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Introduction. Left ventricular diastolic dysfunction (LVDD) and atrial fibrillation (AF) are connected by pathophysiology and
prevalence. LVDD remains underdiagnosed in critically ill patients despite potentially significant therapeutic implications
since direct measurement cannot be performed in routine care at the bedside, and echocardiographic assessment of LVDD in
AF is impaired. We propose a novel approach that allows us to infer the diastolic stiffness, β, a key quantitative parameter of
diastolic function, from standard monitoring data by solving the nonlinear, ill-posed inverse problem of parameter estimation
for a previously described mechanistic, physiological model of diastolic filling. /e beat-to-beat variability in AF offers an
advantageous setting for this.Methods. By employing a global optimization algorithm, β is inferred from a simple six parameter
and an expanded seven parameter model of left ventricular filling. Optimization of all parameters was limited to the interval ]0,
400[ and initialized randomly on large intervals encompassing the support of the likelihood function. Routine ECG and arterial
pressure recordings of 17 AF and 3 sinus rhythm (SR) patients from the PhysioNet MGH/MF Database were used as inputs.
Results. Estimation was successful in 15 of 17 AF patients, while in the 3 SR patients, no reliable estimation was possible. For
both models, the inferred β (0.065± 0.044ml−1 vs. 0.038 ± 0.033ml−1 (p � 0.02) simple vs. expanded) was compatible with the
previously described (patho) physiological range. Aortic compliance, α, inferred from the expanded model (1.46 ± 1.50ml/
mmHg) also compared well with literature values. Conclusion. /e proposed approach successfully inferred β within the
physiological range. /is is the first report of an approach quantifying LVDF from routine monitoring data in critically ill AF
patients. Provided future successful external validation, this approach may offer a tool for minimally invasive online
monitoring of this crucial parameter.

1. Introduction

Heart failure (HF) and atrial fibrillation (AF) are both
frequent cardiovascular conditions that share an increasing
prevalence and cause significant morbidity, mortality, and
socioeconomic burden [1–5]. Incidence correlates with age
[6–8]. In the USA, HF is the most frequent reason for
unplanned/medical ICU admission, either primarily as acute
HF or as an aggravating comorbidity [9].

About half of HF patients present with left ventricular
diastolic dysfunction (LVDD) [5, 10, 11], a condition termed
“heart failure with preserved ejection fraction” (HFpEF).
LVDD and AF are closely connected by pathophysiology
and prevalence: LVDD precipitates AF, and the absence of
atrial contraction in AF aggravates LVDD [12–15]. AF is the
most common arrhythmia in HF with 65% of HFpEF
presenting with AF [16]. AF is associated with increased
mortality in HFpEF [17]. Although in cardiology, HFpEF
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has become a very common diagnosis, LVDD remains
underdiagnosed in the ICU population, despite a potentially
large impact on therapeutic decisions [18].

In critically ill patients, prevalence of AF is increased
[19] and left ventricular diastolic function (LVDF) may be
additionally impaired [20]. Assessment and monitoring of
LVDF in presence of AF is challenging as standard
echocardiographic measures (E/A, E/E′) are difficult to
obtain and do not allow for continuous monitoring [21].
Acquisition of invasive measures such as the left ven-
tricular diastolic time constant (τ) is not feasible at the
bedside [22].

/e fundamental cardiovascular physiology approach to
quantify diastolic cardiac function involves the recording of
pressure-volume loops under varying preload conditions to
estimate the nonlinear diastolic pressure-volume relation-
ship [23]:

PLV VLV(  � PLV0 e
β VLV−VED0( ) − 1 , (1)

where β quantifies the exponential diastolic ventricular
stiffness, PLV0 represents the pressure scaling factor, and
VED0 corresponds to the unstressed volume.

According to Frank–Starling’s law and given an other-
wise stationary state, variations in end-diastolic volume
(EDV) determine beat-to-beat stroke volume variability
[24]. In the absence of synchronised atrial contraction in AF,
EDV primarily depends on the duration of filling, the di-
astolic properties of the ventricle, preload, and the end-
systolic volume, which in turn depends on the previous
cardiac cycle and the systolic properties of the ventricle.
Previous attempts to quantify the relationship between
variable filling times in AF and stroke volume have produced
heterogeneous results [25].

/e application of nonlinear mathematical represen-
tations of physiology based on solving the inverse problem
of parameter estimation from available observations/
measurements has become feasible at the bedside due
to the recent availability of affordable high-performance
computational resources [26, 27]. For such a model-based
approach, AF patients are a particularly promising pop-
ulation due to the high intrinsic variability in observable
physiological time series. /is variability effectively acts as
a continuous high-bandwidth perturbation of the un-
derlying biological system, facilitating system identifica-
tion and subsequent parameter estimation within a short
observation period.

Zenker et al. have previously described a simple, non-
linear, mechanistic model of the left ventricle [28]. We
hypothesized that inversion of this model would allow
quantitative inference of parameters of LVDF from routine
ECG and invasive arterial pressure (ABP) recordings in AF
patients under minimal assumptions. /e aim of this study
was to assess whether inference of β, the exponential di-
astolic ventricular stiffness, is feasible using global optimi-
sation. Additionally, we aimed to evaluate whether
uncertainty quantification from the local covariance would
allow for robust identification of individual patients in which
inference failure occurred.

2. Materials and Methods

2.1. Ethical Approval. /e dataset used in this study is freely
available and fully deidentified. /us, no ethical restrictions
apply in this context.

2.2. Data Acquisition. We used the PhysioNet [29] Massa-
chusetts General Hospital/Marquette Foundation (MGH/
MF) Waveform Database [30]. It contains recordings of
patient’s physiological signals including ECG and invasive
ABP. /e data are 360Hz 8-bit time series in the PhysioNet
binary format. Patients were selected using the patient guide,
which contained limited clinical information such as cardiac
rhythm. We screened the entire database with regard to
documented cardiac rhythm and extracted datasets for two
patient groups: the AF group (17 patients) included all
patients with AF without pacemakers or intermittent non-
AF cardiac rhythms in the available low-noise areas of the
recordings. /e sinus rhythm (SR) control group included 3
patients with documented SR without ECG alterations or an
arrhythmia described in the patient guide.

2.3. Signal Processing andData Selection. RR intervals (RRIs)
were calculated based on an ECGR peak detection algorithm
derived from methods described by Arzeno and coworkers
[31]. Pulse pressures (PPs) were computed from ABP re-
cordings using an algorithm adapted from Zong et al. [32].
Manual selection of low-noise intervals was then performed
to extract 800 pairs of RRIs followed by pulse pressures
(PPs). /e resulting RRI and PP time series are made
available as text files in the online supplement.

2.4. Software Development and Implementation. /e main
data processing and inference routine was implemented in
C++ using the ADOL-C 2.63 [33], Armadillo v8.2 [34],
Boost v1.60 [35], and TRNG4 4.19 [36] libraries. /e data
were visualised and postprocessed using Python v.3.6 [37]
with the numpy v.1.13 [38], Matplotlib v.2.1 [39], pandas
v.0.19 [40], and SciPy v1.0 [41] packages. /e estimation of
the covariance usedMATLAB R2017a, (/eMathworks, Inc,
Natick, Massachusetts, USA). /e analysis code is available
in the online supplement Code.

2.5. Mathematical Model. /e mechanistic model of the left
ventricle used in this paper derives the diastolic filling be-
haviour from a simple ODE:

VED tdia(  � k3 tdia + C( −
1
β
ln

1− k1e
βk3(t+C)

k3
 , (2)

whose solution predicts end-diastolic volume, VED, from
filling times, tdia, the exponential diastolic stiffness param-
eter, β, the time shift constant, C, and two combined pa-
rameters k1 and k3, which in addition to β, the mitral valve
resistance, Rvalve, and the filling pressure, Pcvp, incorporate
parameters PLV0 and VED0 of the nonlinear pressure-volume
relationship [28].
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k1 �
−PLV0

Rvalve
e
−βVED0 ,

k3 �
PLV0

Rvalve
+

Pcvp

Rvalve
,

(3)

where k1 and k3 both include the term PLV0/Rvalve, with k1
additionally depending on β andVED0./is interdependence
warrants constraint considerations for valid combinations
when solving the inverse problem. More information on the
model parameters and the limits is provided in the online
supplement Expanded Methods-Modeling and Constraints
(available here).

/e model predicts volumes, whereas in routine data,
only pressure measurements are readily available. To convert
volumes into pressures, we assume a linear model of the
static aortic pressure-volume relationship, expressing pulse
pressures as a function of diastolic filling time tdia with the
aortic compliance, α, and the zero-offset, δ:

PPi �
VED tdia i( 

α
+ δ. (4)

Equations (2) and (4) jointly define the simple model (SM),
in which only the diastolic properties of the left ventricle and
aortic pressure-volume relationship are taken into account.

After fitting the SM resulting from equation (4) to pa-
tient data, we observed a strong systematic dependence of
residuals on the RRI preceding the RRI directly determining
the filling duration. Such a dependence has previously been
attributed to variations of the inotropic state of the heart,
among other things [42, 43]. /e model was therefore ex-
panded to include a simple linear correction to compensate
these effects. /e pulse pressure of the ith beat for this ex-
panded model (EM) then depends on an additional factor k4
weighting the contribution of the prepreceding RRI:

PPi �
VED tdia i(  + k4 ∗ tdia i−1

α
+ δ. (5)

2.6. Global Optimisation. Since initial exploration showed
that efficient local optimization algorithms of various types
became trapped almost immediately in the local minima in
the neighbourhood of randomly chosen starting points, we
were forced to fall back to parallel tempering (PT) as a
computationally expensive global optimization technique to
obtain estimation results independent of subjective choices
of starting points [44]. /e likelihood was calculated as-
suming a normally distributed, independent measurement
error with a standard deviation (SD) of 12mmHg for PPs. To
minimize the potential influence of assumptions on results,
we constrained optimization for all parameters to ]0, 400[, a
range much larger than known or reasonable physiological
constraints. Additionally, the optimization was initialised
randomly, rejecting randomly chosen starting points if the
local log-likelihood did not exceed a threshold of −5208, an
empirically chosen limit corresponding to the likelihood at a
sum of squares error of 1,500,000 mmHg2. /is was done to
ascertain initialisation of the PT on the support of the

likelihood function to obtain appreciable acceptance rates.
Based on experience from exploratory sampling runs to
determine the support of the likelihood function, the fol-
lowing initialization intervals were chosen: k1, β, and C by a
uniform distribution in log space ]−40, 4[, k3 by a uniform
distribution ]120, 400[, α by a uniform distribution ]0, 5[,
and δ by a uniform distribution ]20, 80[.

We ran 40 million PT samples using 24 chains, with a
randomised starting point for each chain within the support
and a multivariate Gaussian proposal distribution with a
diagonal, empirically determined covariance fixed across all
patients. /e chains were separated by an exponential
temperature ladder with base 6. /e code, data, and in-
structions are made available in the online supplement
(available here).

2.7. Statistics/Uncertainty Quantification. /e best (maxi-
mum) likelihood vector (BLV) seen by the sampler was used
to compute Pearson’s R2 as a measure of observed fraction of
variation explained (FVE) by the model. At this parameter
vector, the uncertainty was calculated by estimating the
covariance from a local Hessian, regularized following the
recommendations of Gill and King [45]. Details are dis-
cussed in the online supplement Expanded Methods-
Uncertainty Quantification (available here).

/e residuals with respect to the filling and prefilling
interval were evaluated for any systematic errors. All data are
presented as mean± standard deviation (SD). Groups were
compared using theMann–Whitney rank sum test, and a two-
tailed p< 0.05 was considered statistically significant [46].

3. Results

3.1. Patient Population. /e analysis included 17AF and 3 SR
patients with mean age 72.5± 9.79 yrs and 37.3± 25.8 yrs,
respectively. /e SR group did not have any documented
preexisting cardiovascular diseases and included two patients
with orthopaedic/trauma diagnosis and one with sepsis. /e
AF group included 10 patients with various cardiovascular
primary diagnoses, four patients with gastrointestinal di-
agnoses, and one patient each with sepsis, cerebral haemor-
rhage, and renal calculus with retroperitoneal haematoma.

Mean RRIs and PPs of the individual patient did not
differ significantly between AF and SR groups (0.68± 0.11 s
vs. 0.76± 0.04 s, p � 0.20; 71.1± 17mmHg vs. 57.8±
18mmHg, p � 0.20). Individual variability expressed as SD
of RRIs and PPs was significantly higher in the AF group
compared to the SR group (SD of RRI 0.12± 0.04 s vs.
0.024± 0.01 s, p< 0.005; SD of PP 12.45± 5.65mmHg vs.
2.89± 0.37mmHg, p< 0.005). Within the AF group, two
patients (Patient IDs: mgh013 and mgh130) displayed a low
variability of RRI (SD of RRI 0.06 s and 0.048 s, respectively)
similar to the SR group.

3.2. Population Level Estimation Results: Goodness of Fit and
Uncertainty Estimation. /e BLVs for both simple model
(SM) and expanded model (EM) provided excellent fits to
the observed RRI-PP relationships in 15 of 17 AF patients,
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with the EM largely eliminating the systematic dependency
on the RRI preceding the RRI determining the filling time.
FVE was 0.53± 0.17 vs. 0.70± 0.21, p � 0.007 for SM and
EM, respectively. For SR patients, both models were unable
to provide adequate fits, as evidenced by the low values of
FVE (0.017± 0.013 vs. 0.062± 0.04, p � 0.38). Examples are
provided in Figure 1, showing a side-by-side comparison of
the models for a typical sinus and AF patient. Plots of all
patients are available in the online supplement Expanded
Results (available here).

BLV values of β in AF patients were 0.065± 0.044ml−1 vs.
0.038± 0.033ml−1 (p � 0.02) for SM and EM, respectively.
/e EM values of 15 out of 17 AF patients were within the
range reported by Kass et al. (0.044± 0.024ml−1) [47], whilst
on average slightly exceeding the range described by Schmitt
et al. (0.023± 0.006ml−1) [48], whose measurements were
performed in a younger and healthier cohort, who may quite
plausibly present with a more compliant ventricle. For all SR
patients, values of β were in a similar but higher range
(0.096± 0.049ml−1 vs. 0.11± 0.016ml−1 p � 0.66).

/e only other estimated parameter for which we were
able to find literature values is capacitive aortic compliance
in ml/mmHg. /is was reported in the study by Cohn et al.,
Duprez et al., Liu et al., and McVeigh et al. [49–52] ranging
from 0.8ml/mmHg to 2.2ml/mmHg. SM and EM showed
values of 3.22± 2.11ml/mmHg vs. 1.46± 1.50ml/mmHg
(p � 0.04), respectively, for AF patients. /e inferred aor-
tic compliance values of the expanded, but not the simple,
model thus compared well with the physiological range.

For both models, the residuals with respect to filling
time, prefilling interval, and observed pulse pressure were
inspected. A typical example for an AF patient is shown in
Figures 2(a)–2(c). For both models, the residuals with re-
spect to filling time appear to be randomly distributed. In the
residuals with respect to the prefilling interval, the de-
pendence seen when applying SM is no longer present for
the EM. In the case of dependence of residuals on the ob-
served pulse pressure, SM shows a stronger correlation than
the EM.

/e parameters discussed and their estimated individual
errors, as well as the FVE for all individual patients, are
summarised in Table 1.

3.3. Individual Inference Results: Identifying Inference Failure.
/e FVE values in Table 1 allow the identification of one
patient (identifier: mgh145) for which both models are not
able to explain more than 13% of the observed variation.
Further investigation of this patient showed that the mea-
surement data violated themodel assumption of stationarity,
as seen in Figure 3.

Another outlier can be seen in the values of β for patient
mgh130. Whilst this patient shows values within the
physiological range for the simple model, the expanded
model shows an extreme value of 0.005ml−1, which is an
entire order of magnitude smaller than the expected range.
Looking more closely at the input data, the patient shows a
linear trend without the nonlinear plateau seen in the plot of
pulse pressure vs. filling time as is present in the other AF

patients. Figure 4 shows the plot for mgh130 as compared to
typical AF patients in Figure 1.

A further tool for identification ofmodel failure was tested
through estimation of the error associated with the parameter
vector from the local Hessian./e values are shown in Table 1
for the estimated error on β. Comparison between simple and
expanded model shows a mean value across all patients of
0.03± 0.03ml−1 vs. 0.009± 0.008ml−1 (p � 0.01), suggesting a
significantly smaller estimation uncertainty in the expanded
model, in addition to the larger FVE. Similarly, comparing the
error on the aortic compliance, α, yields 4.54± 4.31ml/mmHg
vs. 1.38± 1.48ml/mmHg, p< 0.05. Unfortunately, the esti-
mation of the covariance did not flag the previously described
model failures or highlight any new AF patients when looking
at the errors on β or α.

To summarize, we were able to identify a measure of the
diastolic ventricular stiffness within the physiological range
for both models from routine data using a mechanistic
mathematical model. /e simple model described only di-
astolic features of the left ventricle but produced a strong
dependence in residuals with respect to the prefilling interval.
An expansion of the model using a correcting term, which
takes the RR interval prior to filling into account, not only
largely eliminated this dependency but additionally provided
estimates of aortic compliance within the physiological range.

4. Discussion

4.1. Inference Results. Our hypothesis was that model-based
quantitative inference would enable us to determine expo-
nential diastolic ventricular stiffness, β, an important
quantitative parameter of diastolic cardiac function, from
ECG and ABP measurements in patients with AF, but not in
patients with sinus rhythm. /e probability that all global
estimates with global search initialized across and con-
strained to a huge interval would by chance almost without
exception converge to values within the comparatively tiny
physiological range corresponding to approx. 0.05% of the
constraint interval appears vanishingly small. /us, our data
clearly support this hypothesis./is is, to our knowledge, the
first report of quantitative estimation of diastolic ventricular
function from routine clinical monitoring data in patients
with AF.

Not only did employing the expanded model result in
improved fits as was expected but also allowed inference of
an additional parameter, aortic compliance, within the re-
ported physiological range of 0.8ml/mmHg to 2.2ml/
mmHg. Interestingly, estimation uncertainty was reduced
for the expanded model, as well. Whether this is an artefact
of the regularized uncertainty estimation procedure in the
presence of ill-posedness and thus local noninvertibility of
the Hessian at the maximum likelihood estimate or an effect
of reduced misspecification remains to be elucidated.

4.2. Identifiability of Inference Failure. With respect to po-
tential clinical application, robust and, ideally, automatically
determining valid individual inference results is crucial. In
this investigation, we observed a case in which the violation
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of the model assumption of stationarity resulted in an ex-
tremely low FVE for both models. In the expanded model, a
second outlier was identifiable only through the implausibly
low (by an order of magnitude below the physiological range)
β value. When inspecting the data, we found that this patient
did not exhibit the nonlinear plateau seen in the other pa-
tients, resulting in the optimization effectively converging to a
linear reduced model as β approaches zero rather than the full
nonlinear model. Neither of these patients were identifiable
from the covariancematrix at the point of best likelihood seen
by the sampler when inspecting the errors on β and aortic
compliance, suggesting either a thresholding approach or
comparison of FVE with a reduced linear model as possible
ways of identifying this type of inference failure induced by
insufficient or nonstationary data in practice.

In the SR patients, no adequate fit to the observed pulse
pressures was achieved, as evidenced by the low FVE values
and supported by visual inspection of fits and residuals. Yet,
the inferred values of β were only slightly above the phys-
iological range. Inspecting the errors as estimated from the
covariance matrix showed larger errors for both β and aortic
compliance. /e actual usefulness of this estimation, how-
ever, appears questionable as the model’s assumptions are
violated by the underlying physiology in sinus patients.
Ultimately, only experimental corroboration will determine
usefulness in the clinical setting.

When examining residuals for systematic errors and
comparing results between the simple and expanded
model, it becomes apparent that focusing on the diastolic
properties of the ventricle only cannot explain the entire beat-
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Figure 1: Observed (green) vs. predicted (blue for the simple model, red for the expanded model) relationship between pulse pressures
(PPs) and filling times for a typical sinus rhythm patient (mgh079) (a) and a typical atrial fibrillation patient (mgh126) (b). (A) Simple
model. (B) Expanded model.
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to-beat variability. Taking into account the systematic de-
pendence on the prefilling interval in the expanded model
largely resolved this systematic dependence in the residuals

but not the systematic dependence of residuals on observed
values. /is suggests a role for more realistic, physiologically
motivated models directly accounting for effects of end-
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systolic volume, inotropic state, and afterload on ventricular
performance.

4.3. Clinical Relevance. Our findings, if transferable to the
bedside, are of high clinical importance for the large group of
ICU patients with combined AF and LVDD.

To our knowledge, no epidemiological data on the
combined prevalence of LVDD and AF in critically ill pa-
tients exist in the literature, but it is likely to be high.
Quantification of LVDD is impaired in presence of AF, while
it is of significant clinical importance in critically ill patients.

Treatment of acute heart failure in the ICU typically focuses
on adjusting systolic function, volume balance, and pe-
ripheral resistance, usually based on combining volume
therapy with catecholaminergic inotropes and vasopressors.
/ese catecholamines may further impair diastolic function,
if their contractile effect outweighs their lusitropic effect, a
condition commonly referred to as overstimulation [53].
LVDD plays a key role in overstimulation, and presence of
inflammation may further aggravate this mechanism [53].
Milrinone and levosimendan, in contrast, have been shown
to improve diastolic function [54–56]. Also, LVDD plays a

Table 1: Summary of patient characteristics and results for both models. /e results were rounded to three significant figures where
applicable.

Patient Age Rhythm Mean
RR± SD (s)

Mean
PP± SD
(mmHg)

FVE
simple
model

β simple
model±EE

(ml−1)

α simple
model±EE
(ml/mmHg)

FVE
expanded
model

β expanded
model±EE

(ml−1)

α expanded
model

(ml/mmHg)
mgh013 73 AF 0.787± 0.06 72.1± 7.89 0.36 0.0755± 0.0215 3.86± 3.58 0.48 0.0136± 0.00205 0.711± 0.621
mgh019 79 AF 0.75± 0.11 46.5± 12.9 0.5 0.0649± 0.104 3.71± 8.11 0.82 0.150± 0.0244 0.684± 0.237
mgh023 78 AF 0.794± 0.19 108.3± 18.3 0.73 0.0347± 0.0050 2.80± 2.14 0.91 0.0124± 0.00113 1.25± 0.985
mgh027 73 AF 0.671± 0.175 70.6± 19.1 0.45 0.0700± 0.0343 4.07± 2.48 0.64 0.0471± 0.0104 1.70± 0.594
mgh032 78 AF 0.733± 0.15 76.0± 15.6 0.82 0.0378± 0.0103 3.01± 3.39 0.93 0.0198± 0.00415 0.880± 2.36
mgh105 86 AF 0.628± 0.16 51.5± 8.70 0.53 0.128± 0.0655 7.60± 11.5 0.73 0.0368± 0.00916 5.37± 3.88
mgh126 46 AF 0.830± 0.203 55.9± 8.47 0.77 0.0218± 0.0051 4.70± 5.87 0.87 0.0335± 0.00855 4.98± 4.13
mgh129 63 AF 0.420± 0.08 80.8± 22.0 0.51 0.0574± 0.0269 1.03± 2.68 0.74 0.0472± 0.00516 0.529± 0.398
mgh130 73 AF 0.856± 0.05 59.7± 4.06 0.5 0.105± 0.0621 5.62± 10.38 0.74 0.0052± 0.00112 0.622± 0.177
mgh135 65 AF 0.549± 0.11 88.9± 11.8 0.44 0.0523± 0.0089 0.324± 0.432 0.47 0.0553± 0.0220 0.333± 0.463
mgh139 64 AF 0.608± 0.13 82.4± 13.8 0.7 0.0387± 0.0084 2.33± 1.41 0.834 0.0187± 0.00796 0.652± 0.749
mgh141 73 AF 0.714± 0.14 56.9± 12.7 0.41 0.0125± 0.0034 0.252± 0.069 0.58 0.0112± 0.00237 0.461± 0.208
mgh144 71 AF 0.735± 0.12 74.1± 7.69 0.52 0.0538± 0.0137 5.64± 2.27 0.76 0.0441± 0.0112 2.40± 3.69
mgh145 81 AF 0.578± 0.09 49.1± 10.6 0.13 0.0459± 0.0062 0.482± 0.151 0.14 0.0672± 0.0286 2.57± 3.85
mgh146 87 AF 0.637± 0.08 97.7± 8.94 0.34 0.0736± 0.0388 3.59± 14.83 0.46 0.0347± 0.00548 0.560± 0.260
mgh147 76 AF 0.533± 0.11 70.1± 24.6 0.61 0.0340± 0.0092 0.511± 0.481 0.86 0.0328± 0.00424 0.211± 0.215
mgh149 67 AF 0.706± 0.09 78.7± 8.15 0.64 0.194± 0.0845 5.18± 7.46 0.89 0.0110± 0.00173 0.955± 0.596
mgh059 25 S 0.717± 0.04 44.7± 2.73 0.02 0.160± 0.516 44.89± 177 0.09 0.118± 0.0823 19.8± 12.2
mgh079 20 S 0.813± 0.02 50.4± 2.64 0 0.0862± 0.241 10.93± 9.51 0.01 0.124± 0.0942 31.4± 24.6
mgh152 67 S 0.764± 0.02 78.4± 3.33 0.03 0.0409± 0.0226 27.7± 51.0 0.1 0.0880± 0.211 4.71± 3.12
AF� atrial fibrillation; S� sinus; RR� ECG R-peak intervals; PP� pulse pressure; SD� standard deviation; FVE� fraction of variation explained; β� left
ventricular diastolic stiffness; α� aortic compliance; EE� error estimate.
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Figure 3: Example of the nonstationary time series of pulse
pressures in patient mgh145, leading to inference failure due to
violation of modeling assumptions.

Pu
lse

 p
re

ss
ur

e (
m

m
H

g)

100

80

60

40

20

0.4 0.6 0.8
Filling time (s)

1.0 1.2

Observed pulse pressure

Figure 4: Example of atrial fibrillation patient (mgh130) without
nonlinear plateau of pulse pressures for higher filling times, leading
to estimation of a degenerate linear rather than the informative
nonlinear model.
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role in weaning pulmonary edema and weaning failure [57].
Our approach may thus enable automated, continuous, and
user-independent assessment of LVDF, providing online
guidance for differential intensive care therapy of shock. In
the future, the continuous monitoring of LVDDmay lead to
novel insights into the physiology of diastolic function under
volume and catecholaminergic therapy in the ICU setting. It
might also contribute to provide better guidance to volume
therapy in the AF subpopulation.

4.4. Limitations. An issue requiring further investigation is
the robust and automatic identification of inference failure.
/e approach of estimating the covariance from the Hessian,
which was not positive definite and thus noninvertible to a
classical covariance in this case, did no yield a robust
measure of such failure. /e noninvertible, nonpositive
definite Hessian is a well-known issue especially in the case
of nonlinear models with only partial identifiability and has
been discussed in depth with various suggested approaches
ranging from rethinking the model to employing Bayesian
sense sampling techniques [45]. We have been unable to
definitively resolve this issue so far. From our experience
when attempting to sample full Bayesian posterior distri-
butions for this model to more robustly estimate parameter
uncertainty, only complex algorithmic approaches such as
parallel tempering with large number of samples combined
with manual tuning of the sampling covariance for each
individual patient/dataset were able to generate reasonably
stable posterior estimates, which of course, aside from not
being amenable to full automation in the translational
setting, also carry the risk of introducing subjective bias
through the manual tuning process. We therefore decided
not to report such preliminary results at this stage.

/e advantage of robust inference failure identification is
the confidence in the quality and reliability of results.
Currently, haemodynamic monitoring devices that rely on
complex processing algorithms may provide information on
the quality of the input signal, e.g., as a signal quality index,
but they are often inherently unable to give any information
on the quality of the computed output. /is makes such
monitors a black box for the clinician, who has to use the
displayed parameters for clinical decisions without in-
formation on their reliability in the current clinical situation.

In this retrospective study, independent validation
measurements of the inferred β were not available. /ere-
fore, this preliminary report can only serve to stimulate
further research using prospective data that contain quan-
titative measurements of diastolic function, and data col-
lected during interventions to validate our findings. External
validation is also required to assess whether the inferred β
values may be usable in situations of estimation failure and
in SR patients, given that estimation results also approach
the physiological range in this pilot study. With regard to
inference methodology, the current approach using parallel
tempering as a global optimisation routine is limited to
relatively short stationary time series, which could be
addressed by applying sequential Monte Carlo techniques
[58] to allow for online estimation of time-varying

parameters by sequentially assimilating incoming mea-
surements. For bedside use of such an approach, robust
identification of model failure in the case of noisy input data
is required and future work needs to address this.

A further limitation is the small number of SR patients
matching the inclusion criteria, resulting in a significantly
younger and healthier SR group. /is, however, does not
question the findings. /e purpose of including an SR group
in the study design was to demonstrate that the approach
only works with broadband beat-to-beat variation as seen in
AF, not in SR, and that its failure can clearly be identified.

4.5. Outlook and FutureWork. /e observation of better fits
from the expanded model with reduced estimation un-
certainty, along with reduced, but not eliminated systematic
dependencies in residuals, suggests applying a physiologi-
cally more accurate model of left ventricular function, which
includes a quantitative description of systole.

Such a more complex approach will require further in-
vestigation of sampling techniques and algorithms as the
current simple model already proved challenging to estimate.
We believe this to be due to the highly nonlinear underlying
parameter space, which could only be effectively sampled by
the PT algorithm. Sequential Monte Carlo techniques may
work better if employed in a continuous tracking scenario, as
is required for clinical application, but the fundamental
challenge of estimation from distributions with narrow
support on a curved submanifold, which appears as the
primary source of the estimation difficulty, will remain.

5. Conclusion

In this study, we demonstrated for the first time that in-
ferring diastolic ventricular stiffness, β, from routine
monitoring data may be possible in ICU patients presenting
with AF. /is is of potentially high clinical importance for
the large group of ICU patients with combined LVDD and
AF because of relevant therapeutic implications. Uncertainty
estimation, via local evaluation of the covariance from the
Hessian, in the setting of an ill-posed, nonlinear problem did
not allow for robust identification of inference failure. In
order to translate the methodology to the bedside, further
work with regard to robust and automated identification of
inference failure and continuous parameter estimation is
needed. A crucial next step will be the prospective validation
of the quantitative correctness of the inferred parameter
values from clinical information.
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LVDD: Left ventricular dysfunction
HFpEF: Heart failure with preserved ejection fraction
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EDV: End-diastolic volume
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EM: Expanded model
PT: Parallel tempering
BLV: Best (maximum) likelihood vector
FVE: Fraction of variation explained
SD: Standard deviation
Model Parameters
α: Aortic compliance
β: Left ventricular diastolic stiffness
δ: Offset factor (linear compliance)
k1/k3: Combined factors of model
C: Factor from integration
Pcvp: Left ventricular filling pressure
PLV0: Pressure scaling factor of pressure-volume equation
Rvalve: Mitral valve resistance
VED0: Unstressed volume factor of pressure-volume
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