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Abstract: The aim of the case-control study was to explore the effect of coagulation factor 

XIII (FXIII) B subunit (FXIII-B) polymorphisms on the risk of coronary artery disease, and 

on FXIII levels. In the study, 687 patients admitted for coronary angiography to investigate 

suspected coronary artery disease and 994 individuals representing the Hungarian population 

were enrolled. The patients were classified according to the presence of significant 

coronary atherosclerosis (CAS) and history of myocardial infarction (MI). The F13B gene 

was genotyped for p.His95Arg and for intron K nt29756 C>G polymorphisms; the latter 

results in the replacement of 10 C-terminal amino acids by 25 novel amino acids. The 

p.His95Arg polymorphism did not influence the risk of CAS or MI. The FXIII-B intron K 
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nt29756 G allele provided significant protection against CAS and MI in patients with a 

fibrinogen level in the upper tertile. However, this effect prevailed only in the presence of 

the FXIII-A Leu34 allele, and a synergism between the two polymorphisms was revealed. 

Carriers of the intron K nt29756 G allele had significantly lower FXIII levels, and FXIII 

levels in the lower tertile provided significant protection against MI. It is suggested that the 

protective effect of the combined polymorphisms is related to decreased FXIII levels. 

Keywords: factor XIII (FXIII); factor XIII B subunit (FXIII-B); polymorphism; coronary 

artery disease; fibrinogen; myocardial infarction; risk assessment 

 

1. Introduction 

Blood coagulation factor XIII (FXIII) is a pro-transglutaminase that circulates in the plasma in 

association with fibrinogen. It is of tetrameric structure (FXIII-A2B2) and consists of two potentially 

active, catalytic A subunits (FXIII-A) and two carrier/inhibitory B subunits (FXIII-B). FXIII-B is in 

excess; in the plasma, about 50% of it exists in free, non-complexed form. The gene encoding FXIII-A 

(F13A1) is located on chromosome 6p24-25; it is 160 kb in length and contains 15 exons and 14 

introns. The gene coding for FXIII-B (F13B) is of 28 kb in length; it is on chromosome 1q31-32.1 and 

consists of 12 exons and 11 introns. The activation of plasma FXIII occurs in the final phase of the 

clotting cascade by the concerted action of thrombin and Ca2+. Thrombin cleaves off an activation 

peptide consisting of 37 amino acids from the N-terminus of FXIII-A, then, in the presence of Ca2+ 

FXIII-B, dissociates, and the FXIII-A dimer becomes transformed into an active transglutaminase. 

Activated FXIII (FXIIIa) cross-links fibrin γ-chains into dimers and α-chains into high molecular 

weight polymers. The α2 plasmin inhibitor is also cross-linked to fibrin by FXIIIa. These mechanisms 

are important in protecting newly-formed fibrin from the shear stress of circulating blood and from 

degradation by the fibrinolytic system. Detailed information on the structure and function of FXIII is 

provided in recent reviews [1–3]. 

Considering the role of FXIII in the formation of fibrin structure and in the regulation of 

fibrinolysis, it is not surprising that its association with coronary artery disease (CAD) and other 

atherothrombotic diseases has been a topic of intensive study [4]. It has been shown that an elevated 

FXIII level increased the risk of myocardial infarction (MI), coronary atherosclerosis (CAS) and 

peripheral artery disease in women, but not in men [5,6]. The presence of different FXIII 

polymorphisms may also be associated with CAD. FXIII-A has five polymorphisms resulting in amino 

acid replacements. Among them, the effect of FXIII-A p.Val34Leu (c.103G>T, rs5985) polymorphism 

on the risk of CAD has been investigated intensively. This mutation increases the rate of FXIII 

activation [7–9] and influences the structure of the fibrin network [7]; the latter effect is modulated by 

fibrinogen concentration [10]. In the first report on the association of FXIII-A p.Val34Leu polymorphism 

and CAD, Kohler et al., demonstrated a protective effect of the Leu34 allele against MI [11]. Both 

confirmatory and contradictory results were reported in follow-up studies (reviewed in [4]). It was 

presumed that gene-gene and gene-environment interactions might be responsible, at least in part, for 

the variability of the findings obtained by different laboratories. Indeed, we have demonstrated that the 
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Leu34 allele decreased the risk of CAD only in patients with an elevated fibrinogen concentration [12]. 

The overall protective effect of Leu34 allele against CAD was confirmed by meta-analyses of the 

reported findings [13,14]. 

The polymorphic nature of FXIII-B was demonstrated a long time ago by an isoelectric focusing 

technique [15,16]. Molecular genetic and biochemical techniques revealed two major polymorphisms 

in the F13B gene. An A to G transversion within exon 3 (rs6003) leads to a His to Arg amino acid 

exchange at position 95 in the mature protein [17]. The minor allele (Arg95) is relatively rare (7.5%) in 

the white population, but it represents the major allele (72.5%) among black Africans [18]. The 

p.His95Arg polymorphism was found to be a risk factor of venous thromboembolism (VTE) [17].  

The Arg95 allele was associated with an increased risk of mortality after cerebral ischemia of arterial 

origin [19]. In a study by Reiner et al., the homozygous presence of the FXIII-B Arg95 allele lowered 

the risk of nonfatal MI in postmenopausal women [20]. 

Recently, a C-to-G change at nucleotide position 29756 in intron K (IVS11+144, rs12134960) 

leading to a novel splice acceptor site was described in the F13B gene [21,22]. This polymorphism 

results in an allele-specific splicing product, in which the last 10 amino acids are exchanged by an 

alternative sequence consisting of 25 amino acids. The variant sequence includes two additional lysine 

and one glutamic acid residues. These charged amino acids change the isoelectric point of the protein. 

The polymorphism characteristically occurs in Asians, and the allele frequency in the white population 

was found to be 14.2% [18]. Although such a profound structural change would be expected to alter 

some of the biochemical features of the molecule and may have an effect on disease susceptibility, 

these possibilities are yet to be explored. 

The aims of the present case-control study were to reveal the effect of FXIII-B p.His95Arg and 

intron K nt29756 C>G polymorphisms on the risk of CAD and to find out if these polymorphisms 

influence plasma FXIII levels. The possible interaction between FXIII-B polymorphisms and FXIII-A 

p.Val34Leu polymorphism was also investigated. 

2. Results 

2.1. Characterization of Study Population 

The general characteristics of the study groups are shown in Table 1. Briefly, the ratio of males was 

significantly higher in patients with CAS and/or with a history of MI. MI was defined according to the 

Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction [23]. 

As compared to clinical controls (CAS−MI−), patients in the CAS+MI− and CAS+MI+ groups were 

5–7 years older. Diabetes mellitus was more frequent among patients with CAS and/or MI than in the 

CAS−MI− group. The frequency of current smoking did not differ among the groups. Triglyceride and 

apoB levels were significantly elevated, and HDL-C was significantly decreased in both the CAS+MI− 

and CAS+MI+ groups. The decrease of apoA-I level and the increase of Lp(a) and fibrinogen 

concentrations were significant only in the CAS+MI+ group. Homocysteine levels were significantly 

higher in patients with CAS and/or MI than in clinical controls. FXIII activity and antigen levels were 

practically the same in all study groups. FXIII levels were influenced by gender, smoking, serum total 

cholesterol and plasma fibrinogen concentrations, as was demonstrated by the multiple linear regression 
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models in our study population. Antihypertensive treatment was uniform between 59%–68% in all 

patient groups. The history of treatment length, intensity and efficiency was rather uncertain; thus, 

these data were not included in Table 1 and were not used in subsequent analyses. 

Table 1. General characteristics of the patient groups. 

Patients (n) CAS−MI− (237) CAS−MI+ (26) CAS+MI− (214) CAS+MI+ (210) 

Gender (male/female) 97/140 19/7 † 144/70 ‡ 164/46 ‡ 

Age 54 (48–64) 56 (47–65) 61 (54–70) † 59 (51–68) † 

Diabetes mellitus (−/+) 218/19 20/6 * 175/39 † 161/49 ‡ 

Current smoker (−/+) 205/32 22/4 184/30 175/35 

Triglyceride (mmol/L) 1.47 (1.03–2.19) 1.46 (1.29–2.40) 1.67 (1.25–2.26) * 1.81 (1.35–2.48) ‡ 

Cholesterol (mmol/L) 5.60 ± 1.13 5.78 ± 1.17 5.71 ± 1.33 5.56 ± 1.12 

HDL-C (mmol/L) 1.23 (1.01–1.49) 1.13 (1.01–1.31) 1.12 (0.96–1.33) † 1.05 (0.90–1.25) ‡ 

LDL-C (mmol/L) 3.50 ± 0.98 3.70 ± 0.99 3.65 ± 1.15 3.48 ± 0.95 

ApoA-I (g/L) 1.44 ± 0.27 1.34 ± 0.21 1.39 ± 0.30 1.32 ± 0.25 ‡ 

ApoB (g/L) 1.03 (0.90–1.18) 1.15 (0.88–1.26) 1.10 (0.95–1.27) * 1.11 (0.96–1.29) † 

Lp(a) (mg/L) 126 (99–368) 99 (99–300) 126 (99–441) 170 (99–642) * 

Homocysteine (μmol/L) 11.92 (9.68–14.75) 13.38 (10.39–15.16) ‡ 13.66 (10.98–16.28) ‡ 13.62 (11.18–17.19) ‡ 

Fibrinogen (g/L) 3.78 (3.13–4.44) 3.58 (2.95–5.11) 3.88 (3.29–4.62) 4.06 (3.23–5.03) * 

FXIII activity (%) 101 ± 20 103 ± 26 100 ± 22 101 ± 22 

FXIII antigen (mg/L) 22.6 ± 4.8 23.4 ± 5.8 22.1 ± 5.2 22.4 ± 5.1 

Values for age, triglyceride, HDL-C, apoB, Lp(a), homocysteine and fibrinogen are medians with the 

interquartile range in parenthesis, all other variables are means ± SD. CAS+ and CAS−, patients with and 

without coronary atherosclerosis, respectively; MI+ and MI−, patients with and without a history of 

myocardial infarction, respectively. * p < 0.05, † p < 0.01, ‡ p < 0.001 for comparison with the clinical control  

group (CAS−MI−). 

The population control (PC) group consisted of 45% males and 55% females. The median age was 

48 years (interquartile range: 34–57 years). When the patient groups were compared to the PC group, 

the ORs were adjusted for these two parameters. 

2.2. The Effect of the FXIII-B Polymorphisms on the Risk of Coronary Artery Disease 

The minor allele frequencies of both p.His95Arg and intron K nt29756 C>G polymorphisms in  

the CAS−MI− and PC groups were practically identical (Table 2) and were similar to the HapMap  

data [18]. The distribution of genotypes in both control groups corresponded to the Hardy–Weinberg 

equilibrium. The allele frequencies in the patient groups did not differ significantly from those in the 

two control groups. 

The Arg95 carriership was without effect on the risk of CAS or MI (Table 2). In the case of  

the intron K polymorphism, the ORs were below 1.0 in all patient groups, but the level of protective 

effect conferred by this polymorphism did not reach statistical significance. Adjustment for 

independently-associated variables did not change the situation. Similar results were obtained when 

the ORs were separately calculated for males and females (data not shown). In Table 2, the patients 

with CAS and/or MI were compared to the clinical control group, and ORs were calculated 

accordingly. Comparison to the PC group gave similar results (Table S1). 
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Table 2. FXIII-B p.His95Arg and intron K nt29756 C>G genotype distribution in control 

and patient groups; the effect of polymorphisms on the risk of coronary artery disease. 

Subjects 
Population Controls  

n = 994 

CAS−MI− 

n = 237 

CAS+MI−  

n = 214 

CAS+MI+  

n = 210 

CAS+  

n = 424 

MI+  

n = 236 

p.His95Arg 

Wild-type n 831 (83.6%) 202 (85.2%) 189 (88.3%) 180 (85.7%) 369 (87.0%) 203 (86.0%) 

Heterozygote n 155 (15.6%) 33 (14.0%) 25 (11.7%) 30 (14.3%) 55 (13.0%) 33 (14.0%) 

Homozygote n 8 (0.8%) 2 (0.8%) – – – – 

Arg95 carrier frequency 16.4% 14.8% 11.7% 14.3% 13.0% 14.0% 

Arg95 allele frequency 8.6% 7.8% 5.8% 7.1% 6.5% 7.0% 

OR for Arg95  

carriers non-adjusted 
– – 0.76 (0.44, 1.32) 0.96 (0.57, 1.63) 0.86 (0.55, 1.36) 0.94 (0.56, 1.57) 

OR for Arg95 carriers adjusted – – 0.76 (0.41, 1.39) 1.18 (0.64, 2.17) 0.95 (0.57, 1.59) 1.11 (0.62, 2.01) 

Intron K nt29756 C>G 

Wild-type n 712 (71.6%) 158 (66.7%) 155 (72.4%) 151 (71.9%) 306 (72.2%) 173 (73.3%) 

Heterozygote n 259 (26.1%) 74 (31.2%) 52 (24.3%) 55 (26.2%) 107 (25.2%) 59 (25.0%) 

Homozygote n 23 (2.3%) 5 (2.1%) 7 (3.3%) 4 (1.9%) 11 (2.6%) 4 (1.7%) 

G carrier frequency 28.4% 33.3% 27.6% 28.1% 27.8% 26.7% 

G allele frequency 15.3% 17.7% 15.4% 15.0% 15.2% 14.2% 

OR for G carriers non-adjusted – – 0.76 (0.51,1.14) 0.78 (0.52,1.17) 0.77 (0.55, 1.09) 0.73 (0.49, 1.08) 

OR for G carriers adjusted – – 0.82 (0.53,1.28) 0.87 (0.55, 1.39) 0.82 (0.56, 1.21) 0.80 (0.51, 1.26) 

The ORs were calculated by comparing different patient groups with the CAS−MI− (clinical control) group. 

The respective 95% CIs are shown in parenthesis after the OR values. ORs were adjusted for gender, age, 

diabetes mellitus, current smoking, total cholesterol, Lp(a), homocysteine and fibrinogen concentrations. 

CAS+ and CAS−, patients with and without coronary atherosclerosis, respectively; MI+ and MI−, patients 

with and without a history of myocardial infarction, respectively; OR, odds ratio; n, number of individuals in 

each subgroup. 

2.3. The Effect of the FXIII-B Polymorphisms on the Risk of Coronary Artery Disease in Individuals 

with Elevated Fibrinogen Concentration 

In a previous paper, we demonstrated that the FXIIII-A p.Val34Leu polymorphism decreased  

the risk of CAS and MI in individuals with elevated fibrinogen levels [12]. Here, we investigated  

the effect of FXIII-B polymorphisms on the risk of CAD in individuals with a fibrinogen level in  

the upper tertile (fibrinogen > 4.3 g/L). Table 3 demonstrates that the p.His95Arg polymorphism was 

without effect, while the intron K nt29756 C>G polymorphism conferred a significant protective effect 

against CAS and MI. In the case of the CAS+MI− group, the protective effect became statistically 

significant only after adjustment. 
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Table 3. The effect of FXIII-B p.His95Arg and intron K nt29756 C>G polymorphisms on 

the risk of coronary artery disease in patients with an elevated fibrinogen concentration. 

Subjects 
CAS−MI−  

n = 63 

CAS+MI−  

n = 75 

CAS+MI+  

n = 79 

CAS+  

n = 154 

MI+  

n = 88 

p.His95Arg 

Wild-type n 55 (87.3%) 69 (92.0%) 67 (84.8%) 136 (88.3%) 74 (84.1%) 

Heterozygote n 8 (12.7%) 6 (8.0%) 12 (15.2%) 18 (11.7%) 14 (15.9%) 

Homozygote n – – – – – 

Arg95 carrier frequency 12.7% 8.0% 15.2% 11.7% 15.9% 

Arg95 allele frequency 6.3% 4.0% 7.6% 5.8% 8.0% 

OR for Arg95  

carriers non-adjusted 
– 0.6 (0.20, 1.83) 1.23 (0.47, 3.23) 0.91 (0.37, 2.22) 1.3 (0.51, 3.32) 

OR for Arg95  

carriers adjusted 
– 0.81 (0.23, 2.92) 1.55 (0.52, 4.65) 1.07 (0.39, 2.96) 1.5 (0.51, 4.38) 

Intron K nt29756 C>G 

Wild-type n 38 (60.3%) 56 (74.7%) 61 (77.2%) 117 (76.0%) 70 (79.5%) 

Heterozygote n 24 (38.1%) 17 (22.7%) 16 (20.3%) * 33 (21.4%) * 16 (18.2%) † 

Homozygote n 1 (1.6%) 2 (2.6%) 2 (2.5%) 4 (2.6%) 2 (2.3%) 

G carrier frequency 39.7% 25.3% 22.8% * 24.0% * 20.5% * 

G allele frequency 20.6% 14.0% 12.7% 13.3% * 11.4% * 

OR for G  

carriers non-adjusted 
– 

0.52  

(0.25, 1.07) 

0.45 *  

(0.21–0.93) 

0.48 *  

(0.26, 0.90) 

0.39 *  

(0.19, 0.81) 

OR for G  

carriers adjusted 
– 

0.35 *  

(0.15, 0.83) 

0.42 *  

(0.19, 0.96) 

0.38 †  

(0.19, 0.79) 

0.37 *  

(0.17, 0.84) 

Elevated fibrinogen concentration represents the upper tertile of fibrinogen concentration (>4.3 g/L) in all 

study subjects. ORs were adjusted for gender, age, smoking, Lp(a), serum triglyceride and homocysteine 

concentrations. ORs were calculated by comparing different patient groups with the CAS−MI− (clinical 

control) group. The respective 95% CIs are shown in parenthesis below the OR values. CAS+ and CAS−, 

patients with and without coronary atherosclerosis, respectively; MI+ and MI−, patients with and without  

a history of myocardial infarction, respectively; OR, odds ratio; n, number of individuals in each subgroup;  

* p < 0.05, † p < 0.01. 

2.4. The Effect of Combined FXIII-A Val34Leu and FXIII-B Polymorphisms on the Risk of Coronary 

Artery Disease 

Combined FXIII-A Leu34 and FXIII-B Arg95 carriership did not exert any effect on the risk of  

CAD in patients with elevated fibrinogen level (data not shown). When FXIII-A Leu34 carriership  

and FXIII-B intron K G carriership, separately and in combination, were compared to the wild-type 

(Val34 intron K C) genotype, an interesting relationship was revealed (Table 4). Separately, neither of 

these alleles conferred significant protection against CAS and/or MI in patients with an elevated 

fibrinogen level. However, their combination exerted highly significant protection against MI in these 

patients, and after adjustment, the protective effect against CAS without MI also became significant. 

The synergetic effect of the two polymorphisms in the protection against CAD was also demonstrated 

by synergy factor calculations (Table 4). In the case of MI+ patients, the synergy factor significantly 
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differed from 1.0, and the low values suggest an efficient interaction, leading to a considerable protective 

effect in patients possessing both the FXIII-A Leu34 allele and the FXIII-B intron K G allele. 

Table 4. Effect of combined FXIII-A Leu34 and FXIII-B intron K nt29756 G carriership 

on the risk of CAD in individuals with fibrinogen concentration in the upper tertile. 

Subjects 
CAS−MI−  

n = 63 

CAS+MI−  

n = 75 

CAS+MI+  

n = 79 

CAS+  

n = 154 

MI+  

n = 88 

Val34 Homozygotes, Intron K C Homozygotes 

n 19 30 33 63 37 

Leu34 carriers, Intron K C Homozygotes 

n 19 26 28 54 33 

Unadjusted OR – 0.87 (0.38, 1.98) 0.85 (0.38, 1.91) 0.86 (0.41, 1.78) 0.89 (0.41, 1.97) 

Adjusted OR – 1.33 (0.51, 3.52) 0.81 (0.31, 2.08) 1.08 (0.48, 2.45) 0.94 (0.38, 2.34) 

Val34 homozygotes, Intron K G Carriers 

n 10 10 15 25 15 

Unadjusted OR – 0.63 (0.22, 1.81) 0.86 (0.32, 2.30) 0.75 (0.31, 1.85) 0.77 (0.29, 2.04) 

Adjusted OR – 0.59 (0.18,1.96) 0.92 (0.31, 2.76) 0.76 (0.29, 2.02) 0.86 (0.29, 2.52) 

Leu34 Carriers, Intron K G Carriers 

n 15 9 3 12 3 

Unadjusted OR – 0.38 (0.14, 1.04) 0.12 (0.03, 0.45) † 0.24 (0.10, 0.60) † 0.10 (0.03, 0.40) ‡ 

Adjusted OR – 0.30 (0.09, 0.96) * 0.08 (0.02, 0.39) † 0.19 (0.07, 0.55) † 0.08 (0.02, 0.36) ‡ 

Synergy factor unadjusted – 0.69 (0.23, 2.98) 0.16 (0.03, 0.85) * 0.37 (0.10, 1.35) 0.15 (0.03, 0.80) * 

Synergy factor adjusted – 0.38 (0.23,1.62) 0.11 (0.02, 0.61) * 0.23 (0.06, 0.85) * 0.10 (0.02, 0.53) † 

The wild-type individuals (Val34 and intron K C homozygotes) served as the reference in each study group. 

ORs were calculated by comparing different patient groups with the CAS−MI− (clinical control) group. The 

respective 95% CI values are shown in parenthesis after the OR and synergy factor values. ORs were 

adjusted for gender, age, smoking, Lp(a) and serum HDL-C concentrations. CAS+ and CAS−, patients with 

and without coronary atherosclerosis, respectively; MI+ and MI−, patients with and without a history of 

myocardial infarction, respectively; OR, odds ratio; n, number of individuals in each subgroup; * p < 0.05,  
† p < 0.01, ‡ p < 0.001. 

2.5. The Effect of FXIII-B Polymorphisms on FXIII Levels 

Within the whole study population, carriers of the Arg95 variant had slightly, but significantly 

higher, FXIII levels than wild-type individuals (Table 5). In the different subgroups, a similar tendency 

was observed, but with the exception of FXIII activity in clinical controls, the differences did not reach  

the level of statistical significance, which is likely due to the relatively low number of individuals in  

the study groups and, consequently, to the lower statistical power. In case of intron K nt29756 C>G 

polymorphism carriers, they had significantly lower FXIII levels than wild-type individuals, and this 

difference was significant, not only in the whole study population, but also in all subgroups. 

Comparison of non-adjusted FXIII levels resulted in the same conclusion (data not shown). 

The presence of intron K nt29756 G allele significantly decreased FXIII levels independently of  

its combination with FXIII-A Val34 homozygotes or Leu34 carriers in the whole study population 

(Figure 1A,B), as well as in the CAS+ group (Figure 1E,F). In MI+ patients, there was a similar 

tendency, but the extent of decrease in the FXIII levels was statistically significant only if intron K G 
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and FXIII-A Leu34 carriership were combined (Figure 1G,H). As compared to patients homozygous 

for the FXIII-A Val34 allele and carrying the intron K nt29756 G allele, FXIII levels of patients 

carrying both FXIII-A Leu34 and intron K nt29756 G alleles were decreased, but the differences were 

not statistically significant. 

 

Figure 1. The effect of FXIII-A Val34Leu, FXIII-B intron K nt29756 C>G polymorphisms 

and their combination on FXIII activity and antigen levels. FXIII levels adjusted for 

gender, smoking, serum total cholesterol and plasma fibrinogen levels are expressed as the 

mean ± SD; the numerical values of the means are also shown. The combination of  

FXIII-A and FXIII-B alleles are shown on the abscissa; Val34 and intron K C represent 

homozygosity for the wild-type FXIII-A and FXIII-B alleles; Leu34 and intron K G 

represent carriers of the respective mutant allele. Significant differences between genotype 

combinations are indicated by the p-values associated with the horizontal lines on the upper 

part of the figure. FXIII activity (A,C,E,G) and antigen (B,D,F,H) levels are demonstrated 

in the whole study group (A,B), in the CAS−MI− (C,D), in the CAS+ (E,F) and in the MI+ 

(G,H) patient groups. 
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Table 5. The effect of FXIII-B subunit polymorphisms on FXIII activity and  

antigen concentration. 

Subjects 
Wild Type for the Mutation Carriers of the Mutation 

n FXIII Activity (%) FXIII Antigen (mg/L) n FXIII Activity (%) FXIII Antigen (mg/L) 

p.His95Arg Polymorphism 

All 594 103 ± 21 22.9 ± 5.0 93 109 ± 23 † 24.0 ± 5.1 * 

CAS−MI− 202 103 ± 20 22.9 ± 4.7 35 112 ± 23 * 24.3 ± 5.3 

CAS+MI− 189 101 ± 22 22.6 ± 5.1 25 107 ± 25 23.7 ± 5.5 

CAS+MI+ 180 106 ± 22 23.4 ± 5.3 30 107 ± 20 23.7 ± 4.3 

CAS+ 369 103 ± 22 22.9 ± 5.2 55 107 ± 22 23.7 ± 4.9 

MI+ 203 105 ± 23 23.4 ± 5.3 33 109 ± 21 24.0 ± 4.6 

Intron K nt29756 C>G Polymorphism 

All 486 106 ± 21 23.8 ± 5.0 201 97 ± 21 ‡ 21.3 ± 4.7 ‡ 

CAS−MI− 158 106 ± 21 23.9 ± 5.0 79 100 ± 20 * 21.8 ± 4.1 † 

CAS+MI− 155 106 ± 22 23.7 ± 5.1 59 94 ± 21‡ 20.7 ± 4.9 ‡ 

CAS+MI+ 151 109 ± 20 24.2 ± 4.9 59 98 ± 24‡ 21.6 ± 5.5 ‡ 

CAS+ 306 107 ± 21 23.9 ± 5.0 118 96 ± 22‡ 21.1 ± 5.2 ‡ 

MI+ 173 108 ± 21 24.1 ± 5.0 63 99 ± 24† 21.7 ± 5.3 † 

FXIII levels are expressed as mean ± SD. FXIII levels were adjusted to gender, smoking, serum total 

cholesterol and plasma fibrinogen levels. The levels of significance were calculated for the difference between wild 

type individuals and carriers of the respective mutation. CAS+ and CAS−, patients with and without coronary 

atherosclerosis, respectively; MI+ and MI−, patients with and without a history of myocardial infarction, 

respectively; n, number of individuals in each subgroup; * p < 0.05, † p < 0.01, ‡ p < 0.001. 

2.6. The Effect of Low FXIII Levels on the Risk of CAD 

As FXIII-B intron K nt29756 polymorphism and its combination with FXIII-A Val34Leu 

polymorphism decreased FXIII levels, it was intriguing to find out if decreased FXIII levels were 

associated with protection against CAD. To address this question individuals with FXIII levels in the 

lower tertile were compared to those with FXIII levels in the upper tertile. In the total population, not 

stratified according to fibrinogen level, the low FXIII activity and antigen levels were without 

significant effect on the risk of CAS and MI (data not shown). In patients with fibrinogen 

concentration in the upper tertile the ORs for CAS were below 1.0 but the protective effect of low 

FXIII levels was not statistically significant, while low FXIII activity or antigen levels significantly 

decreased the risk of MI (Table 6). 

3. Discussion 

FXIII-A2 and FXIII-B2 form a tight complex in the plasma, and the Kd for their interaction is in  

the range of 10−10 M [24]. Interaction with FXIII-B is highly important for keeping the catalytic  

FXIII-A dimer in circulation. In patients with severe FXIII-B deficiency and in FXIII-B knockout  

mice, the FXIII-A level is considerably decreased [25–31]. Following the administration of FXIII-A2 

concentrate prepared from human placenta to FXIII-B deficient patients, FXIII-A quickly disappeared 

from the plasma [30]. When FXIII-B-deficient mice were supplemented with recombinant FXIII-B, 

FXIII-A levels, fibrin crosslinking and transglutaminase activities increased in their plasma, indicating 
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that FXIII-B assisted the maintenance of FXIII-A levels in the circulation [31]. In the absence of  

FXIII-B, the short half-life of FXIII-A2 might be related to its spontaneous non-proteolytic activation 

in plasmatic condition [32]. 

Table 6. The effect of FXIII levels in the lower tertile on the risk of CAD in patients with 

an elevated fibrinogen concentration. 

Subjects CAS−MI− CAS+MI− CAS+MI+ CAS+ MI+ 

FXIII activity 

upper tertile (n) 
21 33 40 73 47 

FXIII activity 

lower tertile (n) 
24 24 22 46 24 

Adjusted OR – 0.65 (0.25, 1.69) 0.38 (0.15, 0.98) * 0.52 (0.23, 1.17) 0.39 (0.16, 0.96) * 

FXIII antigen 

upper tertile (n) 
19 32 40 72 46 

FXIII antigen 

lower tertile (n) 
24 25 24 49 25 

Adjusted OR – 0.57 (0.23, 1.42) 0.36 (0.14, 0.91) * 0.49 (0.22, 1.08) 0.35 (0.14, 0.86) * 

Elevated fibrinogen concentration represents the upper tertile of fibrinogen concentration (>4.3 g/L) in all 

study subjects. ORs were calculated by comparing different patient groups with the CAS−MI− (clinical 

control) group. The respective 95% CI values are shown in parenthesis after the OR values. ORs were 

adjusted for gender, age, smoking, Lp(a), serum triglyceride and homocysteine concentrations. CAS+ and 

CAS−, patients with and without coronary atherosclerosis, respectively; MI+ and MI−, patients with and 

without a history of myocardial infarction, respectively; OR, odds ratio; n, number of individuals in each 

subgroup; * p < 0.05. 

The biochemical consequences of the two major FXIII-B polymorphisms have been explored only 

partially. In plasma, Arg95 FXIII-B showed accelerated dissociation from FXIII-A2 following 

thrombin and Ca2+-induced FXIII activation; however, the Kd of the FXIII-A-FXIII-B interaction was 

not different for the His95 and Arg95 variants of the purified B-subunit [17]. It is interesting that the 

binding epitope of an anti-FXIII-B monoclonal antibody that prevents the complex formation between 

the two subunits involves, or is very close to, this polymorphic site [24]. In a study involving  

444 subjects (252 patients with venous thrombosis and 192 controls), Komanasin et al., found no 

differences in FXIII activity, subunit antigen levels and FXIII-A2B2 levels in relation to His95Arg 

genotype [17]. In our study on 687 subjects, including 237 controls and 450 CAD patients, carriers of 

the Arg95 allele had slightly, but significantly, elevated FXIII activity and FXIII-A2B2 antigen levels. 

Similarly, Arg95 carriership was associated with significantly elevated FXIII activity in clinical 

controls, but not in the CAD subgroups. 

To our knowledge, this is the first report in which the effect of the FXIII-B intron K nt29756 C>G 

polymorphism on FXIII levels was investigated. The presence of the G allele resulted in significantly 

lower FXIII activity and antigen level in the total study population, as well as in all study groups. The 

reason for the association of the FXIII-B intron K polymorphism and decreased FXIII levels is not 

known. One can speculate that the replacement of 10 C-terminal amino acids plus the added extra  

15 amino acids to the C-terminus might influence either the interaction of the two subunits or the 

clearance of FXIII-A2B2 from the circulation. The former hypothesis is contradicted by the findings 
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that locate the FXIII-A binding epitope in the first two N-terminal sushi domains [24,33]. Further 

studies are warranted to explain how the FXIII-B splice variant influences plasma FXIII levels. 

Carriership of the minor allele of either the FXIII-A His95Arg or FXIII-B intron K polymorphism 

did not influence the risk of CAD significantly, although statistically non-significant protection by the 

intron K polymorphism against CAD (ORs in the range of 0.73–0.78) was revealed. It was shown in 

our earlier study that the protective effect of FXIII-A Val34Leu polymorphism against MI prevailed 

only in individuals with a high fibrinogen concentration [12]. The protection against CAD by the 

FXIII-A Leu34 allele at a high fibrinogen concentration might be related to the fibrinogen 

concentration-dependent effect of this polymorphism on the fibrin clot structure. At a high fibrinogen 

level, plasma samples from homozygotes for the Leu34 allele form clots having a looser structure, 

thicker fibers and increased permeability, while at low fibrinogen concentrations, the fibrin meshwork 

had thinner, more tightly-packed fibers and lower permeability [10]. Similarly to the FXIII-A 

Val34Leu polymorphism, the protection by the intron K G allele against CAD was evident only for 

patients with elevated fibrinogen concentration; the adjusted OR was reduced by approximately 60% 

for the CAS+MI−, CAS+MI+, CAS+ and MI+ groups. It is to be noted that smoking is an important 

determinant of fibrinogen level [34], and indeed, in our study population, current smokers had a 

significantly higher median fibrinogen level (4.21 g/L, interquartile range: 3.53, 5.08) than currently 

non-smoking individuals (3.85 g/L, interquartile range: 3.16, 4.60; p < 0.001). For this reason, the 

results adjusted for current smoking and other confounders were also presented in Tables 2–6 and 

Figure 1. Adjusted results demonstrate that the putative protective role of the FXIII-B intron K 

polymorphism was independent of the investigated cardiovascular risk factors. 

Besides the gene-environment interaction, gene-gene interactions can also modify the risk of  

CAD [35]. It has been reported that the combined presence of both FXIII-A Leu34 and FXIII-B Arg95 

alleles lowered the risk of nonfatal MI in postmenopausal women [20]. No such interaction between 

these polymorphisms could be demonstrated in our study. Investigating the interaction of FXIII-A 

Val34Leu and FXIII-B intron K nt29756 C>G polymorphisms, a surprising interaction between the 

two polymorphisms was revealed. When compared to individuals, wild-type for both polymorphisms,  

the protective effect of the intron K G allele disappeared in the absence of the Leu34 allele. The results 

demonstrated in Table 4 suggest that the protective effect of intron K G carriership is due to that 

portion of patients who also possess the FXIII-A Leu34 allele. Without the concomitant presence of 

this FXIII-A polymorphism, the FXIII-B intron K G carriership is not protective. The same seems to 

be the situation with the protective effect of the FXIII-A Val34Leu polymorphism. In a previous study 

involving a higher number of individuals, Leu34 carriers had a significantly decreased risk of MI in 

patients with a fibrinogen level in the upper quartile (OR: 0.41, 95% CI: 0.18, 0.93) [12]. In the present 

study, there was also a tendency of the decreased risk of MI in Leu34 carriers (OR: 0.61, 95% CI: 

0.33, 1.12 unadjusted) with the fibrinogen level in the upper tertile (data not shown). However, the 

protective effect of the Leu34 allele prevailed only in the presence of the intron K G allele (Table 4). 

The results of the synergy factor calculation proved the synergetic action of the two polymorphisms in 

the protection against CAD. 

It has been shown that the homozygous presence of the FXIII-A Leu34 allele decreased the FXIII 

levels in CAS+ and MI+ patients [36]. As FXIII-B intron K nt29756 G carriership uniformly decreased 

FXIII activity and antigen levels and the decrease was most prominent when the intron K nt29756 G 
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and FXIII-A Leu34 alleles were both present, it was presumed that their protective effect is related to 

decreased FXIII levels. The hypothesis that the K nt29756 C>G polymorphism, in combination with 

the FXIII-A Val34Leu polymorphism, exerts its beneficial effect through the decrease of the FXIII 

level was supported by the protection against MI of patients with FXIII levels in the lowest tertile. It 

would be interesting to study the interaction of FXIII polymorphisms with SNPs in other clotting 

factors, platelet proteins, ion channel protein, etc. [37–39]. 

The study has several limitations, including the general limitations of case-control studies [40]. To 

overcome the latter problems, a prospective study concerning the effect of FXIII-B polymorphisms on 

the risk of myocardial infarction has been initiated in our laboratory. Due to the relatively low number 

of enrolled individuals, results in the groups with fibrinogen levels in the upper tertile should be 

confirmed on a larger cohort. A larger study population would also allow the exploration of the gene 

dosage effect. Among MI survivor patients, only those referred to cardiac catheterization were 

included in the study, which represents a selection bias. The study was conducted only on Hungarian 

patients; its extension to cohorts from other nations could provide further support to the protective 

effect associated with the intron K nt29756 G allele. 

4. Experimental Section 

4.1. Patients 

Six hundred and eighty seven consecutive patients admitted for coronary angiography to investigate 

suspected coronary artery disease were recruited for the study from a single center (Institute of 

Cardiology, University of Debrecen, Debrecen, Hungary) over a one and a half year period. Patients 

with ≥50% stenosis in a major coronary artery or in one of their branches were graded as coronary 

atherosclerosis positive (CAS+), while patients with no or less significant stenosis were graded as 

CAS−. Patients with a positive or negative history of MI were classified as MI+ or MI−, respectively. 

Patients without significant coronary stenosis and with the lack of a history of MI were considered as 

the clinical control group (CAS−MI−) to which subgroups of patients with CAS and/or MI 

(CAS−MI+, CAS+MI−, CAS+MI+) were compared. Patients in the small CAS−MI+ group suffered 

MI in the absence of significant coronary stenosis. In this subgroup, the rupture of plaques that did not 

cause significant stenosis and/or coronary vasospasm must have been responsible for the previous MI. 

Results with these patients are shown in Table 1, but the small number excluded any kind of 

meaningful statistical evaluation. A large number of individuals (n = 994) representing the general 

Hungarian population were recruited in the framework of the Hungarian General Practitioners’ 

Morbidity Sentinel Stations Program [41] and served as population controls for the study. 

All enrolled individuals were informed about the study according to the study protocol and gave 

written informed consent. Ethical approval for the study was obtained from the Regional Ethics 

Committee of the Medical Faculty, University of Debrecen, Hungary (identification code: DEOEC 

RKEB/IKEB 3190-2010, 28 June 2010). 
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4.2. Blood Sampling and Laboratory Methods 

Fasting blood samples were collected from the antecubital vein into vacutainer tubes (Beckton 

Dickinson, Franklin Lakes, NJ, USA) without anticoagulation or with anticoagulant (EDTA or 1/10 

volume of 0.109 M citrate). Serum and plasma were separated by centrifugation, and samples were 

stored at −80 °C until determination. DNA was isolated from the buffy coat of citrated blood samples 

by a QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). 

For the determination of p.His95Arg and intron K nt29756 C>G polymorphisms, a dual color 

experimental protocol was used, allowing the determination of both polymorphisms from a single 

reaction mix. The amplification primers were as follows: forward, 5'-gtaaaagacaagcttagtttcatc-3' (24 bp), 

and reverse, 5'-ctacaggttggttgagaagac-3' (21 bp), for the p.His95Arg polymorphism; and forward,  

5'-ttccaagacaaaggtaagaag-3' (21 bp), and reverse, 5'-aacgttgctttcacttcag-3' (19 bp), for the intron  

K nt29756 C>G polymorphism. The primers were purchased from Integrated DNA Technologies 

(Leuven, Belgium). The following detection probes were used: sensor, 5'-ataacgacatgttctcttgaattttataca-

FLUORESCEIN-3' (29 bp), and anchor, 5'-LC610-actttacatcagagatgtaaccattactcaggtc-Ph-3' (34 bp), 

for the p.His95Arg polymorphism; and sensor, 5'-gtttgtttggtgtaaaaaaaatgaagaaaatatt-FLUORESCEIN-

3' (34 bp), and anchor, 5'-LC670-ttttttctttgcaattgccataaagtatgagtgg-Ph-3' (34 bp), for the intron K 

nt29756 C>G polymorphism. Detection probes were synthesized By Kromat Ltd. (Budapest, 

Hungary). The PCR reaction mix contained 100 ng of genomic DNA, 4 µL of Genotyping Master 

solution (Roche Diagnostics, Mannheim, Germany), 10 pmol/µL of each amplification primer,  

2 pmol/µL of each detection probe and 4.25 mM of MgCl2 in a 20-µL final volume. Amplification was 

performed in 40 cycles with annealing at 51 °C for 10 s. Fluorescence resonance energy transfer 

detection and melting curve analysis were carried out in a LightCycler® 480 real-time PCR instrument 

(Roche Diagnostics GmbH, Mannheim, Germany). Detailed information on the pipetting scheme and 

the LightCycler protocol are available on request. The methods were validated by sequencing DNA 

samples from 40 individuals. 

The FXIII-A p.Val34Leu polymorphism was determined according to a protocol developed in our 

laboratory [42]. FXIII activity was measured by the ammonia release assay [43] using the REA-chrom 

FXIII kit (Renal-ker, Budapest, Hungary). The FXIII-A2B2 antigen concentration was determined  

by sandwich ELISA [44]. Lipid parameters, C-reactive protein (CRP), fibrinogen and homocysteine 

concentrations were measured by routine laboratory methods. 

4.3. Statistical Analysis 

The distribution of parameters was examined by the Kolmogorov–Smirnov test. The results of 

continuous variables were expressed as the mean ± SD, while the results of non-continuous variables 

were shown as the median and interquartile range. Multiple linear regression analysis was performed  

to adjust for parameters independently associated with FXIII levels. The significance of differences in 

mean FXIII levels was tested by the analysis of variance (ANOVA) using the Bonferroni correction for 

multiple comparisons. Differences in category frequencies were evaluated by the χ2 test. The effect of 

each polymorphism was analyzed in logistic regression models and expressed as the odds ratio (OR) 

and the 95% confidence interval (CI). Adjusted ORs were obtained by the use of a model that included 
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the polymorphism and all independently-associated parameters. A p-value of less than 0.05 was 

considered to indicate statistical significance. Statistical analyses were performed using the Statistical 

Package for the Social Sciences (SPSS 19.0, Chicago, IL, USA). The synergy factor was calculated as 

described by Cortina-Borja et al. [45]. 

5. Conclusions 

The FXIII-B p.His95Arg polymorphism did not influence the risk of CAS or MI, while the FXIII-B 

intron K nt29756 G allele was associated with significant protection against CAS and MI in patients 

with a fibrinogen level in the upper tertile. Interestingly, the protective effect of the intron K nt29756 

G allele prevailed only in the presence of the FXIII-A Leu34 allele, and a synergism between the two 

polymorphisms was revealed. Carriers of the intron K nt29756 G allele had significantly lower plasma 

FXIII activity and antigen concentration. As FXIII levels in the lower tertile were also associated with 

significant protection against MI, it is suggested that the protective effect of combined FXIII-B intron 

K nt29756 G and FXIII-A Leu34 carriership is related to decreased FXIII levels. Due to the limitations 

of case-control studies and to the relatively low number of patients with an elevated fibrinogen level,  

the conclusions should be supported by further follow-up studies. 
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