
Genomic patterns of structural variation among diverse
genotypes of Sorghum bicolor and a potential role for
deletions in local adaptation

Kittikun Songsomboon,1,2,* Zachary Brenton ,3 James Heuser,1,2 Stephen Kresovich,3 Nadia Shakoor,4 Todd Mockler ,4 and
Elizabeth A. Cooper1,2

1Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA,
2North Carolina Research Campus, Kannapolis, NC 28081, USA,
3Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA, and
4Donald Danforth Plant Science Center, St. Louis, MO 63132, USA

*Corresponding author: 150 N Research Campus, Dr. Suite 3333, Kannapolis, NC 28223, USA. Email: skittikun@gmail.com

Abstract

Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in
phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs)
occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation.
Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of differ-
ent climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs
in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using
Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 dele-
tions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority
of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the gen-
otypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being
unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes
related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation
in sorghum.
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Introduction
Genomic structural mutations are an important source of
variation in many species and can play key roles in phenotypic
diversification and evolution. Structural variations (SVs) have
been well-studied in human genomics for many years because of
their roles in human disease (Feuk et al. 2006; MacDonald et al.
2014; Escaramı́s et al. 2015), but until more recently, much less
was known about the extent or importance of SVs in plant spe-
cies (Saxena et al. 2014). Categories of SVs include deletions,
insertions, tandem duplications, inversions, relocations, and
translocations (Feuk et al. 2006). These types of mutations can en-
compass entire gene sequences or even multiple gene sequences,
giving them the potential to effect high-impact phenotypic
changes in a single event. Plant evolution, in particular, has a
rich history of large-scale structural mutations and dynamic ge-
nome rearrangements (Wendel et al. 2016) that have contributed
to the current species diversity and adaptive potential, so identi-
fying SVs in plant genomes is of great interest to plant breeders,

evolutionary biologists, conservationists, and phylogeneticists
(Swanson-Wagner et al. 2010; Saintenac et al. 2011; Cook et al.

2012; Dı́az et al. 2012; _Zmie�nko et al. 2014).
Previous work has identified multiple instances of SVs occur-

ring in or near genes related to both biotic and abiotic stress resis-
tance in several plant species. For example, 10 tandem copies of
the rhg-b gene in soybean were found to confer resistance to nem-
atodes (Cook et al. 2012). In Arabidopsis thaliana, metabolite spe-
cialization conferred by copy number variants (CNVs) suggested

that these mutations were involved in local adaptation (Shirai
et al. 2017; Shirai and Hanada 2019). In rice, one of the largest
studies of SVs in plants to date identified over 1.5 million SVs
across 3000 genomes and confirmed earlier observations that
many of these SVs occurred in or near genes related to disease re-
sistance and stress response (Fuentes et al. 2019). Another study

of 521 maize lines uncovered over 80,000 polymorphic SVs among
accessions of the same species (Yang et al. 2019). Importantly,
this study also found that many of these SVs were not in strong
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linkage disequilibrium (LD) with surrounding single nucleotide
polymorphisms (SNPs), so they would be undetectable by con-
ventional variant calling pipelines.

Sorghum [Sorghum bicolor (L.) Moench] is a versatile and highly
adaptable C4 grass species that has been bred for diverse pur-
poses. Following its initial domestication near present-day Sudan
approximately 10,000 years ago, cultivated sorghum spread to
regions of eastern, western, and southern Africa, as well as to the
Middle East, Indian subcontinent, and parts of Asia (Kimber
2000). As the species reached new geographic locations and envi-
ronments, it underwent strong local adaptation, ultimately
resulting in five morphologically distinct races (bicolor, durra,
guinea, caudatum, and kafir), but it is unknown what role, if any,
SVs may have played in sorghum’s diffusion and diversification.
Previous work examining SVs in sorghum using only a handful of
lines showed that there were 33,598 SVs that were polymorphic
between sweet and grain-type sorghums (Zheng et al. 2011;
Zhang et al. 2014), suggesting that SVs could underlie key
phenotypic differences in this species.

In this study, we aimed to characterize the broader
population-level pattern of SVs in sorghum using whole-genome
resequencing data from 347 diverse genotypes collected from
multiple geographic locations. Using the SVs we identified in
these data, we examined (1) whether or not SVs in sorghum are
under positive or negative selection, (2) the extent to which
particular SVs, and large deletions in particular, are associated
with the geographic origins of each genotype, and (3) if any re-
gionally-specific nonsynonymous deletions occurred in genes
with functions potentially involved in local adaptation.

Materials and methods
Plant material and DNA extractions
The Sorghum Bioenergy Association Panel (BAP) is a diversity
panel comprised of 390 sorghum genotypes that were originally
developed to accelerate the breeding of sorghum as a potential
bioenergy crop (Brenton et al. 2016). This study was based on 347
sorghum genotypes from the BAP that included representatives
of each of the five major races (bicolor, durra, guinea, caudatum,
and kafir) (Supplementary Table S1). The geographic origin of
each genotype was retrieved from the U.S. Department of
Agriculture’s Germplasm Repository Information Network (GRIN:
https://www.ars-grin.gov/). Coordinates for each geographic
location were approximated by locating the city or region listed
in the GRIN database in Google Maps (Google, n.d.). If no city or
regional information was available in the database, then we used
the coordinates of the geometric center of the origin country.

The samples were shotgun sequenced (150-bp paired-end) on
an Illumina X10 instrument at the HudsonAlpha Institute for
Biotechnology as part of the TERRA-REF project (http://terraref.
org/). Individual samples were multiplexed and run on a total of
123 lanes, resulting in an average of 30X coverage per sample. A
handful (�12) samples were sequenced twice; for these samples,
we randomly selected just one run of sequencing so that all of
the samples we compared would have the same average read
depth. Raw sequencing reads are available through the TERRA-
REF project page of the CyVerse repository (http://datacommons.
cyverse.org/browse/iplant/home/shared/terraref).

Structural variant calling and filtering
The pipeline for calling SVs in the BAP was adopted from the
svtools pipeline (Larson et al. 2019). Briefly, de-multiplexed se-
quence reads in FASTQ format for each individual were aligned

to version 3.0.1 of the BTx623 reference genome (as downloaded
from Phytozome v12.1.6: https://phytozome.jgi.doe.gov/pz/por
tal.html) using the program speedseq (Chiang et al. 2015). SVs
were identified in each individual aligned BAM file using LUMPY

(Layer et al. 2014) with default parameters. The resulting 347 SV
files were then sorted and merged with svtools (Larson et al.
2019). A full tutorial of this process has been delineated by the
authors of svtools, and can be found at https://github.com/hall-
lab/svtools/blob/master/Tutorial.md. The merged vcf was then
used to calculate a genotype for each individual at the variant
positions resulting in a fully genotyped vcf file of each individual.
CNVnator (Abyzov et al. 2011) was run within svtools in order
to annotate the called variants based on copy number.
Subsequently, svtools merged the genotyped and CNV-anno-
tated vcf files to remove any redundant variants that were called
by both programs. The resulting set of SVs (available at https://
datadryad.org/stash/share/X7mka20BtXuACd20QbtenGqS-
yoGVfKZOZNQQzfe2B0) was further filtered in R with custom
code (all R scripts are available at https://github.com/skittikun/
SVs_in_sorghum_BAP). A minimum read depth of 10 was re-
quired to call an individual genotype as nonmissing. The SV calls
were filtered to (1) require a paired-end (p.e.) matching value
more than 3, (2) require a precise breakpoint (flag PRECISE), (3) re-
move any generic rearrangements of unknown architecture
(break-end: BND), and (4) remove variants smaller than 50 bp or
larger than 100,000 bp. All sites with more than 20% missing data
were filtered out prior to any further analysis. For all analyses ex-
cept for the genetic diversity and site frequency spectrum calcu-
lations, sites with a minor allele frequency (MAF) less than 0.05
were also removed. For all of the deletions that passed our filters
(7766), we used snpEff (Cingolani et al. 2012) to annotate the po-
tential functional impact of each variant.

In order to validate the SVs we called in this study, we
searched our final vcf file for positions that overlapped with
known deletions that had been previously identified and charac-
terized in sorghum. These included mutations in dw3
(Sobic.007G163800) (Multani et al. 2003), Dry (Sobic.006G147400)
(Zhou et al. 2018), Tan2 (Sobic.002G076600) (Wu et al. 2019), and
several flowering genes (Sobic.006G004400, Sobic.006G057866,
and Sobic.009G257300) (Li et al. 2018) (Supplementary Table S2).

Genetic diversity
To compare the genomewide pattern of genetic diversity with the
distribution of SVs, we called SNPs from the same sequencing
data set. The raw sequencing reads were first trimmed with
Trimmomatic (Bolger et al. 2014) and then aligned to the BTx623
reference genome with Bowtie2 (Langmead and Salzberg 2012).
Aligned reads were sorted, indexed, and de-duplicated with
SAMtools (Li et al. 2009), and then SNPs were called via the vari-
ant calling protocol implemented by the Genome Analysis
Toolkit (GATK) version 3.8 (McKenna et al. 2010). The SNP calls
then were filtered to remove sites with more than 20% missing
data via vcftools (Danecek et al. 2011).

Nucleotide diversity (pÞ was estimated in 500 kb sliding win-
dows using the formula described by Begun et al. (2007). The
500 kb-window p was estimated separately for SNPs and SVs, and
the correlation between the two estimates was calculated in each
window using custom R scripts.

Global site frequency spectrum
To calculate the global site frequency spectrum, for each SV we
first determined the number of genotypes having the minor allele
at that site, where the possible number ranged from 1 up to 173
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(this being the maximum number of times an SV could occur and
still be considered the minor allele). For each bin size from 1 to
173, we calculated the total number of deletions in that bin.

To calculate the expected site frequency spectrum, we first
calculated Watterson’s estimator of h (hw) (Watterson 1975).
Given a sample of n individuals (or 2n in a diploid) and Sn segre-
gating sites, hw is defined as:

hw ¼
Sn

Pn�1
j¼1

1
j

Based on this equation, we calculated the expected number of
deletions in each bin as hw � 1

i , where i was the size of the bin. The
calculation and plots were performed in R using custom code
available at https://github.com/skittikun/SVs_in_sorghum_BAP.
Both the expected and observed site frequency spectra were cal-
culated for (1) all SV types deletions only, (2) duplications only
(Figure 2), (3) duplications only, and (4) inversions only
(Supplementary Figure S2).

Linkage disequilibrium and population structure
Because the majority of the SVs that we were able to confidently
identify in our data were deletions (22,359 out of 24,648), we
chose to focus exclusively on this type of SV for the rest of our
analyses. Pairwise LD between deletions was estimated as the
correlation coefficient (r2), which was calculated using the “-r2”
option in PLINK version 1.9 (Purcell et al. 2007). In order to convert
the filtered deletion calls (7766 SVs) into a format that was read-
able by PLINK, the binary values of 0 (absent), 1 (present), and
missing NA were transformed to AA, TT, and 00, respectively
with custom R code. In order to compare the extent of LD sur-
rounding SVs, the distance at which LD had decayed to half of its
maximum value (LD1/2) was determined (Otyama et al. 2019). The
pattern of LD decay was calculated separately for the complete
set of filtered deletions, deletions within gene regions, and dele-
tions only within coding sequences (CDS). The positions of gene
regions and coding sequences were determined based on version
3.1.1 of the Sorghum BTx623 reference genome annotation,
which was downloaded from Phytozome.

Population structure based on SNPs was estimated using k-
means clustering as implemented in the R package “cluster”
(Maechler et al. 2021). The optimal number of groups was deter-
mined via an average silhouette method (Kaufman and
Rousseeuw 2009). This method determines the silhouette width
of a given point from its cluster apart from the other clusters. By
varying the number of clusters (k), the average silhouette width
can be computed for each k. The highest width indicates the opti-
mal value of k. A principal component analysis (PCA) was imple-
mented via the R package “FactoMineR” (Lê et al. 2008). After
determining the best k value from k-means clustering, the pro-
gram ADMIXTURE was run with default parameters (Alexander
et al. 2015) and a k equal to our optimal value in order to generate
ADMIXTURE plots. The patterns observed in each method were
then compared with known racial and geographic origins data for
each genotype.

Identifying cluster-specific deletions affecting
genes
To find genomic regions with a significantly different distribution
of deletions across the eight clusters identified by k-means clus-
tering, we calculated the mean weighted abundance percentages
of deletions among the eight clusters in 500 kb sliding windows

across the genome. Chi-square tests were used to calculate the
significance of each window. Differences in abundance were con-
sidered statistically significant if they had a Bonferroni corrected
P-value < 0.05.

To identify the unique deletions (or nearly unique) to a partic-
ular cluster or population of sorghums for each of the 7766 dele-
tions, we first calculated the percent of alternate alleles that
were found in each of the eight clusters identified by k-means
clustering. Next, we tested whether or not the observed percen-
tages of each deletion were significantly different from what
would be expected by chance using a Chi-square goodness-of-fit
test as implemented in R. For sites with a statistically significant
difference in deletion abundance among the clusters, we further
restricted them to include only sites where a single cluster con-
tained 70% or more of the alternate alleles. Finally, for these
sites, we also conducted a permutation test to ensure that differ-
ences in cluster size were not sufficient to explain the differences
in relative abundance. More specifically, for each permutation
test, we randomly permuted the alleles 100 times, and counted
how many permutations also exhibited a single cluster with 70%
or more of the alternate alleles. If fewer than 5% of the permuta-
tions showed this pattern, then we considered the deletion to be
cluster-specific.

As an example, one of the sites that we classified as cluster-
specific was Chr03_53588484_53588905_DEL. The alternate allele
at this site occurred in 1, 2, 1, 0, 2, 19, 0, and 1 genotypes in k-
means groups 1, 2, 3, 4, 5, 6, 7, and 8, respectively. At this same
position, there were a total of 32, 31, 31, 30, 35, 53, 44, and 30 non-
missing genotypes in each of the five clusters, so the expected
percentages were calculated as 11.50, 11.25, 11.25, 10, 12, 19, 15,
and 10%. The Chi-square goodness of fit test resulted in a P-value
of 4.314 � 10�9, indicating a significant difference between the
observed and expected percentages. In other words, the distribu-
tions of the deletion alleles among these eight clusters were sig-
nificantly different. The percentage of deletion alleles found
within each cluster were 4, 8, 4, 0, 8, 73, 0, and 4%, respectively,
suggesting that this site was potentially specific to cluster 6. In
100 random permutations, there were zero instances where an
abundance of 70% or more was observed in cluster 6 by chance,
so we considered this site to be cluster-specific (Supplementary
Figure S1).

To determine if the cluster-specific deletions affected gene
functions, we considered only the deletions causing nonsynony-
mous mutations with high or moderate impacts from snpEff re-
sult. In this study, we used the “rice-defline” descriptions from
the “Sbicolor_454_v3.1.1.annotation_info.txt” file downloaded
from Phytozome to define the gene functions. We additionally fil-
tered our list of genes affected by cluster-specific deletions to
only include the unique gene IDs in each cluster (i.e., if the same
gene was affected by multiple different deletions, we did not con-
sider that gene for further analysis). For all of the genes with non-
synonymous mutations with high or moderate impacts, a gene
ontology (GO) enrichment analysis was performed using the R

package topGO (Alexa and Rahnenfuhrer 2020), and a Fisher’s
Exact test using a weighted model was used to calculate signifi-
cance. As a comparison, we also performed a GO enrichment
analysis on all affected genes.

Data availability
The vcf file with all called of SVs, which was filtered out only im-
precise calls and pair end less than 3, was uploaded to Dryard
Digital Repository (available at https://datadryad.org/stash/
share/X7mka20BtXuACd20QbtenGqS-yoGVfKZOZNQQzfe2B0).
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The vcf file with no filter is available upon request. All the calcu-
lations and statistical analysis was conducted in R with custom
code (all R scripts are available at https://github.com/skittikun/
SVs_in_sorghum_BAP). Supplementary Material is available at
figshare: https://doi.org/10.25387/g3.14525475.

Results
Genomic distribution of structural variations
The total number of SVs identified in the 347 genotypes prior to fil-
tering was 1,468,572, but after applying all quality, size, and missing
data filters, there were a total of 24,648 SVs, including 22,359 dele-
tions, remaining for analysis (Table 1). The majority of the raw SV
calls (nearly 1.3 million) were removed after filtering out imprecise
calls and sites with an undetermined break point (BND). Of the
remaining 116,499 sites, over three quarters of them (78.8%) had
missing data for more than 20% of the 347 samples. Out of the final
set of 24,648 high-quality and high-confidence SVs, there were 8170
with a MAF >5%, which is equivalent to occurring in at least 18 of
the 347 samples. The SV sizes ranged from 51 to 92,311 bp with a
median size of 932 bp. Among the SVs with MAF >5%, there were
7766 (95.06%) deletions, 337 (4.12%) duplications, and 67 (0.82%)
inversions. Due to limitations of the LUMPY SV caller, insertions
could not be detected in this study.

Since deletions were the type of SV that we could call most
frequently and with the highest confidence given our dataset, we
focused most of our downstream analyses on deletions only.

The distribution of deletions across all 10 sorghum chromo-
somes ranged from 7.24% on chromosome 7 to 14.61% on chro-
mosome 1 (Table 2). Most of the chromosomes had an average
deletion density of 1.11–1.40 deletions/100 kbp. Chromosome 7
had the lowest density, with 0.86 deletions/100 kbp, and chromo-
some 1 had the highest density, which was nearly double the

frequency of deletions on chromosome 7 at 1.40. The majority of
deletions detected in this study were located on the ends of the
chromosome arms (Figure 1 outermost ring), which are regions
that are typically higher recombination and more gene rich.
Despite this, three quarters of the deletions (5863) were located
outside of any gene regions. Only 1903 (24.50%) deletions were
within genes, and these were distributed relatively evenly across
the chromosomes, similar to the pattern of intergenic deletions:
ranging from 7.67% on chromosome 7 to 15.97% on chromosome
1. Only 641 (8.25%) of the deletions that aligned with gene regions
occurred with the CDS.

Among the 7766 filtered, high confidence, and MAF >5% dele-
tions we identified, we found a 7411 bp deletion on chromosome
9 between positions 59145680 and 59153091. The location of this
mutation matched exactly with a previously identified indel
located within the promoter region of the flowering time gene
Elf3 (Li et al. 2018). We also observed that accession “PI 655996”
did not have a deletion, which is consistent with what was previ-
ously reported. We were also able to confirm the presence of
eight other known sorghum SVs in our unfiltered results, though
many of these were excluded from further analyses due to an
excess of missing data or a low MAF among the accessions we
examined (see Supplementary Table S2 for details).

The genome-wide diversity (pÞ of deletions was slightly higher
(1.2X) than the average diversity at SNP sites. In addition, the SNP
and deletion diversity measures were not correlated at a spatial
scale when comparing the two within 500-kb windows (r¼ 0.052
P-value ¼ 0.06088) (Figure 1; outermost ring).

Frequency spectrum and patterns of linkage
disequilibrium
To determine if SVs in sorghum were collectively neutral or
potentially under selection, the observed and expected site

Table 1 Numeric summary of SVs along the filter and quality control steps

No filters Pair end Precise BND Size
less than

100 kb

Missing
SV frequency
less than 0.2

Minor SV
frequency

more than 0.05

Min
size (bp)

Max
size (bp)

Median
(bp)

Total 1,468,572 1,451,423 401,999 116,499 103,676 24,648 8,170 51 92,311 932
Deletion 187,099 187,097 105,499 105,499 97,165 22,359 77,66 51 89,716 956
Duplication 40,423 40,420 10,179 10,179 5,856 2,009 337 74 92,311 267
Inversion 3,412 3,410 821 821 655 280 67 55 88,991 280
BND 1,237,638 1,237,638 285,500

BND, Break-end: generic rearrangement of unknown architecture.

Table 2 Deletion size, number, and overlap to genes or CDS in each chromosome

Chromosome Number of
deletions

Number of
deletions per

100 kbp

Min size Max size Numbers of
deletions within

genes

Numbers of
deletions within

CDS

Numbers of
deletions affecting

genes from
snpEff

Chr01 1135 (14.61) 1.4 51 76,339 304 (15.97) 91 (14.2) 124 (16.17)
Chr02 955 (12.3) 1.23 59 73,918 237 (12.45) 84 (13.1) 68 (8.87)
Chr03 889 (11.45) 1.2 52 84,845 224 (11.77) 74 (11.54) 94 (12.26)
Chr04 744 (9.58) 1.08 53 87,736 178 (9.35) 57 (8.89) 75 (9.78)
Chr05 821 (10.57) 1.14 53 73,942 180 (9.46) 74 (11.54) 103 (13.43)
Chr06 670 (8.63) 1.09 56 89,716 151 (7.93) 45 (7.02) 60 (7.82)
Chr07 562 (7.24) 0.86 54 72,289 146 (7.67) 48 (7.49) 54 (7.04)
Chr08 662 (8.52) 1.06 55 84,593 159 (8.36) 56 (8.74) 50 (6.52)
Chr09 654 (8.42) 1.1 55 67,250 164 (8.62) 56 (8.74) 75 (9.78)
Chr10 674 (8.68) 1.1 55 86,591 160 (8.41) 56 (8.74) 64 (8.34)
Total 7,766 (95.06) 1,903 (24.50) 641 (8.25) 767 (9.88)

The numbers in parenthesis were percentages from total of each chromosome or from 7,766 deletions.
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frequency spectra were calculated and compared for the com-
plete set of filtered 24,648 SVs (Figure 2). The observed frequency
spectrum of SVs appeared to follow the same pattern as the
expected distribution, regardless of the type of SV
(Supplementary Figure S2), strongly suggesting that SVs as a
whole are evolving under neutral processes in sorghum.

This pattern also holds true when considering only the dele-
tions (Figure 2B).

The genome-wide pattern of LD between all pairs of 7766 dele-
tions with MAF >5% showed that LD decayed to half of its maxi-
mum value within 18 kb (Figure 3). However, pairwise LD

between deletions located exclusively within gene regions
decayed at a slightly slower rate with LD1/2 ¼ 25 kb, and the LD
between deletions occurring within the CDS decayed at the slow-
est rate with LD1/2 ¼ 41 kb.

Clustering of deletions with geographic origins
and races
By varying the number of groups, the highest silhouette width in
the k-means clustering analysis from SNPs suggested that the
genotypes were grouped into eight clusters (Figure 4A). Principal
components 1 and 2 (PC1 and PC2) clearly separated clusters 1, 3,

Figure 1 Genome-wide pattern of SVs among 347 sorghum genotypes. The outer ring shows the overall distribution of SVs, where each dash represents
a single SV. Red dashes represent deletions, yellow dashes represent inversions, and green dashes represent duplications. The blue and yellow lines in
the outermost ring show the p of deletions and SNPs, respectively, in 500 kb sliding windows. The middle ring shows the relative abundance of deletions
in 500 kb sliding windows within each of the five groups identified by k-means clustering: group 1 (red), 2 (light blue), 3 (dark green), 4 (light green), 5
(purple), 6 (orange), 7 (yellow), and 8 (pink). The innermost ring is the significance [-log(p)] value of each 500 kb window, indicating whether or not the
relative abundance in the window is significantly different from the expected distribution of SVs among the eight groups. The red line shows the
Bonferroni corrected significance threshold. The cluster-specific deletions are labeled with the cluster colors on their starting positions.
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5, 6, and 7 (Figure 4B), but clusters 2 and 4 appeared to overlap
with cluster 3, while cluster 7 appeared to overlap with cluster 8.
PC5 showed the separation of clusters 2 and 4 from cluster 3
(Figure 4C). PC3 and PC8 separated clusters 7 and 8
(Supplementary Figure S3). The results from ADMIXTURE fol-
lowed the same pattern, with some individuals showing a mix-
ture of membership in clusters 2 and 3 (Figure 5A).

Cluster 1 (the red cluster in Figures 4 and 5) was almost exclu-
sively comprised of individuals from Ethiopia (42 of 43 genotypes)
(Figure 5C and Table 3), all of which were types of unknown or
undefined race (Table 4). The majority of individuals assigned to
cluster 2 (light blue) were from Sudan (37 of 44 genotypes), and
many of these were either caudatums or guinea-caudatum

hybrids (15 and 17 genotypes, respectively). Cluster 3 (dark green)
contained several different races including guinea, caudatum,
and guinea-caudatum hybrids, but all individuals in this cluster
originated from regions of Eastern Africa. Cluster 4 (light green)
corresponded solely to genotypes from West Africa, the majority
of which were guinea types (27 of 31 genotypes). Cluster 5 (pur-
ple) corresponded mostly to genotypes with origins outside of
Africa (24 of 40) and unknown race (32 of 40 genotypes). Like clus-
ter 3, cluster 6 (orange) also consisted genotypes from East Africa
(38 of 58 genotypes), and this cluster also showed some overlap
in geography with cluster 3, although it did not extend as far to
the south (Figure 5). Cluster 7 (yellow) contained more than half
of the individuals originating from the United States (31 out of 53

Figure 2 Global site frequency spectrum of SVs. (A) All types of SVs identified in the data. Yellow bars indicate inversions, green bars indicate
duplications, and red bars indicate deletions. The dotted black line shows the expected distribution under neutral evolution. (B) Deletions only.
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Figure 3 Genome-wide decay of LD between deletions among 347 genotypes. LD was calculated as the correlation coefficient (R2). Blue, red, and black
curves represent a moving average calculated in 100 bp sliding windows. The black curve shows the decay of LD for deletions (7766); the blue curve
shows the decay for only deletions aligned within genes (1903); the red curve shows the decay for only deletions aligned within CDS regions (641).
Vertical dashed lines indicate the point where the average LD decayed to half of its original value (LD1/2).

Figure 4 K-means clustering of SNP data into eight groups. (A) Average silhouette width for different values of K. The vertical dashed line indicates the
k-value with the highest silhouette width (k¼ 8). (B, C) PCA plot for the PC1-PC2 and PC1-PC5. Colors indicate the eight groups identified as the optimal
number of clusters. Shapes indicate the races and the regions of origin. Percentages indicate the percent variation explained by each PC.
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Figure 5 ADMIXTURE results with K¼ 8. (A) Cluster membership for each individual in the eight clusters identified by both ADMIXTURE and k-means
clustering. (B) The geographic distributions of populations sampled in this study, with colors corresponding to the cluster membership of each
population. (C) The distribution and cluster membership of African populations in this study.
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Table 3 Origin countries of each genotypes separated into eight clusters from k-mean clustering

Countries
of origin

Regions Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total

Ethiopia Eastern Africa 42 — — — 8 8 — 29 87
Sudan Eastern Africa — 37 7 — 1 10 1 6 62
United States North America — 1 6 — 6 9 31 — 53
Nigeria Western Africa — — — 16 — 1 — — 17
South Sudan Eastern Africa 1 1 2 — 1 10 — 15
South Africa Southern Africa — — — — 3 2 8 — 13
Kenya Eastern Africa — — 5 — — 5 — — 10
India Asia — — — — 5 — 2 — 7
Uganda Eastern Africa — 3 2 — — 2 — — 7
Burkina Faso Western Africa — — 1 3 — — — 1 5
Congo Central Africa — — 2 — — — 3 5
Ghana Western Africa — — — 5 — — — — 5
Malawi Southern Africa — — 5 — — — — — 5
China Asia — — — — 2 — 1 — 4
Eritrea Eastern Africa — — — — — 1 1 2 4
Tanzania Eastern Africa — — 2 — — 2 — — 4
Turkey Asia — — — — 1 1 2 — 4
Zimbabwe Southern Africa — — — — 1 3 — — 4
Pakistan Asia — — — — 3 — — — 3
Togo Western Africa — — — 3 — — — — 3
Zambia Southern Africa — — 2 — — 1 — — 3
Egypt Northern Africa — — — — 1 1 — — 2
Mali Western Africa — — — 2 — — — — 2
Russia Europe — — 1 — 1 — — — 2
Syria Asia — — — — 2 — — — 2
Taiwan Asia — — — — — 2 — 2
Yemen Asia — — — — 2 — — — 2
Algeria Northern Africa — — — — 1 — — — 1
Australia Australia — — — — — — 1 — 1
Benin Western Africa — — — 1 — — — — 1
Botswana Southern Africa — — — — — — 1 — 1
Burundi Central Africa — — 1 — — — — — 1
Cameroon Central Africa — 1 — — — — — — 1
Chad Central Africa — 1 — — — — — — 1
Eswatini Southern Africa — — — — — — 1 — 1
Jamaica North America — — — — 1 — — — 1
Japan Asia — — — — 1 — — — 1
Mexico North America — — — — — — — 1 1
Niger Western Africa — — — — — 1 — — 1
Rwanda Eastern Africa — — 1 — — — — — 1
Senegal Western Africa — — — 1 — — — — 1
Serbia Europe — — — — — — 1 — 1
Total 43 44 37 31 40 58 55 39 347

Table 4 Race of each genotypes separated into eight clusters from k-mean clustering

Races Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total

Bicolor — — 2 — 4 — — — 6
Caudatum — 15 7 — — 10 2 — 34
Caudatum-bicolor — 1 1 — — — 4 1 7
Durra 1 — — — 2 1 — 8 12
Durra-bicolor 1 — 1 — — — — 1 3
Durra-caudatum — 1 2 1 2 — 2 8
Guinea — 2 6 27 — — — 1 36
Guinea-bicolor — — 1 — — — — — 1
Guinea-caudatum — 17 8 3 1 3 — 32
Guinea-durra — — — — — — — 1 1
Guinea-kafir — — — — — — 1 — 1
Kafir — — — — — 1 3 — 4
Kafir-bicolor — — — — — — 1 — 1
Kafir-caudatum — 1 — — — — — — 1
Kafir-durra — — — — — — — 1 1
Unknown 41 7 9 1 32 41 44 24 199
Total 43 44 37 31 40 58 55 39 347
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genotypes), which were mostly unknown or undefined race. This
cluster also contained a number of individuals from Southern
Africa. Lastly, cluster 8 (pink) contained almost exclusively
genotypes from Ethiopia (37 of 39 genotypes). Unlike cluster 1,
however, which consisted only of Ethiopian individuals with un-
known race, cluster 8 contained many durras and durra hybrids
(13 out of 39).

Cluster-specific deletions and potential impacts
on gene functions
At the genome-wide scale, there were significant differences
in deletion abundance among the 8 clusters in almost all
500 kb sliding windows (Figure 1). Of the total 7766 deletions,
767 of them were categorized as cluster-specific (Table 5 and
Supplementary Table S3). There were 124 cluster-specific dele-
tions that were categorized as nonsynonymous mutations (either
high or moderate impact) by snpEff (Supplementary Table S4).
The overall proportion of cluster-specific deletions that were
nonsynonymous was very similar to the proportion of nonclus-
ter-specific deletions that were nonsynonymous (16% of cluster-
specific vs 17% of noncluster-specific), suggesting that deletions
in general play an important role in both standing and regional
levels of genetic variation. For this study, we focused on the
impact of deletions that were unique to specific geographic
locations.

There were 73 unique gene IDs associated with moderate
or high impact nonsynonymous cluster-specific deletion
(Supplementary Table S5). In five out of the eight clusters, we
identified, there were a number of genes with functions related
to biotic and abiotic stress that had been impacted by a nonsy-
nonymous deletion.

Cluster 1 had a total of 40 genes that were impacted by a
nonsynonymous deletion, which was the highest number of any
cluster. Many of these genes have been previously linked to local
adaptation to both abiotic and biotic factors in other plant spe-
cies. We found several genes potentially related to drought toler-
ance that had deletions unique to cluster 1, which is particularly
interesting given that cluster 1 is comprised almost entirely of
genotypes from Ethiopia. These drought tolerance genes included
Sobic.004G042400, a Myb/SANT-like DNA-binding domain pro-
tein that showed differential abundance in response to drought
in sugarcane (Salvato et al. 2019), Sobic.004G183600, a molybde-
num cofactor biosynthesis protein whose overexpression was
found to confer increased drought tolerance in maize (Lu et al.

2013), and Sobic.008G100400, a member of the pentatricopeptide
repeat family with critical roles in stress and development in
many plant species (Sharma and Pandey 2015). Two genes with
cluster 1 specific deletions had putative roles in both drought and
salt tolerance. These were Sobic.004G120000, an expansin gene
whose overexpression conferred increased drought and salt
tolerance in A. thaliana (Lü et al. 2013), and Sobic.008G040600,
bZIP transcription factor domain containing protein with
many potential roles in plant abiotic stress (Banerjee and
Roychoudhury 2017). There was also a nonsynonymous deletion
in Sobic.007G154901, a gene that encoded a bifunctional monode-
hydroascorbate reductase and carbonic anhydrasenectarin-3
gene, which is a ROS-related protein important for environmental
adaptation in sweet potato (Huang et al. 2008). Another interest-
ing deletion was found in Sobic.010G245701, a gene encoding an
anthocyanidin 5,3-O-glucosyltransferase. Even though this gene
has not been linked to a specific stress response, it has been
shown to be important in latitudinal adaptation in Pinus sylvestris
(Oleszek et al. 2002).

Cluster 1 also exhibited a handful of nonsynonymous dele-
tions in genes related to biotic stress tolerance. These included
Sobic.006G239900, which encoded a homolog of the Cf-4A gene
that is essential for leaf mold resistance in tomato (Kruijt et al.
2005), Sobic.010G228800, a leucine rich repeat (LRR) domain con-
taining gene with roles in disease resistance in many plants (Goff
and Ramonell 2007), and Sobic.002G096900, which encodes
autophagy-related protein 3 and has been shown to be important
for resistance to local viral diseases in cotton (Boya et al. 2013;
Ismayil et al. 2020).

Cluster 4, which corresponded to the West African guinea-
type sorghums, had a total of 6 genes affected by cluster-specific
nonsynonymous deletions, 3 of which have been previously
linked to adaptive phenotypes in other plant species. These genes
included an xa1 gene (Sobic.004G117000) which is known to con-
fer broad-spectrum pathogen resistance in rice (Ji et al. 2020), a
late embryogenesis abundant (LEA) hydroxyproline-rich glyco-
protein related gene (Sobic.002G363901) with abiotic-stress
induced expression in sweet oranges (Pedrosa et al. 2015),
Sobic.001G238500, a gene encoding a UDP-glucoronosyl and UDP-
glucosyl transferase, which was related to flavonoid synthesis
and connected to latitudinal adaptation in P. sylvestris (Oleszek
et al. 2002).

There were only two genes affected by cluster-specific
deletions cluster 5, which was the most geographically wide-
spread cluster. One of the genes with a nonsynonymous deletion
was Sobic.005G081000, a member of the pentatricopeptide gene
family that has been linked to drought tolerance in a number of
plant species (Sharma and Pandey 2015).

Cluster 6 only had one unique nonsynonymous deletion with
a potential role in local adaption. This deletion occurred within
Sobic.003G435900, a gene that encodes a homolog of the disease
resistance protein RPS2 in A. thaliana (Bent et al. 1994).

Cluster 8, which like cluster 1, was localized almost entirely
to Ethiopia, had one unique deletion affecting Sobic.001G252600,
which encodes an AAA-type ATPase gene that is responsible
for salt-stress tolerance in the halophyte ice plant
(Mesembryanthemum crystallinum) (Jou et al. 2006).

Finally, there were three clusters, clusters 2, 3, and 7, which
did not have any nonsynonymous cluster-specific deletions that
occurred within genes with clear connections to local adaptation.
Although cluster 2 had one unique gene ID impacted by a
cluster-specific deletion, this gene (Sobic.010G049700) had no an-
notated function or homologs in other plant species. In cluster 3,

Table 5 Abundance of cluster-specific deletions, number of
cluster-specific deletions potentially affecting gene functions
(annotated with snpEff as high and moderate impacts), and the
uniqueness of those genes among clusters

Clusters Number of
cluster-specific

deletions

Number of
cluster-specific

deletions affecting
gene functions

Number of
affected genes
unique among
cluster-specific

deletions

1 407 36 40
2 21 1 1
3 8 0 0
4 67 6 6
5 14 2 2
6 44 2 2
7 115 9 13
8 91 8 9
Total 767 64 73
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none of the cluster-specific deletions that we identified caused a
nonsynonymous change in any gene. In cluster 7, there were 11
unique genes affected by cluster-specific deletions, but none of
these genes had any known functions in abiotic or biotic stress
response. This may be a result of the fact that the genotypes
assigned to cluster 7 were also quite geographically widespread
(Figure 5), and included individuals from southern Africa, the US,
Australia, and Asia.

Gene ontology analysis of genes affected by
deletions
A GO analysis of all genes affected by deletions (both cluster-spe-
cific and nonspecific) determined from snpEff revealed 8 signifi-
cant GO terms (Supplementary Table S6). Cysteine-type
peptidase activity, metal ion binding, and ADP binding were the
three most significant GO terms for genes affected by deletions
(Table 6 and Figure 6). Among just the cluster-specific genes with
deletions, there were two significantly enriched GO terms: (1) 4
iron, 4 sulfur cluster binding and (2) 3-beta-hydroxy-delta5-ste-
roid dehydrogenase activity (Supplementary Table S7 and
Supplementary Figure S4). These two terms were also present in
the analysis of noncluster-specific deletions, but neither was sta-
tistically significant (P¼ 0.132 for 4 iron, 4 sulfur cluster binding,
and P¼ 0.066 for 3-beta-hydroxy-delta5-steroid dehydrogenase
activity). ADP binding, which was a significantly enriched GO
term among the noncluster-specific deletions, was also found in
the cluster-specific analysis but slightly above the threshold of
significance (P¼ 0.074).

Discussion
In this study, we identified a total of 24,648 SVs, including 22,359
deletions, among 347 diverse sorghum genotypes. This number
was similar, although slightly lower than, previous observations
by Zheng et al. (2011). The difference in the number of observa-
tions is likely due to differences in sequencing depth, detection
programs, and filtering based on the sizes of deletions. Because
our study was based on Illumina short-read sequencing with an

average depth of �30X, we are almost certainly underestimating
the total number of SVs in sorghum, especially in highly hetero-
chromatic regions, due to technological limitations in SV calling
software; nevertheless, the deletions that we report here are all
high confidence calls that are informative about the evolutionary
history and impact of deletions in sorghum.

The genetic diversity ðpÞ of deletions was slightly higher than
genetic diversity of SNPs in sorghum, which is different from a
previous study in rice (Kou et al. 2020). However, we observed a
lack of correlation between SNP diversity and deletion diversity
when comparing the two types of mutations in sliding windows
across the genome, which was also the case in rice (Kou et al.
2020).

The distribution of our deletions was high in high recombina-
tion regions and equally distributed across chromosomes as
expected (Campbell et al. 2014; Miles et al. 2016; Rowan et al.
2019). LD among deletions decayed to half of its starting value
within roughly 18 kb, and the overall extent of LD observed be-
tween deletions fell within the ranges that have been previously
observed in sorghum (20–150 kb) (Mace et al. 2013; Morris et al.
2013). Although many of the deletions were located near or even
within genes, the overall results from the site frequency spec-
trum strongly suggested that the genomewide pattern of dele-
tions in sorghum was shaped by neutral evolution. This is
different from studies of some other plant species, such as pop-
lar, where a genomewide survey of SVs suggested that most var-
iants were under the influence of positive selection (Sun et al.
2015). However, another study in inbred Mimulus guttatus (Flagel
et al. 2014) found that large indels were under neutral or purifying
selection, and other studies have also found that SVs, even those
potentially affecting gene functions, might be evolving neutrally.
For example, in the NBS-LRR disease resistance genes in plants,
where we observed a number of SVs, there is a high rate of pres-
ence/absence variation and gene copy turnover, even in the ab-
sence of pathogens (Baumgarten et al. 2003; Meyers et al. 2005).

We used k-mean clustering to group genotypes solely based
on SNPs. When the clustering results were overlaid with known
location and race data for each genotype, the pattern of

Table 6 Enriched gene ontology of SVs on CDS showed top 10% GO ID from Fisher’s exact test

GO.ID Term Annotated Significant Expected Rank P-value from
Fisher’s exact

test

GO:0008234 Cysteine-type peptidase activity 121 16 1.7 1 1.2e-11
GO:0046872 Metal ion binding 1,867 43 26.24 3 0.00061
GO:0043531 ADP binding 302 12 4.25 5 0.00117
GO:0016616 Oxidoreductase activity, acting on the CH-OH

group of donors, NAD or NADP as acceptor
108 6 1.52 8 0.02753

GO:0004347 Glucose-6-phosphate isomerase activity 2 1 0.03 11 0.02792
GO:0003935 GTP cyclohydrolase II activity 3 1 0.04 12 0.04158
GO:0008686 3,4-dihydroxy-2-butanone-4-phosphate

synthase activity
3 1 0.04 13 0.04158

GO:0030247 Polysaccharide binding 96 4 1.35 14 0.04632
GO:0008408 3’-5’ exonuclease activity 26 2 0.37 15 0.05123
GO:0051015 Actin filament binding 4 1 0.06 16 0.05506
GO:0003854 3-beta-hydroxy-delta5-steroid dehydrogenase activity 30 2 0.42 18 0.06614
GO:0005094 Rho GDP-dissociation inhibitor activity 5 1 0.07 21 0.06835
GO:0005337 Nucleoside transmembrane transporter activity 5 1 0.07 22 0.06835
GO:0016620 Oxidoreductase activity, acting on the aldehyde

or oxo group of donors, NAD or NADP as acceptor
31 2 0.44 25 0.07007

GO:0010333 Terpene synthase activity 43 2 0.6 35 0.12222
GO:0030599 Pectinesterase activity 43 2 0.6 36 0.12222
GO:0051539 4 iron, 4 sulfur cluster binding 10 1 0.14 38 0.13205
GO:0015018 Galactosylgalactosylxylosylprotein 3-beta-

glucuronosyltransferase activity
11 1 0.15 40 0.14426
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clustering clearly corresponded to geographic origin and race.
The most homogenous group was cluster 4, which almost exclu-
sively contained guinea sorghums from West Africa. This region
is more humid than the other geographic areas, and it is well
known that guinea genotypes have undergone local adaptation
to this wet region (De Wet et al. 1976). Clusters 2 and 6 both
contained many caudatum and guinea-caudatum hybrids, with
the majority (80%) of the genotypes in cluster 2 originating from
Sudan, while the genotypes in cluster 6 had a slightly wider
geographic dispersal across central/Eastern Africa. Together, the
geographic distribution of these two clusters matches the known
distribution of caudatum types (Venkateswaran et al. 2019). The
East African country of Ethiopia by itself contained two different
clusters of genotypes: cluster 1, which was predominantly com-
prised of individuals of unknown race, and cluster 8, which was
comprised of durras and durra-hybrid types (Figure 5C, Tables 3
and 4). This area is known to be near the center of origin for do-
mesticated sorghum, and it has previously been observed that
the topography and climate variation present in Ethiopia has
contributed to the diversity of sorghum in that region (Stemler
et al. 1977; Doggett 1991). Cluster 5 also contained a number of
durra and durra hybrid individuals, but in addition to Ethiopia,
this cluster also encompassed the Arabian Peninsula, India, and
Asia. Taken together, the clustering patterns observed in clusters
5 and 8 perfectly fit the known history of the durra race
(Venkateswaran et al. 2019). Clusters 3 and 7 were the most
heterogeneous in terms of racial types, but both still showed a
clear correspondence with known geographic origins (Figure 5).

Because deletions, especially large deletions like the ones we
investigated in this study, have the potential to affect gene func-
tion and thereby potentially alter phenotypes, we looked more
closely at deletions that were uniquely found in a specific geo-
graphic cluster to see whether or not any of them may be playing
a role in local adaptation. We found that many of the genes with
a nonsynonymous cluster-specific deletion had functions relat-
ing to biotic (viral and bacterial pathogen) and abiotic (drought,
salt, and latitudinal gradient) responses in other plant species
(Supplementary Table S3).

For instance, in cluster 4, which corresponded to the West
African group, one of the genes affected by a deletion was xa1,
which studies in rice have shown to be involved in bacterial resis-
tance as an R gene (Yang et al. 2018; Ji et al. 2020). Local pathogen
pressure can be a strong driver of rapid adaptation (Simms and
Triplett 1994; Endara et al. 2017), so this deletion could be impor-
tant for maintaining fitness in this particular group of sorghums.

Cluster 1, which was comprised of genotypes almost exclu-
sively collected from sites within Ethiopia, had by far the largest
number of genes affected by cluster-specific deletions. There
were three genes that had disease resistance functions. Cf-4A, an
R gene important for resistance against the fungal disease caused
by Cladosporium fulvum in tomato, had a 97 bp deletion unique to
this cluster causing a frameshift mutation, which could suggest
that this particular host-pathogen interaction is not as important
in this region as it is in the other geographic locations (Kahlon
et al. 2020). This cluster also had a 141 bp deletion predictably
causing exon loss variant in LRR, which is well-known for disease

Figure 6 TopGO analysis of all genes affected by deletions based on high or moderate impact from snpEff result. Colors indicate the significance of
enrichment for a particular GO term, with red indicating the most significantly enriched category.
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resistance (Goff and Ramonell 2007). Lastly, autophagy-related pro-
tein 3, a gene conferring viral disease resistance in cotton, had a
360 bp deletion (Boya et al. 2013; Ismayil et al. 2020). This deletion
was also annotated as a frameshift mutation, which could poten-
tially disrupt the function of viral resistance within the cluster 1
genotypes.

Meanwhile, cluster 6 also had one gene with a function in-
volved in disease resistance that was affected by a cluster-spe-
cific deletion. RPS2, which has been shown to play a role in local
adaptation in A. thaliana (Bent et al. 1994), had a very large 4.5 kbp
deletion that was unique to this cluster.

In addition to biotic stresses, there were also 11 cluster-spe-
cific deletions impacting genes with functions related to abiotic
stresses. Most of them (8 of 11) appeared to be affecting genes
related to drought tolerance. Drought is one of the most challeng-
ing stress factors driving local adaptation in plant species, and is
also of particular importance to continued crop improvement in
the face of climate change (Gimeno et al. 2009; Xia et al. 2010;
Barton et al. 2020). Cluster 1 had the most cluster-specific dele-
tions related to drought tolerance. The size of these mutations
ranged from an 80 bp deletion in a molybdenum cofactor biosyn-
thesis protein 1 to a 3.6 kbp deletion in a Myb/SANT-like DNA-
binding domain-containing protein, two genes that have been
found to be differentially expressed in response to drought in
maize and sugarcane respectively (Lu et al. 2013; Salvato et al.
2019).

Almost all of the deletions specific to cluster 1, which affected
drought tolerance genes, were annotated as exon loss variants,
indicating that these mutations likely cause loss of function of
these genes for the majority of the genotypes within this cluster.
This result is surprising given that cluster 1 is localized to
Ethiopia, a region typically associated with more arid climates,
and suggests that these genotypes must have alternative drought
tolerance mechanisms. Similarly, in cluster 5, which largely
corresponded to durra-type sorghums that are often associated
with higher drought tolerance, there was also a nearly 2 kbp
(1,472 bp) deletion occurring within a pentatricopeptide gene
known for drought tolerance in many plant species (Sharma and
Pandey 2015).

On the other end of the spectrum were the genotypes from
cluster 4, which comprised almost exclusively West African sor-
ghums from higher humidity climates. This cluster had a 1.5 kbp
deletion impacting the transcript ablation of LEA hydroxyproline-
rich glycoprotein, which was differentially expressed in sweet or-
ange in response to drought (Pedrosa et al. 2015). Notably, this
gene also showed differential expression in response to salt toler-
ance, so it may also be playing a role in local adaptation to soil
types in this cluster of sorghums.

The functions of multiple different genes that were impacted
by cluster-specific deletions together suggest a potential role for
deletions in the local adaptation of these sorghum genotypes.
Although our global site frequency spectrum suggested that the
majority of deletions in sorghum were evolving neutrally, the ex-
tent of LD between deletions occurring within CDS regions (LD1/2

¼ 41 kb) was over twice that observed between nongenic dele-
tions (LD1/2 ¼ 18 kb). This slower rate of decay could be indicative
of selection acting on these gene-impacting deletions (Bouchet
et al. 2012).

The most significant GO term for genes affected by nonsynon-
ymous deletions was cysteine-type peptidase activity. This en-
zyme serves multiple functions in plant growth and
development, including senescence, nutrient accumulation in
seeds, and stress signaling (Grudkowska and Zagda�nska 2004).

Metal iron binding was the second most significant GO term,

which can have an array of functions in heavy metal stress sig-

naling, lipoxygenase activity, and zinc finger binding (Siedow

1991; Ciftci-Yilmaz and Mittler 2008; Hossain and Komatsu 2013).

The third most significant GO term was ADP binding protein.

These types of proteins function as general signaling proteins,

and in some cases also function in disease resistance (Feng et al.

2016).
Interestingly, the only two significant GO terms for genes im-

pacted by cluster-specific deletions (4 iron, 4 sulfer cluster bind-

ing and 3-beta-hydroxy-delta5-steroid dehydrogenase activity)

were both related to stress responses in other plant species (Busi

et al. 2006; Kappachery et al. 2013).
In conclusion, the structural mutations we identified among

diverse sorghum genotypes in this study were spread across all

10 chromosomes and showed a strong correlation with known

historical patterns of geographic and racial variation in sorghum.

While most medium to large deletions appear to be evolving neu-

trally via genetic drift, there were several cluster-specific nonsy-

nonymous deletions found within genes with functions related to

both biotic and abiotic stress response, which suggests that these

cluster-specific deletions may play important roles in local adap-

tation.
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