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Abstract: Tight junctions play a major role in maintaining the integrity and impermeability of the
intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation
through the intestinal mucosa and invade their host. Different strategies are used by pathogens,
aimed at directly destabilizing the junctional network or modulating the different signaling pathways
involved in the modulation of these junctions. After a brief presentation of the organization and
modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to
permeability breakdown of the gut barrier as a consequence of tight junctions’ attack by pathogens,
including bacteria, viruses, fungi, and parasites.

Keywords: enterocytes; gut barrier; tight junction; intestinal epithelial cells; pathogens; microorgan-
isms; signaling pathways; permeability

1. Introduction

A large community of microorganisms (viruses, bacteria, and fungi) and parasites
inhabits the intestinal lumen forming the intestinal microbiota. This microbiota includes
commensal microbial species that may, for some, become pathogenic following a dis-
ruption of the host defenses. The intestinal epithelial barrier segregates microorganisms
and/or their components in the gut lumen considered as an external environment from
the sterile deep tissues. The separation is achieved in part by intercellular junctions, es-
pecially tight junctions (TJ), which ensure impermeability of the gut barrier, avoiding the
translocation of both commensal and pathogenic agents [1,2]. Commensal microorgan-
isms have a protective role for the digestive mucosa by participating in maintaining the
physiological integrity of TJs which sustain their barrier function during entero-pathogen
challenge [3–8]. Among them, probiotics have been reported to potentiate the tighten-
ing of TJs, which improve impermeability of the gut mucosa aimed at, among others,
counteracting the deleterious action of pathogens upon the TJ complex. In contrast, some
pathogenic microorganisms have developed strategies to disorganize the TJs aiming to
translocate through the digestive mucosa and invade their host. These entero-pathogens
include (i) entero-invasive or entero-toxigenic bacteria (respectively, Shigella, Salmonella,
enteroinvasive/enteropathogenic Escherichia coli, Yersinia, Campylobacter, or Vibrio cholerae,
enterotoxigenic or hemorrhagic Escherichia coli, Clostridium, and Aeromonas), (ii) enteric
viruses that are specific to the digestive tract, such as Norovirus, Astrovirus, and Rotavirus
but also viruses such as HIV that can target enterocyte TJs, (iii) parasites causing gastroen-
teritis (i.e., Entamoeba, Blastocystis, or Giardia), or using intestinal cells as a portal of entry
for their dissemination (i.e., Toxoplasma gondii), and (iv) fungi, including the yeast Candida
albicans belonging to the gut mycobiote, and other fungi such as Aspergillus and Penicillium
that are transitory hosts of the food bolus.
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The cohesion and impermeability of the intestinal epithelium is based on the presence
of junctional intercellular complexes formed at the apical level by TJs, adherens junctions
(AJs), and desmosomes, all of them interacting with the cytoskeleton (Figure 1) [9,10].
Among them, TJs are involved in cell–cell interactions between enterocytes as well as
with other intestinal cells, including intraepithelial lymphocytes, M cells, goblet cells, or
dendritic cells. Each of them is associated with specific features and role in the barrier and
chemical functions of the intestinal mucosa [11]. TJs form a continuous and tight branched
network between membranes of neighboring cells, leading to the complete sealing of
the apical intercellular space (Figure 1). In addition, TJ proteins, especially claudins,
constitute a barrier inside the membrane itself, preventing the migration of transmembrane
proteins and lipids from the apical to the baso-lateral side, therefore participating in
enterocyte polarization [12]. Thus, TJs also act as a site for integration and transmission
of signals necessary for the regulation of their assembly and for cell polarization. Finally,
they participate to the modulation of gene expression required for cell proliferation and
differentiation, as well as in stress responses [12–16]. Altogether, the TJ complex consists of
a rate-limiting factor in the paracellular permeability, in response to environmental changes
which undergo regulations of the integrity of the gut barrier through their opening or
sealing. In this context, having a clear view of the mechanisms involved in TJ dynamics is
crucial to understand their key role in preventing microbial translocation and spread to
deep tissues.

After a brief presentation of the organization and modulation of TJs, this review will
focus on the abilities of pathogens to target tight junctions with the aim to promote invasion
of the gut mucosa and dissemination into the host.

2. Structure, Formation, and Modulation of Tight Junctions

The TJ complex is composed by three family of transmembrane proteins (i.e., the
claudin family, the Marvel domain-containing proteins (occludin, tricellulin, and Mar-
velD3), and immunoglobulin superfamily (JAM, CAR)). This transmembrane structure
is bounding to the cytoskeleton through a cytoplasmic TJ plaque composed of scaffold
proteins among them the zonula occludens (ZO) proteins 1 to 3, the cingulin and cingulin-
like proteins, and the afadine. Many other proteins involved in signal transduction and
membrane trafficking are also associated with TJs (Figure 1).
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Figure 1. Composition of tight junctions in intestinal epithelial cells. Among the over forty proteins involved in the TJ
complex, the transmembrane proteins belong mainly to three groups: the claudins family, the Marvel domain-containing
proteins (occludin, tricellulin, also known as MarvelD2 and MarvelD3 proteins), and several immunoglobulin superfamily
members ((Junctional Adhesion Molecules (JAMs), Coxsackie and Adenovirus Receptor proteins (CAR)) [17]. Other
transmembrane proteins such as BVES (blood vessel epicardial substance), the apical polarity determinant Crb3 (Crumbs
Cell Polarity Complex Component 3), and angulins colocalize and interact with TJs at the apical level even if not consensually
considered to belong to this junctional complex [18]. These proteins relate to a cytoplasmic plaque formed by adaptor and
signaling proteins. Adaptor proteins provide a bridge to the cytoskeleton through actin and microtubule tight bonds and
include proteins such as zonula occludens proteins (ZO-1/3), cingulin, paracingulin, also known as junction-associated-
coiled-coil protein (JACOP), membrane-associated guanylate kinases (MAGI 1–3), Multi-PDZ domain protein 1 (MUPP1),
Pals, PATJ, Partitioning defective 3 and 6 proteins (Par3 and 6), Merlin–angiomotin complex. Signaling proteins complete
this complex network, including protein kinases (atypical protein kinase C (aPKC), Mitogen-activated protein kinase kinase
(MEKK1), complex Cyclin D1/CDK4, Large tumor suppressor kinase 1 (LATS1)), phosphatases (Phosphatase and TENsin
homolog (PTEN)), GTPases and their activators (Rap2c, Myosin-IXA, Rho guanine nucleotide exchange factors (PDZGEF1,
p114RhoGEF, GEF-H1, ARHGEF11), RICH1, SH3 domain-binding protein 1 (SH3BP1), Tubulin alpha chain (Tuba)), heat
shock proteins (Apg-2), and transcriptional and post-transcriptional regulators ((zonula occludens 1-associated nucleic acid
binding protein (ZONAB), Symplekin, yes-associated protein 1 (YAP), tafazzin (TAZ)). The last group of proteins localize
with the TJ scaffold proteins but move to the nucleus aimed at modulating gene expression. Therefore, they are involved
not only in the regulation of the junctional organization and function but also take part in many cells signaling pathways
including cellular proliferation, differentiation, and response to many stimuli.

The Tj formation initiates at apical pole of neighboring immature epithelial cells.
The concomitant maturation of both tight and adherens junctions requires the activation
of several signaling pathways, namely (i) the complex Par3-Par6-aPKC involving the
partitioning defective homolog proteins 3 and 6 (Par-3) (Par-6) and the atypical protein
kinase C (aPKC), (ii) several phosphatases (e.g., phosphatase 2A (PP2A)), and (iii) various
GTPases (e.g., Raps, Rho GTPases, including RhoA, Rac, and Cdc42) [19–23]. The junctions
between epithelial cells are considered functional when TJs and AJs are distinct [12].
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TJ formation and dissociation are dynamic processes contributing to the modulation of
tissue permeability in response to (i) variations in the chemical composition of the intestinal
bolus (i.e., type and quantity of proteolytic enzymes, ionic content, and solutes), (ii) the
inflammatory state of the intestinal mucosa, and (iii) the gut microbiota composition [24].
These are ensured by the development of vesicular trafficking of TJ proteins between the
cytosol and the cell membrane, leading to their destruction and/or their rewiring to the
cytosol, that correlates with their degree and sites of phosphorylation. Both changes in
their expression and post-transcriptional regulatory mechanisms have also been reported
but partially elucidated (Figure 2) [25]. Various exogenous factors and physiological
modulators regulate the integrity of the TJs and consequently the intestinal permeability.
In this context, the maintenance of the TJ proteins to the junctional complex has been
correlated to the activation of kinase pathways including PKC and MAPK (ERK, p38, JNK),
the calcium/calmodulin-dependent kinase 2 (CaMKK2)–AMP-activated protein kinase
(AMPK), as well as Rho and NF-κB pathways [25–31]. Currently, zonulin (haptoglobin
2 precursor) remains the only endogenous modulator described as specific for TJs. It
was identified as the mammalian analogue of zonula occludens toxin (Zot), secreted by
the cholera pathogen Vibrio cholerae [32]. Whereas the secreting cell type remains to be
specified, zonulin is produced in the intestinal lumen in response to the luminal presence
of gluten and/or during bacterial colonization. In fact, its expression is associated with
the presence of both commensal and pathogenic bacteria, with a more intense response to
the latter [33,34]. Zonulin is able to activate the EGF receptor through direct binding or
through the transactivation of the protease-activated receptor 2 (PAR2). This activation is
then followed by the activation of the Ras-MAP-kinase cascade, ending by the removal of
ZO-1 proteins from the junctional complex and therefore promoting the relaxation of tight
junctions [34,35].

In polarized cells, the peri junctional contractile ring of actin–myosin II intimately
interacts with TJ proteins. Consequently, any modification in one of these two connected
compartments directly impacts physically the functional organization of the other. For
instance, the actin–myosin contraction following the activation of the myosin light-chain
kinase (MLCK) mediates intestinal TJ regulation in response to both physiological and
pathophysiological stimuli [36]. In the same way, Rho proteins have been suggested to play
an important role in maintaining the association of TJs with the membrane [37,38]. Indeed,
the kinase ROCK, downstream effector of Rho, is reported to regulate specifically TJs via
its effects on the F-actin cytoskeleton [38]. Besides, activation of the EGF receptor, leading
to the activation of both β and ε isoforms of the protein kinase C (PKC), as well as the
phospholipase C, promotes the stabilization of the actin/myosin ring and consequently the
TJ complex [39]. To our knowledge, signaling pathways associated to TJ modulation have
been reviewed (i) concomitantly in different cellular models other than intestinal epithelial
cells (IECs) or (ii) singly or in a specific context in IECs [40–45].
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Figure 2. Signaling pathways involved in TJ formation and modulation. This scheme presents a non-exhaustive list of the different signaling pathways involved in the modulation of tight
junctions of intestinal epithelial cells. Cytokines (CK). Janus kinase (JAK). Phosphoinositide-3-kinase (PI3K) and Myosin light chain kinase (MLCK) pathways: Phosphoinositide-dependent
kinase-1 (PDK1), protein kinase B (Akt1), protein kinase G (PKG), Myosin light chain (MLC), Myosin light chain phosphatase (MLCP), LIM-kinase (LIMK), Ras homolog family
member A (RhoA), Rho-associated coiled-coil containing protein kinase (ROCK), Ras-related C3 botulinum toxin substrate 1 (Rac1), Cell division control protein 42 homolog (Cdc42),
p21-activated kinase 1 (PAK1), Partitioning defective 6 protein (Par6), Partitioning defective 3 protein (Par3), atypical protein kinase C (aPKC). Growth factor receptor-bound protein 2
(Grb2)/Mitogen-activated protein kinases (MAPK) pathway: Son of sevenless protein (SOS), Ras GTPase (Ras), Rapidly Accelerated Fibrosarcoma kinase (Raf), Mitogen-activated protein
kinase kinases (MEKK, MKK), Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Apoptosis signal-regulating kinase (Ask). IL-1 pathway: Myeloid differentiation
primary response 88 (MYD88), interleukin-1 receptor-associated kinase (IRAK), Mitogen-activated protein kinase kinase kinase 7 (MAP3K7, also known as TAK1), TNF receptor-associated
factor 6 (TRAF6), TGF-Beta Activated Kinase (TAB). Zonulin pathway: phospholipase C (PLC), Inositol trisphosphate (IP3), diacyl glycerol (DAG), protein kinase C (PKC), protein kinase
A (PKA), Ca2+/calmodulin-dependent protein kinase (CamK), Reactive Oxygen Species (ROS), nuclear factor-kappa B (NF-κB), nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor alpha (IκBα), I-κB-kinase (IKK), NF-κB Essential Modulator (NEMO), REL Proto-Oncogene, NF-κB Subunit (Rel). Tumor Necrosis Factor (TNF), Eph-like kinase 1 (Elk1),
Activator protein 1 (AP-1), myocyte enhancer factor-2 (Mef-2), CCAAT-enhancer-binding protein homologous protein (CHOP).
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3. Modulation of Tight Junctions by Pathogenic Microbial Agents

TJs constitute the backbone of the first line of the host defenses by limiting pathogen in-
trusion from the intestinal lumen to the sterile underlying tissues. Hence, enteropathogenic
microbial agents have developed various stratagems to weaken the gut epithelia, exploiting
TJ components to either invade the cells and tissues or promote host and microbial signal-
ing responses that potentiate their invasion [9,46–48]. In both in vivo and in vitro models
of enteric infections (i.e., viral, bacterial, fungal, or parasitic), pathogen invasion has been
reported to correlate with an increase of the intestine permeability. Table 1 lists studies
that correlated the breakdown of gut barrier with a quantitative decrease of one or more
proteins belonging to the TJ complex but without specifying the involved mechanisms.

Table 1. Main structural proteins of the tight junction complex in intestinal epithelial cells targeted by pathogens during
their infection process.

TJ Proteins
Enteric Pathogens

Ref.
Bacteria Virus Fungi and Parasites

Occludin

Aeromonas hydrophila (D)
Campylobacter jejuni (L/D)
Clostridium difficile (L/D)
Clostridium perfringens (L)

Escherichia coli: EAEC (L), EHEC
(L), EPEC (L/D), ETEC (L/D), K12

(E/Q)
Helicobacter pylori (D)

Listeria monocytogenes (L)
Salmonella typhimurium (Q/L)

Staphylococcus aureus (Q)
Shigella flexneri (Q/L)
Vibrio cholerae (D/L)

Yersinia enterolitica (Q)

Astrovirus (L)
Coxsackievirus B (L)

Norovirus (Q)
HIV-1 (E/Q)

Rotavirus (E/Q/L)

Anisakis simplex (L)
Aspergillus, Penicillium

(D/Q/L)
Blastocystis spp. ST17

(D)
Candida albicans (Q)

Cryptosporidium parvum
(Q)

Giardia spp. (L)
Toxoplasma gondii (L)

[34,37,49–86]

Tricellulin EPEC (Q)
Yersinia enterolitica (Q) [80,87]

Claudin family

Aeromonas hydrophila (D)
Campylobacter jejuni (L)

Clostridium perfringens (D/L)
Escherichia coli: EAEC (L), EHEC

(L/Q), EPEC (E/D/L), ETEC
(D/L), K12 (E/Q/L)

Helicobacter pylori (D/L)
Listeria monocytogenes (L)

Salmonella typhimurium (L)
Shigella flexneri (Q/L)

Yersinia enterolitica (Q/L)

Astrovirus (L)
HIV-1 (E/Q)
Rotavirus (L)
Norovirus (Q)

Aspergillus and
Penicillium (D/L Q)
Candida albicans (Q)

Cryptosporidium parvum
(Q)

Entamoeba histolytica (L)
Giardia spp. (L)

[49,50,54,60,63,
67–73,75,78,80,84,

85,88–105]

JAM-A Rotavirus Candida albicans (Q) [84,106]

Zonula
occludens 1–3

Aeromonas hydrophila (D)
Clostridium difficile (D/L)

Escherichia coli: EAEC (L), EHEC
(L), EPEC (E/D/L), ETEC (D/L),

K12 (E/Q/L)
Helicobacter pylori (L)

Salmonella typhimurium (Q/L)
Staphylococcus aureus (Q)

Shigella flexneri (Q/L)
Vibrio cholerae (L)

Yersinia enterolitica (Q)

Adenovirus (L/Q)
Astrovirus (L)

Coxsackievirus B
HIV-1 (E/L)
Rotavirus (L)

Anisakis simplex (L)
Aspergillus and

Penicillium (D/Q/L)
Blastocystis spp. ST17

(D/L)
Candida albicans (Q)

Cryptosporidium
andersoni (L)

Cryptosporidium parvum
(Q)

Entamoeba histolytica (D)
Giardia spp. (D/Q/L)

[34,37,49–54,58–
62,64–

69,71,73,74,77–
79,81,82,85,92–
94,102,107–115]
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Studies, listed here, mainly reported TJ protein fitness based on Western blotting
and microscopy analyses during IEC infection without including involved mechanism
characterization. Different outcomes of TJ proteins were reported: modification of cell
distribution (L), modification of gene expression (E), variation of protein quantity (Q),
and dissociation +/− degradation of the TJ complex (D). Enteroaggregative Escherichia
coli (EAEC), Enterohemorrhagic Escherichia coli (EHEC), Enteropathogenic Escherichia coli
(EPEC), Enterotoxigenic Escherichia coli (ETEC). In the gut, TJ modulation occurs through
specific microbial effector molecules that are bound to their membrane, capsid, or cell
wall, or secreted in the intestinal lumen, or, for gram negative bacteria, injected into
the cytoplasm of the host cells using type III secretion systems (T3SS) [88,89,116–118].
These effectors can act directly upon constitutive TJ proteins through either their lytic
activity (i.e., proteases, lipases, phosphatases) leading to the degradation of TJs or through
specific binding allowing the disengagement of TJ proteins from the junctional complex
(Table 1). Pathogenic factors can also trigger cell signaling pathways involved in both TJs
and cytoskeleton modulation by either inducing up- or down-regulation of gene expression
or post-transcriptional events such as phosphorylation. Finally, pro-inflammatory and/or
oxidative stresses of IECs resulting from infection can potentiate dysregulation of the TJ
complex.

In the following sections, we provide an overview of the different microbial strategies
aimed at invading the digestive mucosa by targeting the TJ complex (Figure 3 and Table 2).

Table 2. Examples of mechanisms involved in TJ modulation by pathogens that induces intestinal barrier breakdown
permeability.

Pathogens
Host Cell Receptor (H)

and/or Pathogens
Elements (P) Involved

Activated Host
Pathways in IEC

Junctions and Cytoskeleton
Modeling Ref.

Viruses
Adenovirus CAR cell receptor (H) Nc ZO-1 (p↓) (L) [108]

Astrovirus Capsid protein (P) Nc Occludin, claudin, ZO-1 (L)
Actin rearrangement [51]

Coxsackievirus B
Epithelial DAF (H)

CAR cell receptor (H)
Viral particles (P)

Rho GTPases
ZO-1 (p↓) (L)
Occludin (L)

Actin rearrangement
[61,62,108]

HIV-1

TLRA-MD2-CD14 (H),
Tat protein (P)

NF-κB (IL-18)
MLCK

Occludin, claudin (p↓)
F-actin (p↓) [119]

gp120 (P) Nc Occludin, claudins 1-2, ZO-1 (p
and g↓), ZO-1 (L) [71]

Rotavirus Nc PKA Occludin (g↓), phosphorylated
form (p↓) [58]

Bacteria

Aeromonas hydrophila Bacterial aerolysin (P) Intracellular Ca2+ influx
MLCK

Occludin, claudins 1/4/5, ZO-1 (L)
F-actin condensation [54]

Bacteroïdes fragilis Fragilysin (P) Nc E-cadherin and F-actin
disassembly [120–122]

Campylobacter concisus Zot toxin (P)
NK-κB

Pro-inflammatory
cytokines

ZO-1 (g↓)
Cytoskeleton rearrangement [107]

Campylobacter jejuni
Proteases (P) None.

Direct action Occludin and E-cadherin (L) [55]

Serine protease HtrA
(P)

None.
Direct action Occludin (L) [56]
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Table 2. Cont.

Pathogens
Host Cell Receptor (H)

and/or Pathogens
Elements (P) Involved

Activated Host
Pathways in IEC

Junctions and Cytoskeleton
Modeling Ref.

Clostridium difficile Toxins A and B Rho GTPases Occludin, ZO-1/2, E-cadherin (L),
Actin rearrangement [37]

Clostridium perfringens

Nc CpAL system Occludin, claudin 3 (L) [72]

CPE Enterotoxin (P) Binding to claudins 3/4 Claudin 4 (p↓) (L) [90]

Delta toxin (P) ADMA10 E-cadherin (p↓) [123]

E. coli EAEC Nc AAF/II action Occludin, claudin1, ZO-1 (L) [73]

E. coli EHEC Shiga/vero toxins (P) MLCK Occludin, claudin 3, ZO-1 (L)
Claudin 2 (p↓) [74,75]

E. coli EPEC

EspG1 effector (P) Nc Tricellulin (p↓) [87]

EspF, EspI, EspG, Map,
CNF-1, Tir effectors (P) MLCK Occludin, claudin 1 and ZO-1 (L)

Actin-myosin ring contraction
[88,89,97–

100]

Extracellular vesicles
and secreted factors (P) Nc

Occludin, claudins, ZO-1/2 (g↓)
Occludin, ZO-1 (L)

F-actin rearrangement
[59]

E. coli ETEC Stb toxin (P) Nc Occludin, claudin 1, ZO-1 (L) [60]

Helicobacter pylori

VacA and CagA factors
(P) Nc ZO-1 (L) [109]

Unspecified MLCK Occludin, claudins 4/5 (L) [76]

IL-R1 receptor (H)
Bacteria contact (P/H) ROCK activation Claudins 1/4, ZO-1 (L) [101,102]

Listeria monocytogenes Hsp60 cell receptor (H)
LAP protein (P)

NF-κB, MLCK
Secretion TNFα IL6 Occludin, claudin 1, E-cadherin (L) [63]

Salmonella typhimurium

SopB, SopE, SopE2,
SipA factors (P)

Rho GTPase
IL-8

Occludin, ZO-1 (L)
Actin (L) [66]

Nc PKC ZO-1 and pZO-1 (p↓)
Claudin 1, ZO-2 (L) [77]

Staphylococcus aureus Alpha toxin (P) Nd Occludin, ZO-1/3, E-cadherin (p↓) [79]

Shigella flexneri

T3SS protein injection
effector (P) Nd Occludin, p-occludin (p↓)

Claudin 1 and ZO-1 (p↓) (L) [67]

SepA (P) LIMK1 (g↓)
Cofilin Actin modification [124]

Nd ERK1/2 Claudins 2/4 (L) [91]

Vibrio cholerae

Hemagglutinin
protease HA/P (P) Nd Occludin, ZO-1 (L)

Actin rearrangement [52,53]

PAR2 receptor (H)
Zot (P)

PLC
PKC

Occludin, ZO-1 (L)
Myosin phosphorylation

Actin polymerization
[34,125]

Yersinia enterolitica Nd MAPK (JNK) Claudins 2/3/8/10, ZO-1 (p↓),
Claudins 3/4/8 (L) [126]

Fungi and parasites

Aspergillus and
Penicillium

Ochratoxin (P)
MLCK

ROS response
[Ca2+]c increase

Claudin 1, ZO-1 (p↓)
Occludin and ZO-1 (L) [65,94]

DEP-1 cellular protein
(H)

Patulin (Pat) (P)

DEP-1 (g↓) PPARγ
protein (p↓),

p-MLC-2 (p↑)

Occludin, ZO-1 (p↓)
Claudin 4 (L)

[82,93,110,
127]
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Table 2. Cont.

Pathogens
Host Cell Receptor (H)

and/or Pathogens
Elements (P) Involved

Activated Host
Pathways in IEC

Junctions and Cytoskeleton
Modeling Ref.

Blastocystis spp.

Galactose residues on
cell surface (H) Nd Occludin, ZO-1 (p↓) [83]

Cathepsin B (P) ROCK
p-MLC ZO-1 (L) [128,129]

Candida albicans
Nd MAPK Occludin, claudins 1/3/4, JAM-A

(p↓) [84]

Heat-killed yeasts (P) NLRP3/NLRP6 Occludin and ZO-1 (p/g↓) [64]

Entamoeba histolytica

Cystein proteinases (P) Nd ZO-1 (p↓)
ZO-1/ZO-2 (L) [112]

Secreted Prostaglandin
E2 (P) Nd Claudin 4 (L) [104]

rEhCP112 proteinase
(P) Direct interaction Claudins 1/2 [130]

Giardia spp. Nc MLCK ZO-1 (L)
Actin rearrangement

[86,105,
113,114]

Toxoplasma gondii Extracellular loops of
occludin (H) Direct interaction Occludin (L) [57,131]

Studies, listed here, were conducted only in enteric infection models of murine IEC (IEC-6, m-IC), porcine IEC (IPEC-J2) or human IEC
(Caco-2, C2BBe1, HT29, HT29/B6, T84, HCT116, HCT-8) and gastric (NCI-N87 and their derived cell model HGE-20) epithelial cells.
Protein modulation is documented with (L) when associated with localization change or with arrows illustrating protein cellular amount or
gene expression increase or decrease respectively (p↑), (p↓), or (g↓). Nc: Non-characterized. AAF-II: Aggregation Adherence Fimbriae
II, CAR: Coxsackievirus and Adenovirus Receptor, CpAl: Clostridium perfringens Arg-like system, DAF: Decay-Accelerating Factor, HA/P:
Hemagglutinin Protease, htrA: high temperature requirement protein A, InlC: Internalin C, LAP: Listeria Adhesion Protein, MLCK: Myosin
Light Chain Kinase, PAR2: Protease activated receptor 2, PKA: Protein Kinase A, Sop: Salmonella outer protein, SPI: Salmonella Pathogenicity
Island1, Stb: Escherichia coli heat stable toxin b, Tcd: Clostridium difficile toxin, ZO: Zonula occludens, Zot: ZO toxin.

Figure 3. Role of tight junction interactions in pathogenesis of microorganisms. The compromise of TJ integrity involved dif-
ferent strategies developed by microbial pathogens. Microorganisms or their components directly impact the TJ organization
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through lytic activity or binding on TJ proteins that interfere on their connection to the TJ complex. Interactions between
microbial effectors with IEC receptors lead in the activation of different signaling pathways intimately linked and interacting
with each other. As these pathways are involved in many other cellular process (proliferation, oncogenesis, cell cycle,
differentiation . . . ), their activation contributes to the host response concomitantly to TJ disruption. Besides, the loss of
permeability related to TJ appears as a consequence of a deleterious host response against its aggression though excessive
pro-inflammatory cytokine production and endogenous biosynthesis of nitric oxide (NO).

3.1. Action of Microbial Toxins on the IECs’ Cytoskeleton

Some microorganisms use effector toxins that destabilize the architecture of the cy-
toskeleton or promote contraction of the myosin/actin ring, through the activation of MLCK
or Rho GTPases pathways, both inducing a subsequent TJ disruption [49–51,132–135].

Viral enterotoxins induce the rearrangement of F-actin filaments and/or microtubules,
leading to TJ disruption as exemplified with enteric viruses such as Astrovirus or Ro-
tavirus [49–51]. The mechanisms involved in permeability increase during these viral
infections has not yet been elucidated.

In bacteria, the glucosyltransferase activity of the secreted toxins A and B of Clostridium
difficile activates both isoforms α and β of the cellular kinase PKC, leading to the RhoA
glycosylation in T84 IECs [136]. The resulting inactivation of the Rho GTPases allows
actin rearrangement and the dissociation of the actine/ZO-1 complex, followed by the
subsequent remove of occludin, ZO-1 and 2 from the junctional plaque [37,134]. During
Salmonella infections, the pathogenesis process is mainly associated with the injection of the
secreted proteins SopB, SopE, SopE2, and SipA in the host cell cytoplasm, that also activate
Rho GTPase and PKC pathways [116,117]. Furthermore, the entero-pathogenic Escherichia
coli (EPEC) has been reported to induce actin/myosin ring contraction and subsequent TJ
disruption through calcium- and MLCK-dependent processes triggered by injected T3SS
factors (i.e., Tir, EspB, EspF, EspH, and Mad) [88,89,118]. Another example of bacterial
toxin targeting the actin/myosin ring has been reported for the zonula occludens toxin
(Zot) of Vibrio cholerae that acts by activating the EGF/PAR2 receptor, leading to a cascade
of phosphorylation initiated by phospholipase C and then PKC [33,34,137–139]. In fine,
this results in the contraction of the actin/myosin ring associated with the displacement of
the junctional complex ZO-1/ZO-2 from the membrane to the cytosol [34].

Similar approaches have been observed in fungi belonging to Aspergillus and Penicil-
lium genera [140]. For instance, fungal metabolites such as cytochalasin D or the mycotoxin
patulin have been reported to activate the MLCK regulatory pathway, leading to the dis-
ruption of F-actin filaments or the inhibition of its polymerization. Subsequently, the TJ
organization is impaired along with cellular processes such as cellular endocytosis [24,127].

3.2. Direct Interaction of the Microbial Agents with TJ Proteins

Pathogens can target TJ proteins using virulence factors either localized on the
pathogen outermost layer (i.e., cell wall or capsid/envelop), or secreted directly or through
vesicles transported in the intestinal lumen. In this context, two major mechanisms have
been observed: (i) a disorganization of the TJ network involving microbial components
displaying lipase or protease activities on TJ complex or (ii) a direct interaction of microbial
effectors with one or several TJ protein(s), leading to its/their detachment or relocation
from the junctional complex to other cellular compartments.

Many pathogenic agents secrete enterotoxins exhibiting a protease activity, as re-
ported for the fragylisin enterotoxin (BFT) of Bacteroïdes fragilis, the aerolysin of Aeromonas
hydrophila, the hemagglutinin protease (Ha/P) of Vibrio cholerae and the serine protease
High temperature requirement protein A (HtrA) of Campylobacter jejuni [52–56,118,120–
122,134,141–143].

Whether they are secreted or not, microbial effectors can directly interact specifically
with host TJ proteins. Thereby, the Clostridium perfringens enterotoxin (CPE) binds to
claudins 4 leading to its cytosolic localization and destruction [90]. Similarly, during diges-
tive amebiasis, interaction of the cysteine proteinase rEhCP112 of Entamoeba histolytica with
claudins 1 and 2 leads to their degradation and cytosolic localization [130]. In the same way,
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Toxoplasma gondii co-localizes with the extracellular loops of the occludin during invasion
of IECs. This physical interaction induces changes in the distribution and partitioning
of occludin [57]. However, the molecular mechanism driving these events as well as the
parasite effector molecules involved remain to be clarified.

3.3. Microbial Modulation of Signaling Pathways Involved in TJ Organization

Microbial agents can modulate signaling pathways involved in the structural organi-
zation of the TJ complex, leading to (i) changes in gene expression encoding TJ proteins or
(ii) post-transcriptional events (e.g., level and site of phosphorylation of TJ proteins, protein
trafficking) involved in the localization and partitioning of the proteins from the TJs to the
cytoplasm (Table 2). In fine, all these events favor an increase in IECs’ permeability.

As specified in Section 3.1, the MLCK and Rho signaling pathways are key pathways
for TJ formation and modulation also in various models of infection with the aim to increase
gut permeability (Table 2).

The PKA signaling pathway has been reported as a possible target for enteric pathogens
that consequently increase gut permeability. For instance, binding of the enteropathogenic
Escherichia coli (EPEC) heat-stable enterotoxin A (STa) to the extracellular domains of
the guanylate cyclase receptor (GC-C) catalyzes cGMP formation. This complex further
activates the cAMP-dependent-protein kinase A (PKA) leading to, among others, a dephos-
phorylation of the occludin protein and its subsequent redistribution from the membrane to
the cytosol [142,144–146]. Similarly, during Rotavirus infection of IECs, a specific decrease in
the occludin protein level at the TJ complex is reported as the result of the downregulation
of occludin gene transcription with regulatory signals involving both Rp-cyclic AMP and
PKA pathways [58].

Microbial components through the modulation of the MAPK pathway can alter TJ
organization (Table 2). During Shigella flexneri or EPEC infection, the dysfunction of the gut
barrier results from changes in the level of phosphorylation of claudin-2 and -4, occludin
and ZO-1 proteins, through ERK1/2 pathway [59,91]. However, other kinases belonging to
the MAPK pathway may be specifically involved in bacterial TJ alteration, as observed in a
Yersinia enterolitica model of IECs infection. In this model, the decrease in claudin 8 levels
correlates with the phosphorylation of JNK but not of the other MAP kinases [92].

Signaling pathways are diverse and numerous. They notably act jointly in TJ regu-
lation, some of them probably being concomitantly targeted by probiotics to prevent TJ
alteration induced by pathogens (Table 3). However, in most of the studies investigating
modulation of the TJ complex by pathogens, the sequence of the signaling cascade is
partially investigated, leaving numerous gaps in our knowledge of the precise mechanisms
involved in these modulatory events. Nevertheless, the molecular mechanisms drawing
the breakdown of the intestinal barrier associated with TJ alteration have been better
characterized in few infection models.

Table 3. Tight junction protection by probiotics preventing breakdown permeability induced during infections.

Probiotics Pathogens TJ Protein Modulation Ref.

Lactobacillus acidophilus Salmonella typhimurium Modulation of 26 genes linked to TJ integrity [147]

Saccharomyces boulardii Salmonella typhimurium Interference on Rho GTPase activation [148]

Escherichia coli Nissle 1917 Campylobacter jejuni Increase of gene expression of the claudins 2/4/11 [149]

Lactobacillus reuteri (LR1)

EPEC

Inactivation of MLCK pathway [150]

Lactobacillus plantarum (GRI-2)
Lactobacillus rhamnosus (LG6)
Lactobacillus fermentum (FA-1)
Lactobacillus salivarius (GPI-1)

Maintenance of membrane localization and gene
expression of ZO-1, occludin, claudins 1/4 and JAM-A [151]

Bacillus subtilis (CW14) Fungal ochratoxin A Prevention of ZO-1 destruction [94]

Bacillus clausii Rotavirus Overexpression of occludin and ZO-1 proteins [152]
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Thereby, the example of the action of zonula occludens toxin (Zot) from Vibrio cholerae
upon IECs’ permeability highlights the complexity of the TJ regulatory network involved
during microbial infection. The synthetic peptide AT-1002, corresponding to the C-terminal
domain of Zot, induces alteration of TJs. This results from the activation of the MAPK
pathway (JNK) which ultimately leads to the phosphorylation of the tyrosine residues of
ZO-1 and its remove from the TJ plaque together with F-actin rearrangement [125,153].
Besides, the phospholipase C/PKC pathway is also involved as suggested by the binding
of its associated EGF/PAR2 receptor to Zonulin, a eukaryotic analogue of Zot. Its activation
ends with an increase in the intracellular calcium concentration, a further contraction of
the actin/myosin ring and finally the shifting of the junctional complex ZO-1/ZO-2 from
the membrane to the cytosol [33,34,139]. In addition, other bacterial toxins, including the
heat-stable toxin b (Hst b) from enterotoxigenic Escherichia coli or the Zot from Campylobacter
concisus, display partial sequence homology with the active domain of Zot from Vibrio and
potentially share regulatory pathways involved in modulating TJ complex [60,107].

Another example of the cooperation of several pathogen-targeted cellular pathways
has been described during IECs treatment with patulin. As presented above, this my-
cotoxin activates the MLCK regulatory pathway. In parallel, it decreases expression
of both the density-enhanced phosphatase-1 (DEP-1) and Peroxisome ProliferAtor Re-
ceptor gamma (PPARγ), the latter controlling DEP-1 expression [93]. The subsequent
hyper-phosphorylation of claudin 4 protein then induces disturbances in claudin-4/ZO-1
interactions, hence favoring their release from the TJ complex [93].

Many viruses, including Adenovirus, Coxsackievirus, Hepatitis C virus, and Rotavirus,
have been reported to target extracellular domains of the TJ constitutive proteins [46]. The
cellular receptor within the enterocyte TJ complex has been indeed identified for at least
three viruses including (i) Rotavirus attaching to the JAM protein and (ii) Coxsackievirus and
Adenovirus that bind to Coxsackievirus and Adenovirus receptor (CAR), a transmembrane
protein associated with ZO-1 either directly or through intermediary proteins, namely
MAGI-1 and MUPP1 [106,154]. However, the following events promoting the disorga-
nization of TJs and the resulting decrease in IECs’ permeability remain to be specified,
except for Coxsackievirus B for which molecular mechanisms have been detailed follow-
ing its binding to CAR. Indeed, during IECs’ infection, Coxsackievirus B does not induce
major TJ reorganization, but stimulates the specific internalization of occludin within
macropinosomes [61]. Concomitantly, this virus interacts with the intestinal epithelial
protein DAF (Decay-Accelerating Factor) leading to its redistribution into lipid rafts. This
DAF localization is followed by the successive activation of the tyrosine kinase c-Ab1 and
the Rho GTPases Rac. The subsequent actin remodeling allows the transport of DAF bound
particles into TJ complex. All these events are required for the viral entry. [61,62,108].

Finally, most of the pathways cited here are not restricted to a single cellular process.
Indeed, for instance, activation of the MLCK pathway promotes an increase in IECs’
permeability, as a consequence of both the modulation of the TJ structure and intracellular
Ca2+ influx. This was exemplified with the bacterial aerolysin from Aeromonas hydrophila
that has been shown to target the MLCK signaling cascade, promoting the disassembly
of claudins 1 and 4 concomitantly to an increase in the intracellular influx of Ca2+, both
mechanisms being necessary for disorganization of the TJ complex and the subsequent
decrease in IEC permeability [54].

4. Indirect Modulation of the TJs Consequently to the Host Response Facing Infection

Finally, the modulation of intestinal TJ integrity can also result from IECs deleterious
inflammatory response facing the infection process. Altered intestinal TJ integrity has
been reported to result from pro-inflammatory events involving cytokines such as IL-1β,
IL-4, IL-6, IL-13, and TNF-α/IFNγ secreted by IECs, that subsequently activate regulatory
pathways linked to the TJ complex [24,155–157]. Some of these cytokines, including IL-1β
and IL-18, are secreted following activation of the inflammasome pathway during IECs’
infection [158].
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Focusing on the IL-18 pathway, during IECs’ infection by HIV-1, the transactivator HIV
Tat protein binds to TLR4-MD2-CD14 epithelial complex, activating the NF-κB pathway.
Consequently, mature IL-18 is released by IECs that subsequently induces an increase of
permeability by (i) decreasing and disrupting both TJs and AJs and (ii) altering cytoskeleton.
In parallel, the treatment of the IECs with IL-18 decrease the expression of both claudin-2
and occludin as determined by Western blot analyses. These observations correlate with
an increase in the expression of MLCK and phosphorylation of MLC by ROCK [119].

Regarding the IL-6 pathway, interaction of the secreted Listeria adhesion protein (Lap)
to the host cell Hsp60 receptor promotes activation of the NF-κB pathway [63]. This
activation induces the MLCK-mediated opening of the TJs, associated with a concomitant
upregulation of pro-inflammatory TNFα and IL-6 [63]. These observations suggest that
the disorganization of the TJ complex may associate an inflammatory burst that will
secondarily accentuate the decrease in IECs’ permeability. For instance, the release of IL6 by
IEC induced by LPS has been reported to decrease membrane integrity [159,160]. Moreover,
interestingly, in Gram-negative bacterial infection models, the release of lipopolysaccharide
(LPS) has been shown to decrease the transcriptional expression of occludin and a cytosolic
localization of claudin 1 [161]. However, LPS-induced secretion of IL-6 upon TJ integrity
has not been investigated.

During interaction of IEC with live or heat-killed Candida albicans cells, the decrease of
gene expression of ZO-1 and occludin is correlated with an inhibition of the NLRP3/NLRP6
inflammasome expression, suggesting that the loss of TJ integrity occurs independently of
a direct C. albicans activity [64].

Furthermore, in response to infections, endogenous biosynthesis of nitric oxide (NO)
regulates IECs functionality both directly (through free radical activity) and indirectly
through cell signaling mechanisms that impact tight junction protein expression, in-
cluding the PKC, MAPK (ERK, p38, JNK), Rho, and NF-kb pathways [41]. The subse-
quent TJ disruption and epithelial damages favor the intestinal translocation of microbial
pathogens [41,162]. This was exemplified in IPEC-J2 exposure to fungal secreted ochratoxin,
which induces ROS generation associated with an increase in intracellular Ca2+ concen-
trations [65]. The subsequent activation of the MLCK pathway finally leads to disruption
of the TJs associated with an increase in IECs’ permeability [65]. Ochratoxin has been
shown to also increase Caco-2 epithelial permeability by promoting the remove of ZO-1
and claudin-1 from the TJ complex [94].

5. Conclusions

In conclusion, some enteric pathogens can target the junctional complex to weaken
the intestinal epithelial barrier and promote their invasion. This microbial modulation
of the IECs’ permeability involves numerous mechanisms ranging from direct molecular
interactions of microorganism with host components to the modulation of various signaling
cellular pathways. Whereas many studies highlight the fate of the major TJ proteins (i.e.,
occludin, claudins and ZO-1) during bacterial, viral, fungal, or parasitic IEC infections,
the cellular and molecular mechanisms remain to be specified, including the nature of
the microbial effector, its host cellular receptor, the nature of the signaling pathways
involved, as well as the direct or indirect impact of their modulation on the TJ complex
organization. Finally, most of the observations reported here are based on simplified
models of infection (one pathogen interacting with one type of intestinal cell) that do
not consider (i) the complexity of the intestinal ecosystem and environmental conditions
including the communications between pathogenic and commensal microorganisms, or
(ii) the influence of the intestinal microbiota upon pathogens/epithelial cells interactions
regarding the gut TJ integrity [163–165]. Pathogenic effectors and/or their cellular receptors
constitute therapeutic candidates by preventing the weakening of the digestive barrier
induced by pathogens.
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