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Simple Summary: Lung cancer is the leading cause of cancer death, worldwide. The low survival
rates are mainly due to disease diagnosis in advanced stages, and the lack of effective treatments.
In this study, we analyzed molecules known as microRNAs, which regulate the expression of a large
proportion of the human genes. microRNAs are involved in processes related to the development and
progression of cancer. In lung cancer, many microRNAs can drive disease. This study showed that
some microRNAs have aberrant levels in tumor cells of the two most common types of lung cancer:
lung adenocarcinoma and squamous cell carcinoma. In addition, we found that one microRNA,
named miR-25-3p, had aberrantly increased levels in tumor cells from patients who died of lung
cancer. These results are useful to better understand the biology of lung cancer, and can contribute as
an additional tool to predict patient outcome/survival.

Abstract: (1) Background: Although the advances in diagnostic and treatment strategies, lung cancer
remains the leading cause of cancer-related deaths, worldwide, with survival rates as low as 16% in
developed countries. Low survival rates are mainly due to late diagnosis and the lack of effective treatment.
Therefore, the identification of novel, clinically useful biomarkers is still needed for patients with advanced
disease stage and poor survival. Micro(mi)RNAs are non-coding RNAs and potent regulators of gene
expression with a possible role as diagnostic, prognostic and predictive biomarkers in cancer. (2) Methods:
We applied global miRNA expression profiling analysis using TaqMan® arrays in paired tumor and normal
lung tissues (n = 38) from treatment-naïve patients with lung adenocarcinoma (AD; n = 23) and lung
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squamous cell carcinoma (SCC; n = 15). miRNA target genes were validated using The Cancer Genome
Atlas (TCGA) lung AD (n = 561) and lung SCC (n = 523) RNA-Seq datasets. (3) Results: We identified 33
significantly deregulated miRNAs (fold change, FC ≥ 2.0 and p < 0.05) in tumors relative to normal
lung tissues, regardless of tumor histology. Enrichment analysis confirmed that genes targeted by the
33 miRNAs are aberrantly expressed in lung AD and SCC, and modulate known pathways in lung
cancer. Additionally, high expression of miR-25-3p was significantly associated (p < 0.05) with poor
patient survival, when considering both tumor histologies. (4) Conclusions: miR-25-3p may be a
potential prognostic biomarker in non-small cell lung cancer. Genes targeted by miRNAs regulate
EGFR and TGFβ signaling, among other known pathways relevant to lung tumorigenesis.

Keywords: lung cancer; microRNAs; target genes; pathways; survival

1. Introduction

Lung cancer is the leading cause of cancer death worldwide. Current incidence data estimates
over 2 million new cases/year, with 62% of cases occurring in developed countries, mainly in North
America and Western countries, and 38% in developing countries [1]. In Brazil, incidence data estimates
the occurrence of approximately 30,000 new cases/year [2]. The 5-year survival rate remains low at
approximately 19%. The low survival rates are mainly due to late diagnosis, with only 15% of patients
diagnosed with localized disease, 22% of patients with lymph node metastasis, 57% with distant
metastasis and 6% with an undetermined disease stage [3].

Non-small cell lung cancer (NSCLC) comprises of the majority (85%) of lung cancer cases,
with adenocarcinoma (AD) and squamous cell carcinoma (SCC) as the two major histological subtypes.
Invasive adenocarcinoma is further classified into histological subtypes of lepidic, solid, acinar, papillary
and micropapillary; the latter has been associated with a worse prognosis [4].

Global efforts have been made, in order to determine actionable mutations in NSCLC, including
The Cancer Genome Atlas (TCGA) project and the Lung Cancer Mutation Consortium (LCMC) [5,6].
TCGA comprehensively mapped mutations and transcriptome changes, as well as their frequency in
large sample sets of lung AD and SCC, and demonstrated that mutations in oncogenes such as EGFR,
K-RAS, ALK and BRAF occur in >60% of lung AD cases [7], with driver mutations targetable by tyrosine
kinase inhibitors [8]. The frequency of alterations of these driver genes in the Brazilian population is
slightly different and associated with a genetic ancestry admixture [9–11]. Although the development
of molecularly targeted therapies including EGFR tyrosine kinase inhibitors have benefited only a
small fraction (15%) of patients with lung AD. The majority of patients with advanced disease are
still treated with chemotherapy regimens and survival rates remain low [12]. The identification of
additional genes involved in signaling pathways may be useful as novel targets for NSCLC treatment.
There is still a need to identify other biomarkers able to demonstrate clinical application in patient
prognosis and prediction of the treatment response [12].

In the past decade, miRNAs have been discovered as potent gene expression regulators with an
important role in disease development [13]. Previous studies have shown global deregulated miRNA
expression profiles in lung cancer vs. normal tissues [14]. Here, we determined the expression of a
377 miRNA panel, using the TaqMan® Low Density Array platform, in primary lung AD and SCC,
molecularly characterized for the major targeted genes, correlated miRNA expression with patient
outcome/survival and mapped miRNA target genes in pathways associated with lung cancer. Our data
adds to the current literature by showing that deregulated miRNAs modulate a number of genes
encoding transcription factors, as well as common driver genes involved in lung tumor development
and progression.
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2. Results

2.1. Patient Clinical and Histopathological Characteristics

Of the 38 samples included in the study, 23 patients were diagnosed with lung AD and 15 with
lung SCC. Based on the new histological classification of lung AD, we identified the following subtypes:
acinar (n = 9), solid (n = 5), papillary (n = 1), lepidic with acinar component (n = 4) and undetermined
(n = 4). The mean age of patients with lung AD was 60.9 years, with a similar proportion of males
and females (11 and 12, respectively). About 70% of patients with lung AD were current or former
smokers. Patients with lung SCC had an average age of 62 years, with a predominance of males
(11 men and 4 women) and the vast majority (93.3%) were active or former smokers. Patient clinical
and histopathological characteristics are summarized in Table 1.

Table 1. Demographic and clinicopathological data of patients with lung adenocarcinoma (AD) and
squamous cell carcinoma (SCC).

Variables AD SCC p

Age
Mean (SD) 60.91 (10.3) 62 (7.1)

0.725Range 40–84 51–73
Sex N (%) N (%)

Male 13 (56.5) 11 (73.4)
0.329Female 10 (43.5) 4 (26.6)

Smoking N (%) N (%)
No 7 (30.5) 1 (6.7)

0.114Yes 16 (69.5) 14 (93.3)
Stage N (%) N (%)

I 9 (39.1) 4 (26.7)

0.651
II 6 (26.1) 4 (26.7)
III 8 (34.8) 6 (40)
IV 0 1 (6.6)

Death n (%) n (%)
Cancer-associated 5 (62.5) 4 (44.4)

0.637Other causes 3 (37.5) 8 (56.4)

n: number. Variables are not statistically significantly different between patients with lung AD and SCC.

Surgery was the primary treatment for all patients, except for one patient with stage IV disease at
diagnosis, who was treated with chemotherapy. For this patient, the sample analyzed was a diagnostic
biopsy obtained by lung bronchoscopy, before treatment. One patient died due to complications
after surgery. Two patients developed tumor recurrence and one died of disease before palliative
chemotherapy. One third of the patients received adjuvant chemotherapy (eight AD, 35% and five
SCC, 33%) due to an advanced loco-regional disease (stages IB, II or III, 7th edition, Lung Cancer
TNM Staging). Of these 13 patients, four developed distant metastasis requiring second line palliative
chemotherapy, and two patients died due to tumor recurrence.

2.2. EGFR and RAS Driver Mutations in Lung AD and SCC

This analysis was performed to characterize common driver mutations (EGFR, K-RAS and N-RAS)
in our sample set. Results showed three EGFR mutated tumors (13% of lung AD cases), five K-RAS
mutated tumors (two patients; 8.7% of AD cases and three patients; 20% of SCC cases), and one N-RAS
mutated tumor (6.7% of SCC cases; Figure 1). As expected, driver mutations were mutually exclusive.
The occurrence of mutations was not associated with miRNA changes.
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Thirty-three miRNAs were detected as differentially expressed in tumors compared with normal 
samples, with the majority (31 miRNAs) being overexpressed (Table 2, fold change ≥ 2 and p < 0.05). 

Table 2. Significantly deregulated miRNAs in NSCLC, sorted based on fold change (FC) values, from 
lower to higher. 
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miR-143-3p 0.326 < 0.001 
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miR-376c-3p 2.057 0.001 
miR-141-3p 2.060 0.004 
miR-20a-5p 2.107 0.003 
miR-199a-3p 2.199 0.003 
miR-374-5p 2.260 < 0.001 
miR-130a-3p 2.414 < 0.001 
miR-29b-3p 2.511 < 0.001 

let-7d-5p 2.580 < 0.001 
miR-93-5p 2.751 < 0.001 
miR-142-3p 2.920 0.007 
miR-15a-5p 3.016 0.017 
miR-155-5p 3.056 0.005 
miR-25-3p * 3.371 < 0.001 

miR-429 3.593 < 0.001 
miR-452-5p 3.668 0.007 
miR-20b-5p 3.917 < 0.001 
miR-135b-5p 4.026 < 0.001 
miR-708-5p 4.354 < 0.001 

miR-200b-3p 4.446 < 0.001 
miR-340-5p 5.345 < 0.001 
miR-744-5p 5.649 < 0.001 
miR-365-3p 5.766 < 0.001 
miR-205-5p 5.856 0.001 
miR-590-5p 6.112 0.001 
miR-224-5p 6.692 < 0.001 
miR-15b-5p 6.712 < 0.001 
miR-21-5p 7.827 < 0.001 
miR-95-3p 9.817 < 0.001 
miR-31-5p 13.929 0.001 

miR-196b-5p 16.525 0.001 

Figure 1. EGFR and KRAS mutation analysis. Two tumors were positive for KRAS p.Gly12Val, two were
positive for KRAS p.Gly12Cys, one tumor was positive for KRAS p.Gly12Asp and one was positive for
NRAS p.Gln61Arg and for KRAS p.Gln61His.

2.3. miRNAs Are Deregulated in Lung AD and SCC Compared to Normal Lung Tissues, and miR-25-3p
Overexpression Is Significantly Associated with Poor Survival

Thirty-three miRNAs were detected as differentially expressed in tumors compared with normal
samples, with the majority (31 miRNAs) being overexpressed (Table 2, fold change ≥ 2 and p < 0.05).

Table 2. Significantly deregulated miRNAs in NSCLC, sorted based on fold change (FC) values,
from lower to higher.

miRNA FC p Value of FC

miR-143-3p 0.326 <0.001
miR-140-5p 0.369 0.049
miR-376c-3p 2.057 0.001
miR-141-3p 2.060 0.004
miR-20a-5p 2.107 0.003
miR-199a-3p 2.199 0.003
miR-374-5p 2.260 <0.001

miR-130a-3p 2.414 < 0.001
miR-29b-3p 2.511 <0.001

let-7d-5p 2.580 <0.001
miR-93-5p 2.751 <0.001
miR-142-3p 2.920 0.007
miR-15a-5p 3.016 0.017
miR-155-5p 3.056 0.005
miR-25-3p * 3.371 <0.001

miR-429 3.593 <0.001
miR-452-5p 3.668 0.007
miR-20b-5p 3.917 <0.001
miR-135b-5p 4.026 <0.001
miR-708-5p 4.354 <0.001

miR-200b-3p 4.446 <0.001
miR-340-5p 5.345 <0.001
miR-744-5p 5.649 <0.001
miR-365-3p 5.766 <0.001
miR-205-5p 5.856 0.001
miR-590-5p 6.112 0.001
miR-224-5p 6.692 <0.001
miR-15b-5p 6.712 <0.001
miR-21-5p 7.827 <0.001
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Table 2. Cont.

miRNA FC p Value of FC

miR-95-3p 9.817 <0.001
miR-31-5p 13.929 0.001

miR-196b-5p 16.525 0.001
miR-411-5p 25.909 0.033

FC: fold change. Bolded miRNAs were associated with clinical data. * indicates the miRNA correlated with lower
overall survival.

Two miRNAs (miR-20a-5p and miR-93-5p) had higher expression levels in tumors from smokers
compared to non-smokers (p < 0.05). Larger tumor size (T3-T4) and the presence of lymph node metastasis
(N1-N3) were associated with higher miR-29b-3pand lower miR-95-3p expression levels, respectively.
miR-25-3p overexpression was significantly associated with overall survival, when considering patients
with both tumor histologies (Figure 2).
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Figure 2. Overall survival of patients with lung carcinoma regardless of the histological subtype,
according to miR-25-3p expression levels. Overexpression of miR-25-3p was associated with shorter
overall survival.

In addition, we verified miR-25-3p expression in earlier stages (I/II; n = 639) and more advanced
stages (III/IV; n = 147) tumors versus controls. We found that miR-25-3p expression was significantly
increased in stage I and II tumors vs. controls (p = 0.01022), and in more advanced stage tumors vs.
controls (p = 0.02359). miR-25-3p expression levels were not significantly different between tumors
from stages I/II vs. III/IV (p = 0.4397; Figure 3).
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carcinomas. This analysis revealed various target genes involved in important biological functions in 
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Figure 3. miR-25-3p expression levels is increased in stage I/II (n = 639; p = 0.01022) and III/IV (n = 147;
p = 0.02359) versus normal lung tissue (control, n = 91; TCGA dataset).

Notably, a subset of miRNAs identified in our patient samples were aberrantly expressed in the
lung AD and lung SCC-TCGA datasets, compared to paired normal lung tissues (Figure 4). Interestingly,
miR-205-5p was confirmed as significantly overexpressed in our lung SCC, compared to lung AD
samples (p = 0.0002).
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Figure 4. Expression levels of miRNAs miR-15a-5p, miR-25-3p, miR-205-5p, miR-196b-5p and
miR-411-5p in lung adenocarcinoma (LUAD; n = 561) and lung squamous cell carcinoma (LUSC;
n = 523), compared to normal lung tissues (control LUAD, n = 46; control LUSC, n = 45; TCGA dataset).
This analysis shows miRNA expression levels by histological subtype, for better data visualization,
since the TCGA data includes large sample sets.
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2.4. miRNAs Are Predicted to Regulate Genes Abnormally Expressed in Lung AD and SCC, which Modulate
Known Pathways of Lung Cancer

We next evaluated the target genes potentially regulated by the 33 miRNAs identified in lung
carcinomas. This analysis revealed various target genes involved in important biological functions in
tumorigenesis such as transcriptional control. Interestingly, miRNAs validated in the TCGA dataset
(miR-15a-5p, miR-25-3p, miR-205-5p, miR-196b-5p and miR-411-5p) were related to genes in cancer
pathways. Considering all of the 33 deregulated miRNAs, significantly enriched pathways included
EGFR and TGFβ signal transduction, which are known to be involved in lung cancer development and
progression (Figure 5). Table S1 shows the complete list of enriched pathways, associated p-values and
genes in each pathway.
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Figure 5. Gene set enrichment analysis of the predicted miRNA-target genes in lung cancer. Up to four
of most significant terms from each of the following collections are shown: Kyoto Encyclopedia of Genes
and Genomes (KEGG), WikiPathways, BioPlanet, Reactome, Gene Ontology (GO) biological process,
GO molecular function and GO cellular component. The size and the color in the heat-scatterplot
represent the combined score and the corresponding adjusted p-values, respectively, from the enrichment
significance of each gene set, as computed by EnrichR [15,16].

3. Discussion

miRNAs are gene expression regulators with a relevant role in tumorigenesis, including lung
cancer [14]. miRNA alterations often lead to target gene deregulation and deregulated signaling
pathways with roles in tumor development and progression [17–19]. Here, we reported 33 significantly
deregulated miRNAs with the vast majority (31 miRNAs) being overexpressed in lung AD and SCC
compared to paired normal lung tissues. A previous study by our group, conducted in a geographically
distinct subset of patients, showed that circulating miRNAs in plasma from patients with lung AD and
SCC have a predominant miRNA overexpression pattern. Interestingly, among miRNAs composing
three plasma miRNA signatures, miR-155-5p overexpression was a common finding [20]. Notably, in a
third, independent Brazilian patient lung adenocarcinoma subset, from our group, miR-155 and miR-21
were commonly overexpressed miRNAs in a paired analysis, in tumors compared to the normal tissue
from the same patients [21].

In our patient dataset, higher miR-25-3p expression levels were positively correlated with overall
patient survival (p < 0.05) including both tumor histologies. Deregulated miR-25 expression has
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been reported in human cancer [22,23], and overexpressed in NSCLC primary tumors and cell
lines, associated with increased cell proliferation, migration and invasion [24]. miR-25 was further
shown as overexpressed in NSCLC compared with paired normal lung tissues, and demonstrated to
activate ERK signaling via KLF4, a miR-25 target gene, leading to increased tumor cell migration and
invasion [25]. miR-25 overexpression was also associated with tumor progression and prognosis in lung
adenocarcinoma [26], and shown to modulate radiation-induced apoptosis in radiotherapy-resistant
tumors [27]. Conversely, downregulated miR-25 inhibited cell proliferation, induced G1 cell cycle
arrest, increased cisplatin sensitivity and suppressed growth of cancer cell xenografts [28]. Additionally,
high levels of miR-25 were detected in serum from NSCLC patients, associated with adverse prognostic
factors such as tumor stage and lymph node metastasis, as well as overall survival and recurrence-free
survival [29]. These data, along with our results, strongly suggest that miR-25 has a prognostic role in
lung carcinoma.

In the TCGA NSCLC cohort, miR-25-3p overexpression was not associated with survival (p = 0.2),
likely due to overrepresentation of earlier stage (I/II) lung AD and SCC tumors, which are often associated
with better survival. In addition, while the TCGA dataset largely contributes to the validation of molecular
changes associated with tumorigenesis mechanisms, previous reports suggested that uncurated data in
large datasets might lead to biased correlation of biomarkers with clinical outcomes [30,31].

Other overexpressed miRNAs detected here, such as miR-196b-5p, were previously reported in
lung cancer [32], and suggested to have a prognostic value in gastric cancer and glioblastoma [33,34].
Among the molecular targets of miR-196, Annexin 1 expression was associated with increased cell
invasion [35], suggesting an oncogenic role in NSCLC. miR-196b upregulation was also demonstrated
to promote cell invasion and morphological cellular alterations [36,37]. In addition, miR-205 has been
identified by others [32,38–41] and suggested as a circulating biomarker with a diagnostic value in
NSCLC [42]. Experimental evidence indicate that miR-205 acts in lung tumorigenesis through PTEN
inactivation, promoting growth, migration, invasion and chemoresistance in NSCLC [43].

A limitation of our study is the small number of tumors, and a limited miRNA panel included in
the analyses. In order to overcome this limitation, we included external miRNA expression validation
in the large lung AD and SCC publicly available RNA-Seq datasets from TCGA.

Based on TCGA data, pathways activated by EGFR mutations were found in 11% of tumors,
K-RAS mutations in 32%, PI3K mutations in 4%, HER2 in 3% and PTEN inactivation in 3% of lung
adenocarcinoma samples [6]. In lung SCC, TCGA data showed that pathways are often activated by
mutations in TP53 in 81% of tumors, PI3K in 16%, PTEN in 15%, EGFR in 9%, KRAS in 3% and HER2 in
4% of tumors [5]. Although we did not find mutations associated with miRNA changes, likely due to
our small sample set, we identified common, mutually exclusive driver mutations in EGFR, K-RAS and
N-RAS. In Brazilian patients, mutational frequency of driver genes was reported in a large number of
lung adenocarcinoma cases (n = 444), with EGFR mutated in 22.7% and K-RAS in 20.4% of the cases [9].

By computational analyses, we showed that deregulated miRNAs modulate a number of genes
encoding transcription factors, as well as common driver genes in lung cancer. Enrichment analysis
showed signal transduction pathways including EGFR, TGFβ and PI3K-AKT, which are implicated in
lung tumor development and progression [44].

4. Material and Methods

4.1. Ethics Statement

This study was performed in accordance with the Declaration of Helsinki and national and
international ethics guidelines. Our study has been approved by the Research Ethics Boards of the Faculty
of Medicine, UNESP, Botucatu, SP (4319/2012) and Barretos Cancer Hospital, Barretos, SP (75907).
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4.2. Patient Samples

Fifty-eight formalin-fixed, paraffin-embedded (FFPE) tissue blocks were obtained from patients
diagnosed with lung adenocarcinoma and squamous cell carcinoma. Patients have undergone surgery
as the primary treatment, from 2007 to 2012, in two centers in the state of São Paulo; Botucatu
Clinical Hospital and Barretos Cancer Hospital, SP, Brazil. All FFPE tissue samples were subjected to
RNA and DNA extraction, as outlined below. Of these, 19 samples were excluded due to low RNA
concentration. An additional nine histologically normal lung tissues, adjacent to their corresponding
tumors, were collected and used as reference samples. Clinical and histopathological characteristics
were obtained from medical records including age at diagnosis, gender, date of surgery, history of
tobacco and alcohol exposure, disease grade and stage, type of primary treatment and/or adjuvant
and/or palliative treatment, last date of follow-up and outcome. These data are shown in Table 1.

4.3. RNA and DNA Extraction

Samples obtained from FFPE tissue blocks were subjected to RNA extraction using the RecoverAll
Total Nucleic Acid Isolation kit (Ambion/Life Technologies, Carlsbad, CA, USA), following a previously
reported protocol with modifications to improve RNA yield [45]. RNA samples were quantified
using NanoDrop 8000 (Thermo Fisher Scientific, Waltham, MA, USA) and quality was assessed using
Bionalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA), following the manufacturer’s protocol.
RNA samples were immediately stored at −80 ◦C until use for miRNA expression analysis.

In addition, DNA was isolated from representative sections of tumor FFPE resected samples,
using the QIAmp DNA micro kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions
as previously reported [9]. DNA was used for analysis of driver mutations by the SNaPShot assay.

4.4. SNaPShot Assay

Mutational analysis was performed using previously described primers without the MET primer,
which was removed from the assay [45]. The PCR protocol was adapted as below, and performed
in a final volume of 10µL, with 50 ng of DNA and 1µM of forward and reverse primers, using 5 µL
of the HotStar master mix multiplex (Qiagen, Hilden, Germany) according to the manufacturer´s
protocol, with the cycling parameters: 95 ◦C for 15 min, followed by 40 cycles of 95 ◦C for 30 s, 60 ◦C
for 1 min. 30 s., 72 ◦C for 1 min and 72 ◦C for 30 min in a thermal cycler (Veriti, Applied Biosystems,
Carlsbad, CA, USA). PCR products were purified with EXO-SAP (Affymetrix, Santa Clara, CA, USA)
for 1 h for 37 ◦C and 15 min for 80 ◦C. The SNaPShot assay was performed as multiplex extension
reactions using 5µL of the reaction mix (SNapShot, Applied Biosystems) following the manufacturer´s
protocol, with the cycling parameters: 96 ◦C for 30 s, followed by 35 cycles of 96 ◦C for 10 s, 50 ◦C
for 5 s, 60 ◦C for 30 s and 60 ◦C for 10 min carried out in a thermal cycler (Veriti, Applied Biosystems,
Carlsbad, CA, USA). The extension products were separated by electrophoresis in the ABI 3500 XL
genetic analyzer (Applied Biosystems/Thermo Fisher Scientific); data were analyzed using the ABI
GeneMapper, version 4.0 software (Applied Biosystems/Thermo Fisher Scientific).

4.5. EGFR Exon 19 Deletion Analysis

EGFR exon 19 deletions were evaluated using previously described primers [45]. The PCR assay
was performed in a final volume of 15 µL, with 50ng of genomic DNA and 10µM of forward and
reverse primers, using 7.5 µL of the HotStar master mix (Qiagen, Hilden, Germany) following the
manufacturer´s protocol, with the cycling parameters: 96 ◦C for 15 min, followed by 40 cycles of 96 ◦C
for 45 s, 56.5 ◦C for 45 s, 72 ◦C for 45 s and 72 ◦C for 10 min carried out in a thermal cycler (Veriti,
Applied Biosystems, Carlsbad, CA, USA). The PCR products were separated by electrophoresis in the
ABI3500 XL genetic analyzer (Applied Biosystems/Thermo Fisher Scientific) and data were analyzed
using the ABI GeneMapper v.4.0 software (Applied Biosystems/Thermo Fisher Scientific).
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4.6. EGFR Exon 20 Insertion Analysis

A mutation analysis was performed using previously described primers [45]. The PCR assay was
performed in a final volume of 15 µL, with 50ng of DNA and 10µM of forward and reverse primers,
using 7.5 µL of the HotStar master mix (Qiagen, Hilden, Germany) following the protocol proposed by
the manufacturer, with the cycling parameters: 96 ◦C for 15 min, followed by 40 cycles of 96 ◦C for 45 s,
56.5 ◦C for 45 s, 72 ◦C for 45 s and 72 ◦C for 10 min were carried out in a thermal cycler (Veriti, Applied
Biosystems, Carlsbad, USA). PCR products were purified with EXOSAP (Affymetrix, Santa Clara, CA,
USA) and subjected to direct sequencing using a BigDye Terminator cycle sequencing and BigDye
X Terminator purification kit (Applied Biosystems). The analysis was performed with the software
Genetic Analyzer ABI PRISM 3500 and SeqScape version 2.7 (Applied Biosystems).

4.7. Quantitative miRNA Expression Analysis by TaqMan Low Density Arrays

miRNA expression was assessed by using the TaqMan® Array Human MicroRNA platform, card
A, containing 377 miRNAs (Life Technologies, Foster City, CA, USA), as previously described [46].
Briefly, the reverse transcription mix was prepared using Megaplex primers, followed by preparation
of the quantitative PCR mix (450 µL of amplification mix plus 6 µL of newly synthesized cDNA,
added to 444 µL of nuclease-free ddH2O (Sigma, St. Louis, MI, USA)). Of this mix 100 µL was added
to the cards containing lyophilized miRNA probes; the cards were then centrifuged and loaded into
the QuantStudio 12K instrument (Life Technologies, Foster City, CA, USA). miRNA expression profiles
were determined in a total of 41 samples (38 tumors and 3 pools of 9 histologically normal lung tissues
from a subset of the patients. Each pooled control contained three normal lung samples. Pooled
samples were prepared after RNA extraction from each sample. Global normalization was performed
using the Expression Suite software (Life Technologies, Foster City, CA, USA) using the stably expressed
endogenous controls RNU-44, RNU-48 and U6, and compared to pools of normal lung samples.miRNA
expression profiles were determined using the RQ Manager v.1.2 software (Life Technologies, Foster
City, CA, USA), and the Delta Delta Ct method [47].

4.8. Computational and Statistical Analyses

Data from the TCGA dataset was retrieved using FirebrowseR [48]. Predicted miRNA target genes
were identified using miRWalk v. 3.0 (http://mirwalk.umm.uni-heidelberg.de/) [49] by integrating the
prediction results of TargetScan [50], miRDB [51] and miRTarBase [52], and considering a score ≥ 0.95 as
the screening threshold. The predicted targets were used to perform a comprehensive gene set enrichment
analysis with EnrichR links (http://amp.pharm.mssm.edu/Enrichr/) [15,16,53]. The enrichment results
of the top ten terms from each EnrichR link were represented by the p-value (Fisher’s exact test) and Z
score (correction to the test) in a combined score [15,16]. A heat scatterplot for the enrichment results
was created using the web tool Morpheus [54] (https://software.broadinstitute.org/morpheus) [55].

5. Conclusions

miR-25-3p overexpression may have prognostic relevance in lung AD and SCC. In addition,
our data support the existing literature by identifying miRNAs predicted to modulate transcription
factors and known driver genes with a role in lung cancer pathways. Our data show that different
miRNAs are biologically relevant in NSCLC.
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