GY grain yield in kg ha−1, GN grain number m−2, SPI spike partitioning index, FE fruiting efficiency in grains g− 1 of spike dry weight at 
anthesis+ 7 days, NDVI normalized difference vegetation index, CT canopy temperature in oC. Correlation coefficient value of above 0.14, 0.18 and 0.40 is significant at 
0.001, 0.01, and 0.05 probability levels, respectively

Traits HI GY GN SPI FE NDVI CT

A

  HI 1

  GY 0.61 1

  GN 0.47 0.87 1

  SPI 0.26 0.08 0.06 1

  FE 0.48 0.48 0.54 −0.50 1

  NDVI 0.18 0.30 0.39 0.19 0.16 1

  CT −0.20 −0.26 − 0.37 − 0.19 −0.14 − 0.46 1

B

  HI 1

  GY 0.50 1

  GN 0.48 0.83 1

  SPI 0.33 0.28 0.21 1

  FE 0.47 0.38 0.47 −0.13 1

  NDVI 0.14 0.36 0.42 0.19 0.14 1

  CT −0.05 −0.15 − 0.18 −0.01 − 0.03 −0.18 1

C

  HI 1

  GY 0.63 1

  GN 0.50 0.76 1

  SPI 0.40 0.34 0.38 1

  FE 0.51 0.27 0.52 −0.10 1

  NDVI 0.25 0.40 0.37 0.11 0.09 1

  CT −0.23 −0.34 − 0.23 −0.21 − 0.03 −0.03 1

D

  HI 1

  GY 0.59 1

  GN 0.42 0.82 1

  SPI 0.29 0.25 0.23 1

  FE 0.35 0.32 0.47 −0.32 1

  NDVI 0.41 0.36 0.20 0.13 0.12 1

  CT −0.11 −0.24 − 0.31 −0.07 − 0.08 0.09 1
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Principal component (PC) analysis
The PC biplots showed the first two PCs explained 
65.1, 58, 60.7, 61.2% of the total variation in BLUEQ17, 
BLUEQ18, BLUEC18, and BLUEAll data, respectively 
(Fig.  2). It was observed that GY, GN, HI, and NDVI 
were mainly clustered together, which were distinctly 
separated from CT.

Single‑trait genomic prediction
Among the five traits evaluated by ST-CV1 model, the 
highest predictive ability was observed for HI (0.39) 
in BLUEQ18, and the lowest predictive ability was 
observed for FE (0.07) in BLUEQ17 (Table  4, Fig.  3). 
ST-CV1 predictive ability ranged from 0.27 (BLUEQ17) 
to 0.39 (BLUEQ18) for HI, from 0.18 (BLUEQ17) to 
0.22 (BLUEQ18) for GY, from 0.13 (BLUEC18) to 
0.23 (BLUEQ18) for GN, from 0.11 (BLUEQ17) to 
0.22 (BLUEQ18) for SPI, from 0.07 (BLUEQ17) to 

0.21(BLUEQ18) for FE. In general, the predictive abili-
ties for GY, HI, and GN were higher than the partitioning 
traits SPI and FE.

Multi‑trait cross‑validation 1
In the MT-CV1 model, the predictive ability for the five 
primary traits was similar to that of the ST-CV1 and was 
not statistically significant (p > 0.05). In the MT-CV1 
model, the predictive ability was highest for HI, from 
0.29 (BLUEQ17) to 0.40 (BLUEQ18), but lowest for FE, 
from 0.07 (BLUEQ17) to 0.19 (BLUEQ18) (Table  4, 
Fig.  3). The value of MT-CV1 predictive ability for GN 
was ranged from 0.13 (BLUEC18) to 0.22 (BLUEQ18) 
(Table  4, Fig.  3). Likewise, MT-CV1 predictive ability 
for GY ranged from 0.17 (BLUEQ17) to 0.23 (BLUEC18) 
(Table 4, Fig. 3). For SPI, MT-CV1 predictive ability var-
ied from 0.11 (BLUEQ17) to 0.22 (BLUEQ18) (Table  4, 
Fig. 3).

Fig. 2  Principal component bi-plot analysis of measured traits using best linear unbiased estimates in four datasets: A BLUEQ17, B BLUEQ18, C 
BLUEC18, and D BLUEAll. HI, harvest index; GY, grain yield in kg ha−1; GN, grain number m−2; SPI, spike partitioning index; FE, fruiting efficiency in 
grains g− 1 of spike dry weight at anthesis+ 7 days; NDVI, normalized difference vegetation index; CT, canopy temperature in oC
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Multi‑trait cross‑validation 2
The MT-CV2 included two physiological traits, NDVI 
and CT, as secondary traits on both training and valida-
tion sets. This in general improved the predictive abil-
ity for all traits (HI, GY, GN, FE, and SPI) compared to 
the models ST-CV1 and MT-CV1 with a single excep-
tion (Table 4, Fig. 3). The predictive ability for GY using 
the MT-CV2 model ranged from 0.35 (BLUEQ17) to 
0.50 (BLUEC18) (Table 4, Fig. 3). For HI, MT-CV2 pre-
dictive ability ranged from 0.32 (BLUEQ17) to 0.46 
(BLUEAll) (Table 4, Fig. 3). MT-CV2 predictive ability for 
GN differed from 0.31 (BLUEC18) to 0.50 (BLUEQ17). 
MT-CV2 predictive ability for FE was ranged from 0.09 
(BLUEQ17) to 0.22 (BLUEQ18) (Table 4, Fig. 3). For SPI, 
MT-CV2 predictive ability varied from 0.17 (BLUEQAll) 
to 0.26 (BLUEQ18) (Table 4, Fig. 3).

When we compared ST-CV1 with MT-CV2, FE had 
the lowest percentage increase (5.1) in predictive abil-
ity (BLUEQ18), while GN showed the highest percent-
age increase of 138.5 (BLUEC18) in predictive ability 
(Table  4, Fig.  3). MT-CV2 model showed a better pre-
dictive ability than ST-CV1 with percentage increases 

from 82.6 (BLUEQ18) to 138.5 (BLUEC18, Fig.  3) for 
GN, from 5.1 (BLUEQ18) to 48.4 (BLUEAll) for HI, 
from 86.4 (BLUEQ18) to 138.1 (BLUEC18) for GY, from 
6.3 (BLUEAll) to 63.6 (BLUEQ17) for SPI, and from 4.8 
(BLUEQ18) to 28.6 (BLUEQ17) for FE (Table 4, Fig. 3).

Discussion
GS has been used to select superior genotypes in differ-
ent plant breeding programs. It is being employed more 
now due to the availability and continuously reduced 
cost of advanced DNA sequencing techniques. In the 
past, ST-GS was a popular method to evaluate the per-
formance of plant genotypes. However, plant breeders 
generally collect data for several traits for selection pur-
poses, which provides an opportunity to use multiple 
traits in GS models. To determine whether incorporat-
ing physiological traits in the prediction model increases 
the predictive ability of traits of interest, we compared 
two MT-GS methods (MT-CV1 and MT-CV2) with 
ST-GS method (ST-CV1). In the ST-CV1, we evaluated 
the predictive ability of five primary traits (GY, HI, GN, 
SPI, FE) individually. In MT-CV1 and MT-CV2 models, 
we included CT and NDVI as secondary traits along with 
five primary traits.

ANOVA data showed significant genotypic and envi-
ronmental effects. The Genotype-by-environment effect 
was not significant for NDVI and CT. The larger influence 
of G × E on other primary traits resulted in a lower herit-
ability as they are complex polygenic [37, 49]. CT serves 
as a proxy for stomatal conductance. Lower CT indicates 
favorable water status and transpiration rate under stress 
[26, 50], and also suggests superior root system, chloro-
phyll content, and membrane stability [26]. In this study, 
CT had a negative association with all the tested traits in 
all environments. Negative associations between CT and 
other traits such as GY, HI, and NDVI have been previ-
ously reported in wheat [26, 27]. NDVI is a rapid meas-
urement of leaf greenness and chlorophyll content, which 
has been associated with higher abiotic stress tolerance, 
grain yield, and its components [26, 28]. We also found 
positive correlations between NDVI and HI, GY, GN, SPI, 
FE, and HI in this study.

MT-CV1 and ST-CV1 models showed similar predic-
tive ability in most cases, consistent with many other 
studies [47, 48, 51]. This illustrates that MT models are 
not always better than the ST model. Contrastingly, a few 
studies showed improvement in predictive ability when 
highly correlated and highly heritable secondary traits 
were incorporated in the MT-CV1 model [36, 51, 52]. 
This result is, however, not applicable for complex poly-
genic traits [36]. A similar heritability between primary 
and secondary traits and a relatively small population 

Table 4  Table showing the predictive ability for 5 traits in four 
datasets

Single-trait prediction model (ST-CV1), and multi-trait prediction mode (MT) 
with two schemes of cross-validation (MT-CV1 and MT-CV2); HI harvest index, 
GY grain yield in kg ha−1, GN grain number m−2, SPI spike partitioning index, 
FE fruiting efficiency in grains g− 1 of spike dry weight at anthesis+ 7 days, NDVI 
normalized difference vegetation index, CT canopy temperature in oC

Locations Traits ST-CV1 MT-CV1 MT-CV2 % Increase 
from ST-CV1 to 
MT-CV2

BLUEQ17 HI 0.27 0.29 0.32 18.5

GY 0.18 0.17 0.35 94.4

GN 0.21 0.20 0.50 138.1

SPI 0.11 0.11 0.18 63.6

FE 0.07 0.07 0.09 28.6

BLUEQ18 HI 0.39 0.40 0.41 5.1

GY 0.22 0.21 0.41 86.4

GN 0.23 0.22 0.42 82.6

SPI 0.22 0.22 0.26 18.2

FE 0.21 0.19 0.22 4.8

BLUEC18 HI 0.31 0.30 0.42 35.5

GY 0.21 0.23 0.50 138.1

GN 0.13 0.13 0.31 138.5

SPI 0.18 0.20 0.25 38.9

FE 0.13 0.14 0.15 15.4

BLUEAll HI 0.31 0.32 0.46 48.4

GY 0.20 0.21 0.39 95.0

GN 0.14 0.16 0.33 135.7

SPI 0.16 0.17 0.17 6.3

FE 0.17 0.17 0.19 11.8
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(n = 236) used in this study might have limited the effi-
cacy of MT-CV1.

The MT-CV2 model improved predictive abilities for 
all five primary traits in this study although the extent of 
improvement fluctuated across traits and environments, 
which agrees with previous reports [45, 47, 48, 51, 53]. The 
improvement in predictive ability in MT-CV2 depends on 
the heritability of the primary traits. When a primary trait 
has low heritability, and a secondary trait has high herita-
bility, MT-CV2 can improve predictive ability significantly. 
It also depended on the correlations between the primary 
and secondary traits [36, 45, 47, 53]. There was a lower 
improvement in predictive ability between ST-CV1 and 
MT-CV2 for traits like FE and SPI, which could be attrib-
uted to the combination of weak correlations between 
these primary and secondary traits and their heritabilities. 

Lacking genetic information on weakly correlated traits 
has shown to result in little improvement in predictive 
ability [36, 48, 51, 52]. Studies have shown that a model 
that includes two correlated traits is superior to the mod-
els with a single trait [48] or three correlated traits [54, 55]. 
It is pragmatic to use only few highly heritable, strongly 
correlated secondary traits to predict primary traits since 
incorporating many traits could add collinearity issues [48, 
51, 54, 55]. Additionally, phenotyping too many traits costs 
breeding programs more money, time, and labor [48]. Fur-
thermore, we also need to consider different factors such 
as marker density, QTL number, training population size 
(sample size), population structure, and relatedness among 
individuals in the training and testing population [1, 15].

Phenotyping some traits are more expensive, time-
consuming, and labor-intensive than others, which 

Fig. 3  Bar graphs showing the predictive ability for 5 traits in four datasets: A BLUEQ17, B BLUEQ18, C BLUEC18, and D BLUEAll. Single-trait 
prediction model (ST-CV1), and multi-trait prediction mode (MT) with two schemes of cross-validation (MT-CV1 and MT-CV2. Mean Pearson’s 
correlations and standard error for each environment were presented for each trait. HI, harvest index; GY, grain yield in kg ha− 1; GN, grain number 
m− 2; SPI, spike partitioning index; FE, fruiting efficiency in grains g− 1 of spike dry weight at anthesis+ 7 days; NDVI, normalized difference 
vegetation index; CT, canopy temperature in oC
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makes implementing GS for these traits burdensome. 
The GS becomes cost-efficient when phenotyping of 
primary traits is more expensive and difficult than sec-
ondary traits. In this case, we only phenotype the train-
ing set for primary traits, but both training and testing 
sets for secondary traits. For instance, the MT-CV2 
model resembles a scenario in a breeding program 
where physiological data are taken when plots are yet 
to be harvested in a later stage [55]. This could be par-
ticularly useful for traits like HI, GN, SPI and FE which 
are extremely labor and time intensive undertaking. 
Our study also found multi-trait model that used both 
CT and NDVI in general had better prediction accu-
racy for those traits compared to model that used a sin-
gle trait, i.e. either CT or NDVI, with a few excptions 
(Supplementary file S1). NDVI and CT are easy to phe-
notype and their data are collected by different wheat 
breeding programs. Recently, plant breeders are uti-
lizing high throughput phenotyping (HTP), including 
unmanned aerial vehicles (UAVs), to collect phenotypic 
data. With the increased use of UAVs, NDVI and CT 
can be measured simultaneously in a relatively short 
time in large number of genotypes. The constraint to 
use an MT model could be its complexity and need for 
high processing capability [36, 48, 51].

Conclusions
To exploit genetic information from correlated traits 
using an MT-GS method, GS using two traits could be 
useful to improve the genomic prediction accuracy of a 
primary trait of interest. In a wheat breeding program, 
physiological traits such as CT and NDVI are measured 
routinely to evaluate stress tolerance along with other 
agronomic traits. We compared predictive ability among 
ST prediction model (ST-CV1) and two MT genomic 
prediction models (MT-CV1 and MT-CV2) and found 
that the phenotypically correlated secondary traits in 
both the training and testing sets (MT-CV2) improved 
predictive ability giving the high correlation between 
primary and secondary traits. Whereas improvement 
in predictive ability was not obvious when the second-
ary trait was incorporated only in the training set (MT-
CV1). This result is highly useful in breeding programs 
where data for several traits are usually collected. Multi-
trait genomic selection involves measuring laborious 
and expensive traits in a smaller training population, 
whereas phenotyping of inexpensive correlated traits in 
the testing population. With the increasing availability 
of the HTP platforms, the MT-GS methods can facili-
tate improvement in the genetic gain for many important 
traits in wheat.

Methods
Materials and experimental design
The genotypes used in this study consisted of 236 faculta-
tive soft wheat elite lines and varieties that were devel-
oped by different wheat breeding programs in the south 
and soueastern USA (Texas A&M, Virginia Tech, Univer-
sity of Georgia, University of Arkansas, North Carolina 
State University, Louisiana State University, University 
of Kentucky, and University of Maryland). The wheat 
lines used in the present study are mostly facultative in 
nature and vernalization requirements are generally low 
and are well adapted to the warm and humid southern 
and southeastern regions of the USA. The field experi-
ments were carried out in two locations: Plant Science 
Research and Education Unit (PSREU) in Citra, Florida 
in 2017–18 growing season and North Florida Research 
and Education Center (NFREC), Quincy for two growing 
seasons (2016–17 and 2017–2018). An augmented design 
was used with three repeated check varieties (SS8641, PI 
674197; AGS2000, PI 656845; Jamestown, PI 653731) that 
are widely grown wheat in the southern and southeastern 
US to control spatial variability. The size of six-row plot 
used for.

the study was 5.1 m2 (3.33 m long/1.52 m wide) with 
a seed rate of 100 kg ha− 1. Management and agronomic 
practices such as fertilizer and chemical application and 
irrigation were performed as recommended for optimum 
growth and yield potential. Fungicides were sprayed as 
needed at stem elongation, booting, and early grain filling 
to prevent different foliar and spike diseases. The weather 
data is listed in Table 5.

Phenotyping
Five primary traits (HI, GY, GN, FE, and SPI) and two 
physiological traits CT and NDVI were measured in the 
present study. Days to anthesis was taken for each plot 
as the days from planting to the day when 50% of plants 
were flowered [56]. At 7 days after anthesis (Zadoks scale: 
GS70), the plant sample was cut at ground level from 
0.25 m2 area of each plot. The sample was oven-dried at 
60 °C temperature for 72 h. The weight of the total dried 
sample was collected, and the fertile spike number was 
counted. Spikes and stems were separated, and weights 
were collected. Spike partitioning index was calculated as 
a ratio of total spike dry weight to the above-ground dry 
matter at anthesis plus 7 days. Traits such as GN, GY, and 
HI were recorded at physiological maturity (Zadoks scale: 
GS90). Days to physiological maturity for each plot was 
taken when the flag leaves and spikes turn yellow. Grain 
number m− 2 was calculated by dividing total grain weight 
by individual grain weight. Harvest index was measured 
as the ratio of grain weight m− 2 to total dry biomass 
m− 2. Likewise, GY (kg ha− 1) was measured as a total seed 
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weight from each plot after adjustment with 12% mois-
ture. FE was calculated as a ratio of GN (m− 2) at matu-
rity and spike dry matter (m− 2) at anthesis plus 7 days. CT 
was collected at three growth stages, heading (H), mid-
grain filling (MGF), and late-grain filling (LGF), between 
1300 and 1500 h on sunny days when the temperature 
reached the daily high by using Fluke 572–2 IR thermom-
eter (Fluke Corporation, Everett WA). CT data were col-
lected from both sides of each plot at a 50 cm distance 
from the edge and approximately 50 cm above the canopy 
at an angle of 30o to the horizontal. The mean value of 
two readings was calculated for each growth stage and the 
average of three values from the three growth stages was 
used for further statistical analysis. NDVI was measured 
at four growth stages: H, early-grain filling (EGF), MGF, 
and LGF using the GreenSeeker handheld crop sensor 
(Trimble Navigation Limited) by holding it 50 cm above 
the canopy facing the center of the plot. The mean value 
of those readings was used for statistical analysis.

Genotyping
The genotyping method has been explained in detail in a 
previous paper [49]. We obtained 27,466 SNPs as a result 
of SNP calling and filtering. Missing values were imputed 
with the LD-KNNi method [57] implemented in TAS-
SEL v.5. For genomic prediction models, SNPs were con-
verted to − 1, 0, and + 1, where − 1 indicated minor allele 
at a given locus, 0 indicated heterozygous loci, and + 1 
indicated major allele at a given locus. The additive rela-
tionship matrix (K) was estimated using the ‘A.mat’ func-
tion in the ‘rrBLUP’ package in R [17].

Phenotypic data analysis
Analysis of variance (ANOVA) was conducted using the 
“lme4” package [58] in R software (v3.5.1, R Development 
Core Team). The best linear unbiased estimates (BLUEs) 
were obtained for three individual environments, Quincy 
2016–2017 (BLUEQ17), Quincy 2017–2018 (BLUEQ18), 
and Citra 2017–2018 (BLUEC18), and a combined across 

environments (BLUEAll). All traits were adjusted using 
days to anthesis as a covariate. Two statistical models 
were used to calculate adjusted values following Lozada 
and Carter [59]. The models used were for individual 
environment was as follows:

For combined analysis across environments, the statis-
tical model was as follows.

where Y is the phenotype of a trait of interest; μ is the 
effect of the mean; Blocki is the effect of ith block; Genk is 
the effect of kth genotypes; Checkl is the effect of the lth 
checks on each block; Envm is the effect of the mth envi-
ronment. IDCheckj is the effect of jth IDCheck. IDCheck 
was used to differentiate the effects of one check over the 
other checks, as well as the number of checks present on 
each block; IDCheckj x Envm, Genk x Envm, and Checkl x 
Envm are the effects of check identifier by environment, 
genotype by environment, and check by environment 
interactions, respectively. Blocki(Envm) is the effect of ith 
block nested within mth environment and ε is the residual.

Broad-sense heritability was calculated assuming geno-
type and other effects as random [59] and was obtained by:

where H 2 is a broad-sense heritability estimate, σ2G is 
genetic variance, σ2

GXE is genotype-by-environmen-
tal variance, σ2e is residual variance, n is the number of 
environments, and r is the number of replications per 

Yijkl = μ + Blocki + IDCheckj +Genk + Checkl + εijkl

Yijklm = μ + IDCheckj + Genk + Checkl + Envm

+ IDCheckj × Envm +Genk × Envm

+ Checkl × Envm + Block
i

(

Env
m

) + εijklm

H
2
=

σ
2
G

σ
2
G +

σ2G×E
n +

σ2e
nr

Table 5  Weather table showing Tave (monthly average temperature) and Ppt (monthly precipitation in mm). The wheat panel was 
planted for two seasons in Citra (2017/ 2018) and Quincy (2016/2017, 2017/2018)

Month/ Year Citra (2017–2018) Quincy (2016–2017) Quincy (2017–2018)

T Ave(°C) Ppt (mm) T Ave(°C) Ppt (mm) T Ave(°C) Ppt (mm)

11/16 18.06 78.49 16.09 10.16 15.35 11.18

12/16 14.86 40.64 14.54 134.37 12.10 80.77

01/17 10.84 132.84 13.74 237.49 8.14 52.32

02/17 19.85 63.75 16.03 74.68 17.40 133.86

03/17 16.10 80.26 16.62 31.50 14.57 137.67

04/17 20.35 170.69 20.19 86.87 17.99 67.56

05/17 24.03 205.49 22.66 151.13 23.56 205.99
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environment (i.e. equal to 1 for an augmented experi-
mental design).

Pearson’s correlation among traits was calculated 
from BLUEs in R using the “corrplot” package in R [60]. 
PC biplot was generated in R by using the “factoextra” 
R package [61]. Single and MT-GS models were used to 
evaluate various traits.

Single trait (ST) model
In the ST model, the prediction was obtained by using a 
Bayesian ridge regression (BRR) model with 2000 burn-
ins and 12,000 iterations for the Gibbs sampler algorithm 
[48, 51] implemented in the ‘BGLR’ package [62] in R 
software. The following model was used.

where y is the vector of BLUE values for a single trait; μ is 
the vector of the overall mean; Z is a design matrix with 
random marker effects, α is a genotypic predictor with 
α ~N(0, Kσ 2

g) where K is the realized additive relation-
ship matrix and σ2

g is additive genetic variance and ε is 
the residual errors vector with ε ~N(0, Iσ 2

e) where I is 
the identity matrix. Prediction accuracies were estimated 
using a cross-validation approach CV1 [63], explained in 
(Fig. 4).

Multi trait (MT) model
The MT model was built using a Bayesian multivari-
ate Gaussian model to estimate an unstructured vari-
ance-covariance matrix between traits (Σ) and residual 
matrix (R) with 2000 burn-ins and 12,000 iterations for 

y = µ+ Zα+ ε

the Gibbs sample algorithm [48, 51] implemented in 
the ‘MTM’ package [64] in R software using the model:

where y is a vector of BLUE values for t traits; μ is the 
overall mean; Z is the incidence matrix; α is a genotypic 
predictor with α ~MVN (0, Σ ⊗ K) and ε is the residual 
errors vector with ε ~MVN (0, R ⊗  I), where Σ is the 
variance-covariance matrix across traits, K is the realized 
additive relationship matrix among individuals estimated 
from the markers, R is the variance-covariance matrix for 
the residual effects for each individual among traits, I is 
the identity matrix, and ⊗ is the Kronecker product of 
two matrices. Σ was estimated as an unstructured matrix 
and R as a diagonal matrix [48].

Cross‑validation (CV)
The Monte-Carlo cross-validation scheme was used to 
estimate prediction accuracy [48, 51] (Fig.  4). The CV1 
scheme was applied to both ST and MT models (ST-CV1 
and ST-CV1), respectively. The CV2 scheme was applied 
only in the MT model (MT-CV2).

Cross‑validation Scheme 1
The first cross-validation scheme (CV1) used a train-
ing set (TP) of 70% of random genotypes (n = 165) 
which have phenotypic (primary+secondary traits for 
MT-CV1) and genotypic data. The testing set (VP) 
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Fig. 4  Cross-validation schemes employed. ST-CV1: single-trait cross-validation scheme where a training set of 70% of random genotypes are 
phenotyped and genotyped and a testing set of remaining 30% of genotypes are genotyped, not phenotyped; MT-CV1: multi-trait cross-validation 
scheme where a training set of 70% of random genotypes are phenotyped (primary + secondary traits) and genotyped and remaining 30% of 
genotypes are genotyped only, not phenotyped; MT-CV2: multi-trait cross-validation scheme where 100% information from secondary traits, 
a training set of 70% of random genotypes are phenotyped for primary traits and remaining 30% of genotypes as testing set (phenotyped for 
correlated traits but not primary traits and genotyped)
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consisted of the remaining 30% of genotypes (n = 71) 
that have genotypic data only. This process was repeated 
for 100 times, where each iteration included a different 
combination of genotypes in training and testing sets. 
Predictive ability was calculated as a mean of Pearson’s 
correlations between observed phenotypic values and 
predicted values.

Cross‑validation Scheme 2
The same as in CV1, the second cross-validation scheme 
(CV2) used the phenotypic and genotypic data from 
the training set of 165 lines. However, the genotypic 
data and phenotypic data of physiological traits from 
the testing set of 71 lines were used. In other words, the 
CV2 scheme not only used genotypic information from 
both TP and VP and phenotypic data of the primary 
traits (HI or GY or GN or SPI or FE) from the TP but 
also used phenotypic data of secondary correlated traits 
(NDVI and CT) from both TP and VP. This process 
was repeated 100 times, where each iteration included 
a different combination of genotypes in the TP and VP. 
Predictive ability was calculated as a mean of Pearson’s 
correlations between observed phenotypic values and 
predicted values.

Abbreviations
GS: Genomic selection; MT: Multi-trait; CT: Canopy temperature; NDVI: Normal-
ized difference vegetation index; HI: Harvest index; GY: Grain yield; GN: Grain 
number; SPI: Spike partitioning index; FE: Fruiting efficiency; CV1: Cross-
validation Scheme 1; CV2: Cross-validation Scheme 2; MT-CV2: Multi-trait cross 
validation 2; ST-CV1: Single-trait cross validation 1; MT-CV1: Multi-trait cross 
validation 1; TP: Training population; VP: Validation population; GEBV: Genomic 
estimated breeding value; MAS: Marker assisted selection; GBS: Genotype-
by-sequencing; rrBLUP: Ridge regression best linear unbiased prediction; 
GBLUP: Genomic best linear prediction; LASSO: Least absolute shrinkage and 
selection operator; BRR: Bayesian-based methods: Bayesian ridge regression; 
RKHS: Reproducing kernel Hilbert spaces regression; PT: Physiological traits; 
HTP: High throughput phenotyping; H: Heading; EGF: Early-grain filling; MGF: 
Mid-grain filling; LGF: Late-grain filling; BLUEs: Best linear unbiased estimates; 
BLUEC: BLUE values estimated from Citra; BLUEQ: BLUE values estimated from 
Quincy; BLUEAll: BLUE values estimated from all environments.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08487-8.

Additional file 1. 

Acknowledgements
We extend our acknowledgement to Dr. Jerry Johnson (University of Georgia, 
Georgia, USA), Dr. Steve Harrison (Louisiana State University) and Dr. Esten 
Mason (Coloraqdo State Universoty) for providing seeds of the association panel 
and permission to use the association panel for the current research project.

Authors’ contributions
MAB, MPR, JF, and SS planned and designed the research; DS performed 
the research and analyzed the data; DS wrote the paper; GB performed 

genotyping, processed data, SNP calling; SP, JK, JG, MAV, NK, and JM col-
lected data in the field; MAB, MPR, GB, and JF edited the paper. All authors 
approved the manuscript.

Funding
The research was funded by NIFA-IWYP (National Institute of Food and Agricul-
ture International Wheat Yield Partner) Award # 2017–67007-25929.

Availability of data and materials
The phenotypic datasets used and/or analyzed during the current study 
are available from the corresponding author on reasonable request. The 
genotypic datasets generated and/or analyzed during the current study are 
available in the NCBI using accession number PRJNA578088 (https://​www.​
ncbi.​nlm.​nih.​gov//​biopr​oject/​PRJNA​578088).

Declarations

Ethics approval and consent to participate
The plant field trial experiments in the current study are complied with the 
relevant institutional, national, and international guidelines and legislation. 
The appropriate permissions and/or licences for collection of plant or seed 
specimens were obtained.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL 32611, USA. 
2 Department of Forest Ecosystem and Society, Oregon State University, 3180 
SW Jefferson Way, Corvallis, OR 97331, USA. 3 USDA-ARS, Manhattan, KS, USA. 
4 CIMMYT International Maize and Wheat Improvement Center (CIMMYT), Km. 
45, Carretera Mexico, El Batan, Texcoco, Mexico. 5 Division of Plant and Crop 
Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 
5RD, UK. 

Received: 13 September 2021   Accepted: 17 March 2022

References
	1.	 Maulana F, Kim KS, Anderson JD, Sorrells ME, Butler TJ, Liu S, et al. 

Genomic selection of forage quality traits in winter wheat. Crop Sci. 
2019;59:2473–83.

	2.	 Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, et al. Genomic selec-
tion in the era of next generation sequencing for complex traits in plant 
breeding. Front Genet. 2016;7:221.

	3.	 Breseghello F, Coelho ASG. Traditional and modern plant breeding 
methods with examples in rice (Oryza sativa L.). J Agric Food Chem. 
2013;61:8277–86.

	4.	 Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME. Genomic selection 
accuracy for grain quality traits in biparental wheat populations. Crop Sci. 
2011;51:2597–606.

	5.	 Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC. Bridging the gap 
between marker-assisted and genomic selection of heading time and 
plant height in hybrid wheat. Heredity. 2014;112:638–45.

	6.	 Wang X, Xu Y, Hu Z, Xu C. Genomic selection methods for crop improve-
ment: current status and prospects. Crop J. 2018;6:330–40.

	7.	 Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, 
de los Campos G, et al. Genomic selection in plant breeding: methods, 
models, and perspectives. Trends Plant Sci. 2017;22:961–75.

	8.	 Calus MPL, Veerkamp RF. Accuracy of multi-trait genomic selection using 
different methods. Genet Sel Evol. 2011;43:1–14.

	9.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	10.	 Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improve-
ment. Crop Sci. 2009;49:1–12.

https://doi.org/10.1186/s12864-022-08487-8
https://doi.org/10.1186/s12864-022-08487-8
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088


Page 12 of 13Shahi et al. BMC Genomics          (2022) 23:298 

	11.	 Maulana F, Kim K, Anderson JD, Sorrells ME, Butler TJ, Liu S, et al. 
Genomic selection of forage agronomic traits in winter wheat. Crop Sci. 
2020;61:410–21.

	12.	 Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic 
selection in wheat breeding using genotyping-by-sequencing. Plant 
Genome. 2012;5:103–13.

	13.	 Huang M, Cabrera A, Hoffstetter A, Griffey C, Van Sanford D, Costa J, et al. 
Genomic selection for wheat traits and trait stability. Theor Appl Genet. 
2016;129:1697–710.

	14.	 Das RR, Vinayan MT, Patel MB, Phagna RK, Singh SB, Shahi JP, et al. Genetic 
gains with rapid-cycle genomic selection for combined drought and 
waterlogging tolerance in tropical maize (Zea mays L.). Plant Genome. 
2020;13:20035.

	15.	 Islam MS, Fang DD, Jenkins JN, Guo J, McCarty JC, Jones DC. Evaluation 
of genomic selection methods for predicting fiber quality traits in upland 
cotton. Mol Gen Genomics. 2020;295:67–79.

	16.	 Rutkoski JE, Poland J, Jannink JL, Sorrells ME. Imputation of unor-
dered markers and the impact on genomic selection accuracy. G3. 
2013;3:427–39.

	17.	 Endelman JB. Ridge regression and other kernels for genomic selection 
with R Package rrBLUP. Plant Genome. 2011;4:250–5.

	18.	 VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

	19.	 Usai MG, Goddard ME, Hayes BJ. LASSO with cross-validation for genomic 
selection. Genet Res (Camb). 2009;91:427–36.

	20.	 Meuwissen TH. Accuracy of breeding values of “unrelated” individuals 
predicted by dense SNP genotyping. Genet Sel Evol. 2009;41:1–9.

	21.	 Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian 
alphabet for genomic selection. BMC Bioinformatics. 2011;12:1–12.

	22.	 Gianola D, Fernando RL, Stella A. Genomic-assisted prediction of genetic 
value with Semiparametric procedures. Genetics. 2006;173:1761–76.

	23.	 Okut H, Gianola D, Rosa GJM, Weigel KA. Prediction of body mass index in 
mice using dense molecular markers and a regularized neural network. 
Genet Res (Camb). 2011;93:189–201.

	24.	 González-Recio O, Forni S. Genome-wide prediction of discrete traits 
using bayesian regressions and machine learning. Genet Sel Evol. 
2011;43:1–12.

	25.	 Xu Q, Paulsen AQ, Guikema JA, Paulsen GM. Functional and ultrastructural 
injury to photosynthesis in wheat by high temperature during matura-
tion. Environ Exp Bot. 1995;35:43–54.

	26.	 Pradhan S, Babar MA, Bai G, Khan J, Shahi D, Avci M, et al. Genetic 
dissection of heat-responsive physiological traits to improve adapta-
tion and increase yield potential in soft winter wheat. BMC Genomics. 
2020;21:1–15.

	27.	 Zhang Y, Wang Z, Fan Z, Li J, Gao X, Zhang H, et al. Phenotyping and 
evaluation of CIMMYT WPHYSGP nursery lines and local wheat varieties 
under two irrigation regimes. Breed Sci. 2019;69:55–67.

	28.	 Babar MA, Reynolds MP, Van Ginkel M, Klatt AR, Raun WR, Stone ML. Spec-
tral reflectance indices as a potential indirect selection criteria for wheat 
yield under irrigation. Crop Sci. 2006;46:578–88.

	29.	 Babar MA, Reynolds MP, Van Ginkel M, Klatt AR, Raun WR, Stone 
ML. Spectral reflectance to estimate genetic variation for in-season 
biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 
2006;46:1046–57.

	30.	 Lopes MS, Reynolds MP. Stay-green in spring wheat can be determined 
by spectral reflectance measurements (normalized difference vegetation 
index) independently from phenology. J Exp Bot. 2012;63:3789–98.

	31.	 Kyratzis AC, Skarlatos DP, Menexes GC, Vamvakousis VF, Katsiotis A. Assess-
ment of vegetation indices derived by UAV imagery for durum wheat 
phenotyping under a water limited and heat stressed Mediterranean 
environment. Front Plant Sci. 2017;8:1114.

	32.	 Reynolds MP, Rajaram S, Sayre KD. Physiological and genetic changes of 
irrigated wheat in the post-green revolution period and approaches for 
meeting projected global demand. Crop Sci. 1999;39:1611–21.

	33.	 Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, 
et al. Raising yield potential of wheat. III. Optimizing partitioning to grain 
while maintaining lodging resistance. J Exp Bot. 2011;62:469–86.

	34.	 Chenu K, Deihimfard R, Chapman SC. Large-scale characterization of 
drought pattern: a continent-wide modelling approach applied to 
the Australian wheatbelt - spatial and temporal trends. New Phytol. 
2013;198:801–20.

	35.	 Lyra DH, de Freitas ML, Galli G, Alves FC, Granato ÍSC, Fritsche-Neto R. 
Multi-trait genomic prediction for nitrogen response indices in tropical 
maize hybrids. Mol Breed. 2017;37:1–14.

	36.	 Jia Y, Jannink JL. Multiple-trait genomic selection methods increase 
genetic value prediction accuracy. Genetics. 2012;192:1513–22.

	37.	 Guo J, Khan J, Pradhan S, Shahi D, Khan N, Avci M, et al. Multi-trait 
genomic prediction of yield-related traits in US soft wheat under variable 
water regimes. Genes. 2020;11:270.

	38.	 Fernandes SB, Dias KOG, Ferreira DF, Brown PJ. Efficiency of multi-trait, 
indirect, and trait-assisted genomic selection for improvement of bio-
mass sorghum. Theor Appl Genet. 2018;131:747–55.

	39.	 Tsai HY, Cericola F, Edriss V, Andersen JR, Orabi J, Jensen JD, et al. Use of 
multiple traits genomic prediction, genotype by environment interac-
tions and spatial effect to improve prediction accuracy in yield data. PLoS 
One. 2020;15:1–14.

	40.	 He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, et al. Genomic 
selection in a commercial winter wheat population. Theor Appl Genet. 
2016;129:641–51.

	41.	 Jiang J, Zhang Q, Ma L, Li J, Wang Z, Liu JF. Joint prediction of multiple 
quantitative traits using a Bayesian multivariate antedependence model. 
Heredity (Edinb). 2015;115:29–36.

	42.	 Guo J, Pradhan S, Shahi D, Khan J, Mcbreen J, Bai G, et al. Increased pre-
diction accuracy using combined genomic information and physiologi-
cal traits in a soft wheat panel evaluated in multi-environments. Sci Rep. 
2020;10:1–12.

	43.	 Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, et al. Canopy 
temperature and vegetation indices from high-throughput phenotyping 
improve accuracy of pedigree and genomic selection for grain yield in 
wheat. G3 genes, genomes. Genet. 2016;6:2799–808.

	44.	 Sun J, Rutkoski JE, Poland JA, Crossa J, Jannink J, Sorrells ME. Multitrait, 
random regression, or simple repeatability model in high-throughput 
Phenotyping data improve genomic prediction for wheat grain yield. 
Plant Genome. 2017;1:12.

	45.	 Sun J, Poland JA, Mondal S, Crossa J, Juliana P, Singh RP, et al. High-
throughput phenotyping platforms enhance genomic selection for 
wheat grain yield across populations and cycles in early stage. Theor Appl 
Genet. 2019;132:1705–20.

	46.	 Hayes BJ, Panozzo J, Walker CK, Choy AL, Kant S, Wong D, et al. Accel-
erating wheat breeding for end-use quality with multi-trait genomic 
predictions incorporating near infrared and nuclear magnetic resonance-
derived phenotypes. Theor Appl Genet. 2017;130:2505–19.

	47.	 Arojju SK, Cao M, Trolove M, Barrett BA, Inch C, Eady C, et al. Multi-trait 
genomic prediction improves predictive ability for dry matter yield 
and water-soluble carbohydrates in perennial ryegrass. Front Plant Sci. 
2020;11:1–19.

	48.	 Lado B, Vázquez D, Quincke M, Silva P, Aguilar I, Gutiérrez L. Resource 
allocation optimization with multi-trait genomic prediction for 
bread wheat (Triticum aestivum L.) baking quality. Theor Appl Genet. 
2018;131:2719–31.

	49.	 Pradhan S, Babar MA, Robbins K, Bai G, Mason RE, Khan J, et al. Under-
standing the genetic basis of spike fertility to improve grain number, 
harvest index, and grain yield in wheat under high temperature stress 
environments. Front Plant Sci. 2019;10:1–13.

	50.	 Aisawi KAB, Reynolds MP, Singh RP, Foulkes MJ. The physiological basis of 
the genetic progress in yield potential of CIMMYT spring wheat cultivars 
from 1966 to 2009. Crop Sci. 2015;55:1749–64.

	51.	 Bhatta M, Gutierrez L, Cammarota L, Cardozo F, Germán S, Gómez-Guer-
rero B, et al. Multi-trait genomic prediction model increased the predic-
tive ability for agronomic and malting quality traits in barley (Hordeum 
vulgare L.). G3 genes, genomes. Genet. 2020;10:1113–24.

	52.	 Montesinos-López OA, Montesinos-López A, Crossa J, Toledo FH, Pérez-
Hernández O, Eskridge KM, et al. A genomic bayesian multi-trait and 
multi-environment model. G3. 2016;6:2725–74.

	53.	 Sun J, Rutkoski JE, Poland JA, Crossa J, Jannink J, Sorrells ME. Multitrait, 
random regression, or simple repeatability model in high-throughput 
Phenotyping data improve genomic prediction for wheat grain yield. 
Plant Genome. 2017;10:1–12.

	54.	 Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y. Multiple-
trait- and selection indices-genomic predictions for grain yield and 
protein content in rye for feeding purposes. Theor Appl Genet. 
2016;129:273–87.



Page 13 of 13Shahi et al. BMC Genomics          (2022) 23:298 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	55.	 Lozada DN, Carter AH. Accuracy of single and multi-trait genomic predic-
tion models for grain yield in US Pacific northwest winter wheat. Crop 
Breed Genet Genomics. 2019;1:23.

	56.	 Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of 
cereals. Weed Res. 1974;14:415–21.

	57.	 Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GY, Myles 
S. LinkImpute: Fast and accurate genotype imputation for nonmodel 
organisms. G3. 2015;5:2383–90.

	58.	 Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects 
models using lme4. arXiv preprint arXiv. 2015;1406:5823.

	59.	 Lozada DN, Ward BP, Carter AH. Gains through selection for grain yield in 
a winter wheat breeding program. PLoS One. 2020;15:0221603.

	60.	 Wei T. Package “corrplot” for R: visualization of a correlation matrix (Ver-
sion 0.84). 2017:1–18.

	61.	 Kassambara A, Mundt F, Kassambara A, Mundt F. Factoextra: extract and 
visualize the results of multivariate data analyses, vol. 76; 2017.

	62.	 Pérez P, De Los CG. Genome-wide regression and prediction with the 
BGLR statistical package. Genetics. 2014;198:483–95.

	63.	 De Leon N, Jannink JL, Edwards JW, Kaeppler SM. Introduction to 
a special issue on genotype by environment interaction. Crop Sci. 
2016;56:2081–9.

	64.	 de los Campos G, Grüneberg A. MTM package; 2016.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Analysis of variance
	Basic summary and heritability
	Phenotypic correlations
	Principal component (PC) analysis
	Single-trait genomic prediction
	Multi-trait cross-validation 1
	Multi-trait cross-validation 2

	Discussion
	Conclusions
	Methods
	Materials and experimental design
	Phenotyping
	Genotyping
	Phenotypic data analysis
	Single trait (ST) model
	Multi trait (MT) model
	Cross-validation (CV)
	Cross-validation Scheme 1
	Cross-validation Scheme 2

	Acknowledgements
	References


