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Estimating tumor mutational burden from RNA-
sequencing without a matched-normal sample
Rotem Katzir1,2, Noam Rudberg2 & Keren Yizhak2✉

Detection of somatic mutations using patients sequencing data has many clinical applica-

tions, including the identification of cancer driver genes, detection of mutational signatures,

and estimation of tumor mutational burden (TMB). We have previously developed a tool for

detection of somatic mutations using tumor RNA and a matched-normal DNA. Here, we

further extend it to detect somatic mutations from RNA sequencing data without a matched-

normal sample. This is accomplished via a machine-learning approach that classifies muta-

tions as either somatic or germline based on various features. When applied to RNA-

sequencing of >450 melanoma samples high precision and recall are achieved, and both

mutational signatures and driver genes are correctly identified. Finally, we show that RNA-

based TMB is significantly associated with patient survival, showing similar or higher sig-

nificance level as compared to DNA-based TMB. Our pipeline can be utilized in many future

applications, analyzing novel and existing datasets where only RNA is available.
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Somatic point mutations accumulate in the DNA of all
dividing cells, both normal and neoplastic, and are the most
common mechanism for altering gene function1–4. Their

detection in tumor samples is of high clinical value; first, when
accumulated in specific genes termed “drivers”, they may lead to
the development of cancer. Identifying these mutations is there-
fore crucial for matching existing targeted therapies and for
developing novel ones5–8. In addition, somatic mutations are used
to determine intra-tumor heterogeneity which is a major
mechanism of therapeutic resistance9, and for identifying muta-
tional signatures that have proven as clinically useful
biomarkers10,11. More recently, the set of somatic mutations in a
tumor has been used to estimate the tumor mutational burden
(TMB), an emerging proxy for neoantigen load. TMB is usually
defined as the number of non-silent mutations found in a tumor
DNA, and was found to be an independent marker of patient
response to immune checkpoint inhibitor therapy (ICI), and for
predicting patient survival, both in treated and treatment-naive
patients12–18.

Traditionally, detection of somatic point mutations is done
using whole exome or genome sequencing of tumor and
matched-normal DNA19–23. The latter is required for distin-
guishing between somatic mutations found exclusively in the
tumor sample, and germline variants shared by all cells of an
individual. Recently, several studies have developed a ‘tumor-
only’ pipeline that uses tumor DNA sequencing to detect somatic
mutations without a matched-normal sample, at the cost of lower
precision and recall levels24–26. An additional extension to these
pipelines includes the detection of somatic mutations from RNA
sequencing and a matched-normal DNA sample. In a recent
publication, we have introduced such a pipeline termed RNA-
MuTect, and showed that most of the mutations detected only in
the RNA are filtered out by our pipeline, achieving an overall high
precision. In addition, high sensitivity for mutations with suffi-
cient detection power was observed, enabling the detection of
most driver genes and mutational signatures27.

In this study, we take our RNA-based approach one step fur-
ther and develop a pipeline for detecting somatic point mutations
from RNA sequencing without a matched-normal sample, named
RNA-MuTect-WMN (WMN; without-matched-normal). This is
accomplished via a machine learning framework which utilizes a
few dozens of features to classify single nucleotide variants as
either somatic or germline. Our pipeline is trained and tested on
the TCGA melanoma, lung and colon dataset where it achieves
high precision and recall. High performance is also achieved in
two additional cancer types, lung adenocarcinoma, and colon
cancer. In addition, it enables a reliable identification of both
driver genes and mutational signatures across the different cancer
types. When applied to estimate the TMB from RNA samples
alone, we find that its performance is either equivalent or superior
to TMB estimated based on DNA with a matched-normal sample.
The ability to estimate the TMB using a tumor RNA alone further
emphasizes the potential clinical utility of our pipeline.

Results
Identifying somatic mutations from RNA-seq data without a
matched-normal sample. To develop a pipeline for detection of
somatic point mutations from RNA-seq without a matched-
normal sample, we leveraged RNA-seq and matched-normal
DNA of 462 melanoma samples from The Cancer Genome Atlas
(TCGA)28. To obtain the ground truth of somatic and germline
variants in these samples, we ran RNA-MuTect27; in short, RNA-
MuTect works by first running MuTect19 on tumor RNA and
matched-normal DNA, to identify the set of tumor somatic
mutations and the set of potential germline variants (Methods).

Since this set includes multiple noisy sites unique to RNA, a series
of filtering steps is then applied to yield the final set of true
somatic mutations (Fig. 1a). To examine the accuracy of RNA-
MuTect on this set of samples, we compared the list of somatic
mutations to that obtained using tumor and matched normal
DNA. As originally reported27, focusing on the RNA mutations
with sufficient detection power in the DNA, 90% were indeed
found in the DNA, with a median of only 3 detected mutations
per sample found in the RNA alone (Methods).

To classify point mutations as either somatic or germline, we
collected a set of genomic features for each variant (Methods). This
list includes the number of reference and alternate reads, variant
classification type and MuTect likelihood score. In addition, we
collected data on germline variants from dbSNP29, gnomAD30,
1000 genomes31 and the Exome Sequencing project32. Finally, we
utilized both DNA and RNA panel of normal (PoN) which are
based on ~8000 TCGA and ~6500 Genotype-Tissue Expression
(GTEx) normal samples (Methods)33. These PoNs encode the
distribution of alternate read counts across the entire sets of normal
samples34.

To test how well our features separate between somatic and
germline variants, we performed a two-sided Wilcoxon rank sum
test for each feature, and found that all features show a significant
difference between these two types of variants (FDR corrected p-
values <= 0.0111, Supplementary Fig. 1). However, when search-
ing across a range of thresholds in each feature, we found that the
Precision-Recall Area Under the Curve (PR-AUC) is very low
(<0.08, Supplementary Fig. 2), as well as the F1-score (<0.16,
Supplementary Fig. 3). This finding is a result of the substantial
overlap between features’ values in these two variant types,
demonstrating the need for a more complex model.

To this end, we developed a machine learning framework
named RNA-MuTect-WMN that gets as input a list of variants
with their associated features, and classifies them as either
somatic or germline. Specifically, our data is first randomly split
into training (n= 100) and test sets (n= 362). In the training set,
each sample contains a list of single nucleotide variants with their
genomic features (Methods), and a somatic\germline label based
on the RNA-MuTect pipeline, as described above (Fig. 1a). Next,
a set of random forest classifiers is trained35 in a 5-fold cross-
validation manner, such that in each iteration 80 samples are used
for training and 20 samples are used for validation. We then
aggregated our models’ predictions over all folds and computed
the precision and recall for each sample in the validation sets. The
median precision and recall values obtained were 0.82 and 0.83,
respectively (mean precision and recall of 0.78 and 0.83,
respectively, median F1-score= 0.82, mean F1-score= 0.79,
Fig. 1b). To examine our model performance we used the test
set of 362 samples and applied the following three steps: (1) we
ran MuTect with tumor RNA-seq and without a matched-normal
sample. In this step, both somatic and germline variants are
marked as true somatic mutations, and a subset of sites are
removed based on MuTect filtering scheme; (2) we then applied
the 5 models built in the training step, and classified each variant
as either somatic or germline based on the majority vote; (3)
finally, to remove any remaining RNA-specific noise, we applied
the RNA-MuTect filtering steps and achieved the final set of
predicted somatic mutations. We have decided to run RNA-
MuTect filtering steps on the narrowed list achieved after step 2
instead of upfront at step 1, due to a couple of time-consuming
steps implemented in that pipeline (realignment and PoN
filtering steps27). Those could have significantly slowed down
the process. The final set of somatic and germline variants was
then used to estimate the pipeline’s performance, showing a
sample-level median precision and recall of 0.85 and 0.83,
respectively (mean precision and recall of 0.8 and 0.83,
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Fig. 1 Summary of pipeline predictions. a An overview of the RNA-MuTect-WMN pipeline: In the training set (n= 100, green arrows), RNA-MuTect is
applied on tumor RNA and a matched-normal DNA to obtain a list of variants labeled as somatic or germline. A random forest classifier is then trained with
the collected set of features for each variant in a 5-fold cross validation manner. In the test set (orange arrows), 3 steps are performed: (1) MuTect is
applied with tumor RNA and without a matched-normal sample, to yield a list of mixed somatic and germline variants. (2) The five trained models are then
applied to this set of variants and classify them as either somatic or germline in a majority vote manner. (3) Finally, the predicted set of variants is further
filtered by the RNA-MuTect filtering steps. b Distribution of precision and recall values on validation (left) and test (right) sets computed for each sample.
Box plots show median, 25th, and 75th percentiles. The whiskers extend to the most extreme data points not considered outliers, and the outliers are
represented as dots. c Precision as the function of the number of true somatic mutations per sample. d Correlation between the number of predicted
somatic mutations and the number of somatic mutations as determined by DNA with a matched-normal DNA sample. e Correlation between the number
of predicted somatic mutations and the number of somatic mutations as determined by RNA with a matched-normal DNA sample. f Distribution of
precision and recall values on validation (left) and test (right) sets computed for each sample in the lung dataset. Box plots show median, 25th, and
75th percentiles. The whiskers extend to the most extreme data points not considered outliers, and the outliers are represented as dots. g Distribution
of precision and recall values on validation (left) and test (right) sets computed for each sample in the colon dataset. Box plots show median, 25th,
and 75th percentiles. The whiskers extend to the most extreme data points not considered outliers, and the outliers are represented as dots. Source data
are provided as a Source Data file.
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respectively, median F1-score= 0.84, mean F1-score= 0.8,
Fig. 1b). These precision and recall levels correspond to a median
of 21 type I and 17 type II errors.

Further investigating our results, we observed that a few
samples achieved a precision value <0.6. We found that all these
samples had a relatively low number of mutations and a similar
number of type I and II errors, except for a single outlier (Fig. 1c).
The median precision on the remaining samples is 0.89. In
addition, to circumvent the possibility that the high performance
obtained by our model is a result of low purity levels which will in
turn result in substantially different allele fractions for somatic
and germline variants, we examined the correlation between
tumor purity and the obtained precision and recall levels.
Encouragingly, we found this correlation to be insignificant
(Spearman R=−0.0040, −0.0874, p-value= 0.93, 0.09, for
precision and recall, respectively). These results testify that the
sensitivity of our model remains high even in samples having
lower coverage due to normal contamination. Indeed, we found
insignificant or low correlation between sample coverage and
precision or recall values (Spearman R=−0.05, 0.26, p-value=
0.34, 2.2*10−7, for precision and recall, respectively, Supple-
mentary Fig. 4).

To better characterize our model we next examined which
features are the most important in distinguishing between
somatic and germline variants, using the feature importance
score (Methods). We found that a few of the PoN features as well
as the gnomAD feature are the most influential in our model
(Supplementary Data 1). Finally, we computed the Spearman
correlation between the number of predicted somatic mutations
and the number of mutations detected by DNA or RNA with a
matched-normal DNA sample. In both cases, we found it to be
highly significant (R= 0.92, p-value= 4.15−151 for DNA and
R= 0.98, p-value <8.7*10−286 for RNA, Fig. 1d,e, respectively,
Supplementary Data 2).

When comparing our models’ performance to that achieved by
previously published methods, we obtained a median precision of
0.017 and recall of 0.32, respectively, for Jessen et al.36, and a
median precision and recall of 0.067 and 0.43, respectively, for
Coudray et al.37. This inferior performance is expected given that
these methods apply a small number of filtering steps, represent-
ing a small subset of features included in our ML model, and
mainly rely on dbSNP. As discussed above, using this database
and even more comprehensive ones such as gnomAD alone, is
insufficient for achieving high precision and recall values
(Supplementary Fig. 2).

Finally, we repeated our analysis in two additional TCGA
datasets, lung adenocarcinoma38 (n= 493) and colon cancer39

(n= 230). For the lung dataset, we obtained a median precision
and recall of 0.89 and 0.82, respectively, on the train set (n= 100;
median F1-score= 0.86), and a median precision and recall of 0.9
and 0.82 on the test set (n= 393; median F1-score= 0.85; Fig. 2f).
The mean precision and recall achieved were 0.86 and 0.81 on the
train set (mean F1-score= 0.83.) and a mean of 0.85 and 0.81 on the
test set, respectively (mean F1-score= 0.83). These results corre-
spond to a median of 15 and 7, type I and II errors, respectively,
which is similar to what was found in the melanoma dataset.

In colon, we obtained a median precision and recall of 0.67 and
0.74, respectively, on the train set (n= 100; median F1-score=
0.7), and a median precision and recall of 0.65 and 0.75 on the
test set (n= 130; median F1-score= 0.7; Fig. 2g). The mean
precision and recall achieved were 0.67 and 0.74 on the train set
and (mean F1-score= 0.7) and a mean of 0.66 and 0.74 on the
test set, respectively (mean F1-score= 0.7). Similarly, this is
equivalent to a median of 23 type I and 14 type II errors. Overall,
these results testify for the robustness of our model across
different cancer types.

Detecting mutational signatures and significantly mutated
genes without a matched-normal sample. The overall high
performance of RNA-MuTect-WMN enabled us to apply our
standard analysis pipelines for identifying mutational signatures
and significantly mutated genes. To this end, we applied
SignatureAnalyzer40,41 using the set of predicted somatic muta-
tions, and identified 4 signatures (Fig. 2a): UV signature (SBS7,
cosine similarity= 0.95) which is common in melanoma42,43,
signature 5 (SBS5, cosine similarity= 0.87) which is common
in various cancer types, including melanoma, and a signature
enriched with C > A mutations that was previously found in
ultraviolet light associated melanomas (SBS38, cosine similar-
ity= 0.78). Importantly, the same three signatures were identified
in the DNA (Supplementary Fig. 5). In addition, a signature
enriched with T > G mutations was detected. This signature was
not detected in the DNA but was detected in the RNA when
somatic mutations were identified with a matched-normal DNA
sample (Supplementary Fig. 5). Indeed, we found that out of 552
mutations that are associated with this signature, 489 were
detected only in the RNA. While it is hard to conclude whether
this signature is a true RNA signature or a result of RNA-specific
noise, it is important to note that its detection is not specific to
our pipeline in which a matched-normal sample is not used.
Performing the same analysis on the lung and colon datasets, we
have found that in both cases the same set of mutational sig-
natures is identified in both the DNA, RNA with a matched-
normal sample and our predicted set of somatic mutations
(Supplementary Figs. 7 and 9).

Next, we identified significantly mutated genes by applying
MutSig2CV44 on the set of predicted somatic mutations. Out of
24 identified genes, 22 were found to be significantly mutated also
when the matched-normal sample is taken into account (Fig. 2b),
and only 2 were missed by our pipeline (Supplementary Data 3;
p-values are computed by MutSig using the Fisher’s method).
Importantly, 13 out of the 24 genes were also identified as
significantly mutated based on a DNA analysis, a rate that is
similar to our previous report (Supplementary Fig. 6)27. This
difference is a result of the higher rate of non-silent to silent
mutations detected in these genes in the RNA, and is not due to
germline contamination.

Finally, we examined our pipeline’s performance in identifying
a set of 55 known melanoma somatic driver genes found in the
COSMIC database45 (Supplementary Data 4). We found that for
the 43 genes in this group that carried at least one true somatic
mutation in our dataset, our pipeline achieves an even higher
precision and recall levels, with median values of 1 and 0.95,
respectively, further demonstrating its high value. Finally,
applying MutSig2CV to the lung and colon datasets similar
results were obtained: 19 out of 24 genes in the lung dataset and
10 out of 12 genes in the colon dataset were found to be
significantly mutated in the RNA using our pipeline, as compared
to when a matched-normal sample is used (Supplementary Figs. 8
and 10).

TMB predicted by RNA-MuTect-WMN is associated with
patient survival. The development of ICI therapy such as anti-
PD1 and anti-CTLA4 has revolutionized cancer therapy and
resulted in long-lasting tumor responses in patients with a variety
of cancers46. As a result, these drugs have been FDA-approved for
many cancer types, including melanoma, non-small cell lung
cancer, Urothelial carcinoma, Head and Neck squamous cell
carcinoma, and more47. Recently, an accelerated approval for
anti-PD1 for the treatment of adult and pediatric with tumor
mutational burden-high (TMB-H, ≥10 mut/Mb) has been gran-
ted, making it a critical metric in the clinical decision process.
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Indeed, the TMB which is traditionally estimated via DNA
sequencing, has been found to be associated with patient survival
to different extents, depending on cancer type48 as well as prior
and current treatment49–51.

Considering that only expressed mutations can serve as
neoantigens, we here used the set of predicted somatic mutations
from RNA sequencing alone, to estimate the TMB, defined as the
number of non-silent somatic mutation in each sample
(Methods). We then divided the patients into two groups with
high- and low-TMB levels, using the median TMB as the cutoff
value. We found that patients with high-TMB had a mild but
significant increase in survival time as compared to those with
low-TMB (log-rank p-value= 0.02, Fig. 3a). Of note, performing
the same analysis using the set of somatic mutations detected
based on tumor and matched-normal DNA, similar results are
obtained (logrank p-value= 0.02, Fig. 3b), further demonstrating
the utility of our pipeline.

Performing a multivariate Cox proportional hazards regression
analysis with patient age, tumor stage and our RNA-based TMB
estimates as the covariates, we found that TMB is the prognostic
factor most associated with increased survival (HR= 0.59, 95%
CI= 0.36–0.96, p-value <0.03, Fig. 3c).

The extent of association between TMB and patient survival
vary widely between the different datasets according to cancer

type and prior therapy. A recent publication by Valero et al.
showed that among patients that were not treated with ICI, a very
high TMB at the top percentiles is associated with poor survival52.
Given that most of the patients in the TCGA cohort were not
treated with ICI, we set to examine this observation in our data as
well. Indeed, when we divide the patients into three groups with
very high, high, and low TMB levels, using the top 10th percentile
for the very high group, and median for the remaining samples,
we find that those with the highest TMB values have a poor
survival (logrank p-value= 0.04 between high and very high
TMB), and those with a median high TMB have an improved
survival as compared to those with low TMB (logrank p-
value= 6.6*10−4, Fig. 3d). Importantly, these results remain
robust and even become more significant for thresholds between
40 and 60 percentiles (logrank p-value= 5*10−3–5*10−7,
Supplementary Data 5). Performing the same analysis based on
DNA revealed the same trends, though with a lower significance
levels (logrank p-value= 0.03, 0.002, respectively, Fig. 3e, Sup-
plementary Data 5). Repeating the Cox regression analysis while
removing the top 10th percentile, the association of TMB with
survival became more significant (HR= 0.31, 95% CI= 0.17-
0.58, p-value <2*10−4, Fig. 3c).

Overall, these results demonstrate that estimating TMB based
on RNA alone is feasible and of a high predictive power.

Fig. 2 Identifying mutational signatures and driver genes. a Mutational signatures identified by SignatureAnalyzer41 on the basis of predicted somatic
mutations; b Co-mutation plot based on predicted somatic mutations in our test set. Overall frequencies, allele fractions, and significance levels of
candidate cancer genes (Q < 0.05) identified by MutSig2CV44 are shown. Genes marked with an arrow were also identified as significantly mutated based
on the set of somatic mutations detected using RNA and a matched-normal DNA. Source data are provided as a Source Data file. c Precision and recall on
the set of know melanoma drivers. Box plots show median, 25th, and 75th percentiles. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are represented as dots.
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Fig. 3 Association between Tumor Mutational Burden (TMB) and patient survival. Kaplan–Meier survival curves for patients with high vs. low TMB
estimated on the basis of predicted somatic mutations from RNA alone (a); or on the basis of DNA with a matched-normal sample (b). The median TMB
value is used to define the ‘low TMB’ and ‘high TMB’ subgroups. P-values are computed using a log-rank test. c Hazard Ratio vs. –log10(p-value), obtained
by a multivariate Cox proportional hazards regression analysis. Red dots represent the values obtained when all samples are used and blue dots represent
the values obtained after excluding the top 10% of samples (very high TMB). d, e Kaplan–Meier survival curves as in a and b, respectively, with patients
divided into three groups with very-high vs. high vs. low TMB. p-values are computed using logrank test. Subgroups were split by using the top 10th

percentile for the very high group, and median for the remaining samples. Source data are provided as a Source Data file.
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An improved RNA-based TMB estimation in patients treated
with ICI. We next examined the prediction power of our model on
an additional set of melanoma patients that were treated with
nivolumab (anti-PD1), some were treatment-naive and some had
previously progressed on ipilimumab (anti-CTLA4)15. Raw RNA-
sequencing data from 50 pre-therapy biopsies were obtained and
aligned to the reference genome (Methods). Then, the 5 models
obtained by RNA-MuTect-WMN were applied to identify and
classify the set of somatic mutations in each sample. To validate our
calls we first applied SignatureAnalyzer and identified the set of
mutational signatures that are active in these samples. Encoura-
gingly, we found the UV signature (SBS7), along with the TMZ
signature (SBS11) and SBS5 that were also found by the authors
based on DNA (cosine similarity= 0.86, 0.95, and 0.78, respectively,
Fig. 4a). In addition, when applying MutSig2CV to identify sig-
nificantly mutated genes, both NRAS and BRAF, known melanoma
drivers, were found to be significantly mutated (Fig. 4b).

Finally, we estimated the TMB based on the set of predicted
somatic mutation. Interestingly, when considering the set of
treatment-naive patients for which both DNA and RNA sequen-
cing is available, no significant association between TMB and
patient survival is found, based on neither DNA nor RNA.
However, when considering the set of patients that were
previously progressed on ipilimumab, a significant association
between high TMB and poor survival is found (logrank p-
value= 0.01, Fig. 4c). This is in similar to the trend reported by
the authors using DNA (Fig. 4d), which was insignificant. Overall,
in this independent dataset as well we find that estimating the
TMB from tumor RNA alone is feasible and results with similar
trends to those obtained with tumor and matched-normal DNA.

Discussion
In this study we introduce RNA-MuTect-WMN, a computational
method that identifies somatic mutations from RNA-seq data
without a matched-normal sample. Our pipeline is based on the
RNA-MuTect method27 which is designed to detect somatic
mutations from tumor RNA-seq and a matched-normal DNA. To
extend it to a ‘tumor-only’ mode we developed an ML model that
distinguishes between somatic and germline variants using var-
ious features, including both mutation-specific ones and those
derived from large panels and databases of normal individuals.
Our model was trained and tested on the TCGA melanoma
dataset, achieving high precision and recall levels. Importantly, we
find that when using the set of predicted somatic mutations
which are derived from RNA-seq samples alone, all mutational
signature and >90% of the driver genes are correctly identified, as
compared to RNA-MuTect where a matched-normal sample
is used.

When calling somatic mutations directly from RNA-seq we are
clearly limited to the set of mutations that are sufficiently
expressed. While this reduces sensitivity for certain downstream
analyses, it may increase it in others. Specifically, we hypothesized
that estimating the tumor mutational burden from RNA rather
than from DNA would improve prediction power, as only
expressed mutations can become neoantigens and elicit an
immune response. Indeed, we first show that estimating TMB
from tumor RNA-seq without a matched-normal sample is fea-
sible, and that the exact same trends as those found using tumor
DNA with a matched-normal sample are observed. Moreover, the
prediction power of RNA-based TMB is either equivalent or
higher than that estimated by DNA. As previously shown, we find

Fig. 4 Pipeline application to an independent dataset. a Mutational signatures identified based on the set of predicted somatic mutations using the RNA-
seq data of 50 pre-therapy biopsies from the Riaz et al.15 dataset. b Co-mutation plot based on predicted set of somatic mutations. Overall frequencies,
allele fractions, and significance levels of candidate cancer genes identified by MutSig2CV44 are shown. c–d Kaplan–Meier survival curves for patients that
have previously progressed on ipilimumab (n= 25). Tumor Mutational Burden (TMB) is estimated based on predicted somatic mutations from RNA (c) or
based on the list of somatic mutations detected by the authors using tumor and matched-normal DNA (d). p-values are computed using logrank test. The
patients are split to two groups of low and high TMB using the median TMB value as the cutoff. Source data are provided as a Source Data file.
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that in melanoma patients that were not treated with ICI, very
high TMB is associated with poor survival52, while median high is
associated with improved survival as compared to patients with
low TMB. In addition, in treated patients that were previously
progressed on anti-PD1, we find that high TMB is significantly
associated with poor survival compared to low TMB. These
results are in concordance with the original findings15.

In this study we applied our pipeline to three different cancer
types. However, the RNA-MuTect-WMN approach is generic and
can be easily applied to any cancer type, given a sufficient number
of samples with RNA-seq of the tumor, along with tumor and
matched normal DNA for validation. Clearly, melanoma is a
highly mutated cancer with a sufficient number of somatic
mutations that can be used for model training, and where the
fraction of germline contamination predicted by our model is
negligible. Nevertheless, our approach was able to achieve high
performance also in a less mutated cancer type such as colon
adenocarcinoma, with a consistent small number of type I and II
errors. In addition, we here used a relatively small number of
samples in our train set to demonstrate the applicability of our
method to datasets with a smaller number of samples. However,
performing a 10-fold cross-validation on 200 melanoma samples
increased the model’s performance, with a median precision and
recall of 0.89 and 0.87, respectively, and a median F1-score of 0.87
(mean precision and recall of 0.83 and 0.85, respectively, and
mean F1-score of 0.83). To overcome potential limitations in
datasets where a smaller number of somatic mutations is available
for training, and where the fraction of germline contamination
can become substantial, one can perform down-sampling of the
germline group, or combine multiple datasets together. Moreover,
as germline databases continue to grow, we expect that the per-
formance achieved by our approach can be further improved.
Overall, as in any ML approach, the number of variants available
for training is crucial. We therefore suggest to first build the
models on datasets of whole exome or genome sequencing. Those
models can then be used on datasets with a smaller number of
available variants such as in targeted sequencing. Finally, it
should be noted that since germline databases currently available
to the community represent mainly individuals of European
Ancestry, it is expected that our model will work best on data
derived from these lineages.

Overall, we believe that the motivation for using RNA-MuTect-
WMN is three-fold: first, for future studies, it can reduce the
sequencing cost of a matched-normal sample for the purpose of
computing TMB. It can also be used for more established tasks
such as identifying driver genes, mutational signatures, tumor
heterogeneity, and others, though with reduced sensitivity. This
reduction is a result of the low to lack of expression in various
genomic regions, which will affect the statistical power required for
detecting changes in these regions. Second, it enables the analysis of
RNA-seq data in retrospective studies where RNA was originally
sequenced for expression-based analyses, and no matched-normal
sample is available. Third, it enables a combined analysis where
both genetic and phenotypic data can be inferred from the exact
same sample. This is especially crucial in cancer where different
regions of a tumor from which DNA and RNA are extracted may
be significantly different due to tumor heterogeneity. Overall, these
applications can significantly increase the number of samples
analyzed and thus aid biomarker and drug target discovery.

Methods
DNA Mutation calling pipeline. TCGA DNA BAM files were aligned to the NCBI
Human Reference Genome Build GRCh37 (hg19). Sample contamination by DNA
originating from a different individual was assessed using ContEst53. Somatic single
nucleotide variations (sSNVs) were then detected using MuTect19. Following this
standard procedure, we filtered sSNVs by: (1) removing potential DNA oxidation

artifacts54; (2) realigning identified sSNVs with NovoAlign V2 (www.novocraft.com)
and performing an additional iteration of MuTect with the newly aligned BAM files;
and (3) removing technology- and site-specific artifacts using a panel of ~8000 TCGA
normal samples (PoN filtering, as in34). Specifically, each genomic position in the
PoN is binned into one of eight bins using its allele fraction as follows:

total counts <8 (insufficient coverage)
total counts >= 8 (and no alternate reads above subsequent thresholds)
alt count >= 1 and alt fraction >= 0.1%
alt count >= 2 and alt fraction >= 0.3%
alt count >= 3 and alt fraction >= 1%
alt count >= 3 and alt fraction >= 3%
alt count >= 3 and alt fraction >20%
alt count >= 10 and alt fraction >= 20%

Then, a log likelihood score is computed using bins 3–8, as follows:
For a given position, the vector of bin counts is denoted as~h. For each variant

call, its allele fraction is represented as a beta distribution parameterized by its
alternate and reference read counts (to account for numerical uncertainty when
converting read counts to allele fraction):

f � betaðnalt þ 1; nref þ 1Þ ð1Þ
The beta distribution’s PDF is then sliced according to the alt fraction bins

encoded by the PoN, i.e.,

~f ¼
Z 0:1%

0
df p f

� �
;

Z 0:3%

0:1%
df p f

� �
¼ ;

Z 100%

20%
df p f

� �" #
ð2Þ

Finally, a score for this position is computed by weighting each element of~f by
its corresponding histogram bin counts: S ¼~f �~h. Mutations with a score of
log10 Sð Þ≥ � 2:5 are filtered out.

Finally, sSNVs were annotated using Oncotator55. All steps were run in Terra
(https://terra.bio/).

RNA mutation calling pipeline (RNA-MuTect). RNA FASTQ files were down-
loaded from the Genomic Data Commons database and aligned to the NCBI
Human Reference Genome Build GRCh37 (hg19) using STAR56. The RNA-
MuTect pipeline was applied as previously described27, and includes the following
steps: (1) Applying MuTect to STAR-aligned RNA-seq BAMs with the
ALLOW_N_CIGAR_READS flag, considering only mutations supported by ≥3
reads; (2) Removing technology- and site-specific artifacts using a panel of ~8000
TCGA normal samples, as described above; (3) A realignment filter for RNA-seq
data where all aligned reads that span a candidate variant position from both the
tumor (case) and normal (control) samples are realigned using HISAT257. Then,
an additional iteration of MuTect with the newly aligned BAM files is performed;
only mutations that are kept by MuTect using both the STAR-aligned and HISAT-
aligned BAMs are kept for the next step; (4) Applying an RNA-seq PoN built based
on a panel of ~6500 GTEx samples. The RNA-based PoN accounts for various
RNA potential and recurrent artifacts, such as errors caused by reverse tran-
scription of RNA to cDNA, RNA modifications, and more; (5) Removing sites that
were found in the ExAC58 database with minor allele frequency of more than 5%;
(6) Removing mutations mapped to non-coding regions such as introns, intergenic
regions, and non-coding RNAs; (7) Removing RNA editing sites listed in the
DARNED59 and RADAR60 databases; (8) In cases where multiple reads that
support a variant were aligned to the exact same positions, we kept only a single
read; (9) Removing mutations that may be caused by sequencing leakage errors,
which are identified as alternate bases that have at least 3 bases that match the
alternate base in a ± 3 base window around the variant base; (10) Removing sites
falling into pseudogenes or IgG genes, which have noisy alignments.

This set of filtering steps is the one used in step 3 of the RNA-MuTect-WMN
pipeline. The RNA-MuTect pipeline was run in Terra (https://terra.bio/).

Power analysis. Given a mutation with an alternate allele count of x and a reference
allele count of y in the RNA, we computed the power to detect it given a coverageN in
the DNA. This was done by applying a beta-binomial model for observing at least k

reads: (3) P k; j; x; y;N� � ¼ N
k

� �
Bðkþxþ1;N�kþyþ1Þ

Bðxþ1;yþ1Þ where B is the Beta function. To

determine the minimal number of reads k, we first computed the error rate at the
variant site, r, using the matched normal sample by taking the maximal allele fraction
of the three possible alternate alleles and applying the Laplace correction with α= 1.
We then identified k as the number of alternate reads that have a probability <1% to
be generated by the noise. Eventually, powered mutations were considered as those
with power > 0.95 and alternate read count >= 4.

The RNA-MuTect-WMN pipeline
Data preprocessing. For the training set where a matched-normal sample is used we
first labeled as somatic the set of variants passing our entire calling pipeline, as
described in the ‘RNA Mutation calling pipeline’ section. Germline variants were
determined based on MuTect annotation, ‘normal_lod’, ‘germline_risk’ or ‘alt_al-
lele_in_normal’. The analysis is focused only on chromosome 1–22, X, and Y.
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Feature collection. the following features were used in our pipeline:

1. T_ref_count - number of tumor reads supporting the reference allele
2. T_alt_count - number of tumor reads supporting the alternate allele
3. T_lod_fstar – The LOD score computed by MuTect
4. Tumor_f – tumor allele fraction

5–12. For each of the germline variants database (dbSNP, gnomAD,
1000Genome, ESP) two vectors were created: (a) A Boolean indicating whether the
variant is present (1) or not (0) in each database; (b) variant allele fraction (AF),
when available, and a mean AF value over all variants in the database when this
data is missing.

13. Variant_classification - if the variant classification as defined by Oncotator55

was either IGR, Intron, RNA, lincRNA this feature was set to be (1) and (0)
otherwise. While introns and intergenomic regions should not appear in RNA
sequencing, such transcripts can sometimes arise due to the “fuzzy” transcription
of known genes that extends beyond the annotated boundaries61. Since there are 4
orders of magnitude more germline mutations than somatic ones, there’s a higher
chance to find them in these regions. We included this feature following an analysis
showing that almost no somatic mutations were annotated with this variant
classification.

14–31 DNA and RNA Panel of Normals –each genomic position in each PoN is
binned into one of eight bins using its allele fraction as follows:

total counts <8 (insufficient coverage)
total counts >= 8 (and no alternate reads above subsequent thresholds)
alt count >= 1 and alt fraction >= 0.1%
alt count >= 2 and alt fraction >= 0.3%
alt count >= 3 and alt fraction >= 1%
alt count >= 3 and alt fraction >= 3%
alt count >= 3 and alt fraction >20%
alt count >= 10 and alt fraction >= 20%

The 9th feature for each PoN is then the log-likelihood score computed as
described above under the “DNA mutation calling pipeline” section.

Model training. 100 samples were randomly selected and defined as the training set.
These samples were then divided to 5 pairs of training and validation sets with 80
and 20 samples in each group, respectively. A random forest classifier was applied
on each of the training sets, using the somatic and germline labels, with 50 trees
and number of features that equals the square root of the total number of features.
Each resulting model was then tested on the corresponding validation set, and the
precision and recall were calculated per sample to evaluate the model’s perfor-
mance. Using a different number of trees ranging from 30 to 100 resulted in an
identical performance.

Model testing. To test the models generated in the training step we first applied
MuTect on our test set composed of the remaining samples, using tumor RNA-seq
and without the matched normal sample. As a result, we obtained a list of variants
containing both somatic, germline, and RNA-specific noise. For each of these
variants, we collected the set of features described above and applied the 5 trained
models. Each variant was then assigned a somatic or germline label based on a
majority vote of the 5 models. Finally, the predicted group of somatic mutations
was further filtered using RNA-MuTect filtering steps, as described in27 and above.

Mutational Signature analysis. To identify mutational signatures, we used the
SignatureAnalyzer tool: https://github.com/broadinstitute/getzlab-
SignatureAnalyzer41. A cosine similarity score was used as a measure of closeness
to known signatures. This score ranges between zero and one, where similarity of
one represents identical signatures and similarity of zero represents completely
different mutational signatures. The similarity was measured against the latest
version (V3.2) of SBS signatures in COSMIC.

MutSig2CV for RNA-seq data. To apply MutSig2CV44 for RNA-seq data we
utilized an RNA-based gene-level coverage model that reflected which bases were
typically sufficiently covered in each gene using GTEx RNA-seq data, as previously
done27. Specifically, this model contains information about the sequencing cov-
erage achieved for each gene and sample. Within each gene-sample bin, the cov-
erage is broken down further according to the category (e.g., A: T basepairs, C: G
basepairs), and also according to the zone (silent/non-silent/noncoding)5.

We considered genes as significantly mutated if they had an FDR-corrected Q
value <0.05.

Riaz data analysis. Raw RNA sequencing data for 50 available pre-treatment sam-
ples was aligned to the NCBI Human Reference Genome Build GRCh37 (hg19) using
STAR56. As described in the main text (Fig. 1a), we then ran the three steps of our
pipeline: (1) running MuTect with tumor RNA alone; (2) applying the 5 models
trained on TCGA data to get an initial list of predicted somatic mutations; (3) applying
RNA-MuTect filtering steps. The final list of somatic variants was used for identifying
significantly mutated genes, mutational signatures and for estimating the TMB.

Tumor mutational burden analysis. To compute tumor mutation burden (TMB),
we counted the number of non-silent somatic SNVs per sample. For the survival
analysis, the absolute TMB value was used for determining the median TMB and
the top 10 percentile values. For the continuous Cox regression models we used
log10(TMB) together with patient age and tumor stage. A logrank test was used to
estimate the significance level of the survival analysis.

Feature importance. To determine feature importance we used the built-in feature
importance scores of scikit-learn, also known as GINI importance (or mean
decreased impurity). We obtained the feature importance scores for each of the 5
trained models, and computed the final importance score for each feature based on
the average score across all 5 models.

Estimating precision/recall level for single features. For each feature, we
computed the difference between germline and somatic variants using a two-sided
Wilcoxon rank-sum test.

To calculate the best precision and recall that can be achieved, we computed the
F1-score across a range of thresholds and report the maximal one. The precision-
recall AUC was computed in a standard way across a range of thresholds.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Access to TCGA raw sequencing data (DNA and RNA) was obtained via dbGap
authorization from accession number phs000178. The DNA PoN is available in Google
Cloud upon dbGap authorization (gs://firecloud-tcga-dcc-closed-access/reference/PoNs/
final_summed_tokens.hist.bin)

The Riaz15 bulk RNA dataset used in this study is available under BioProject accession
number PRJNA356761 and in the NCBI Gene Expression Omnibus (GEO) GSE91061.

The RNA PoN is available upon dbGap GTEx approval (phs000424) under ‘Available
Phenotype and Genotype Files/Genotype Files/phg000830.v1.GTEx_WES.panel-of-
normals.c1.GRU.tar’.

In addition, NCBI Human Reference Genome Build GRCh37 (hg19) was used [https://
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/]. Source data are provided with
this paper.

Code availability
The code for running the ML pipeline is available as Supplementary Code, as pseuodo
code in the Supplementary Material as Supplementary Note 1, and in GitHub: https://
github.com/yizhak-lab-ccg/RNA_MUTECt_WMN. All features are collected using the
software and databases described above.
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