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Abstract: Fibrosis leads to organ failure and death, which is the final stage of many chronic diseases. Triptolide (TPL) is a terpenoid 
extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F (TwHF). Triptolide and its derivatives (Omtriptolide, 
Minnelide, (5R)-5-hydroxytriptolide) have been proven to have a variety of pharmacological effects. This study comprehensively 
reviewed the antifibrotic mechanism of TPL and its derivatives, and discussed the application of advanced nanoparticles (NPs) drug 
delivery system in the treatment of fibrotic diseases by TPL. The results show that TPL can inhibit immune inflammatory response, 
relieve oxidative stress and endoplasmic reticulum stress (ERS), regulate collagen deposition and inhibit myofibroblast production to 
play an anti-fibrosis effect and reduce organ injury. A low dose of TPL has no obvious toxicity. Under pathological conditions, a toxic 
dose of TPL has a protective effect on organs. The emergence of TPL derivatives (especially Minnelide) and NPs drug delivery 
systems promotes the anti-fibrosis effect of TPL and reduces its toxicity, which may be the main direction of anti-fibrosis research in 
the future. 
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Introduction
Fibrosis is a pathological deviation from injury repair caused by various causes, like autoimmunity, chronic viral infection, and 
toxicity (such as drugs, radiation, chronic ischemia, or alcohol), which is usually accompanied by over-deposition of extracellular 
matrix (ECM) (primarily collagen) and organ function damage.1,2 Almost every organ system is affected by fibrosis, which can 
include the heart, liver, kidneys, pulmonary system, and skin.3 However, the results of clinical treatment of fibrosis are not 
satisfactory. Tissue fibroproliferative disorders are responsible for nearly 45% of annual deaths from all diseases.4

TwHF (Figure 1) was first documented in the Compendium of Materia Medica and is an essential Chinese medicine.5 It has 
a long-term clinical application and functions in dispelling wind and dehumidification, promoting blood circulation and 
dredging collaterals, killing insects and detoxifying, and reducing swelling and pain. Many clinical researches have confirmed 
the therapeutic effects of TwHF on various diseases including interstitial pneumonia, systemic lupus erythematosus, multiple 
sclerosis, oral lichen planus, and rheumatoid arthritis.6–8 Triptolide (TPL) (Figure 2), as the most abundant terpenoid 
constituent of TwHF, is regarded as the active component with the greatest potential for translation from traditional to modern 
medicine.9 Previous investigations have shown that TPL has beneficial roles such as anticancer, anti-inflammatory, and 
regulation of immunity.10–12 In recent years, it has also been found to have therapeutic effects on fibrotic diseases, such as renal 
fibrosis (RF) caused by diabetic nephropathy.13 However, TPL has limited water solubility, oral bioavailability, and high doses 
cause serious toxicity, so a variety of TPL derivatives (Figure 2) have been exploited, such as Minnelide, Omtriptolide 
(PG490-88), (5R)-5-hydroxytriptolide (LLDT-8).14,15 In addition, the development of advanced technologies such as NPs has 
completely changed the drug delivery of TPL.16 In this review, we not only systematically review the pharmacological 
mechanism of TPL and its derivatives (Table 1, Figure 3), but also introduce the application of the cutting-edge NPs delivery 
system in TPL anti-fibrosis (Table 2), hoping to provide help for the future research and application of TPL.
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Figure 1 Tripterygium wilfordii Hook. F and its pieces of traditional Chinese medicine.

Figure 2 The structures of triptolide and its derivatives.

https://doi.org/10.2147/DDDT.S467929                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 3256

Jiang et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Pharmacological Mechanism of TPL and Its Derivatives

Models In vitro/In vivo Effects and Related Mechanisms Organ Drug References

Streptozotocin (STZ) induced DCM in rats, H9c2 cells Both in vitro and vivo Inhibit inflammation: NF-κB↓ Cardiac TPL [17]
high-sucrose-fat diet induced DCM in rats In vivo Inhibit inflammation and fibrosis: TLR4/NF-κB↓ Cardiac TPL [18]

Isoproterenol (ISO) induced MF in rats In vivo Inhibit inflammation and fibrosis: NF-κB / NLRP3↓ Cardiac TPL [19]

Transverse aortic constriction induced MF in rats In vivo Inhibit inflammation and fibrosis: TGF-β1/Smad 3, NLRP3↓ Cardiac TPL [20]
rat CFbs In vitro Inhibit cell proliferation and fibrosis: TGF-β1 /Smad3↓ Cardiac TPL [21]

suprarenal abdominal aorta constriction induced MF in rats In vivo Inhibit inflammation and fibrosis: Ang II, TGF-β, NF-κB↓ Cardiac TPL [22]

Ang II-induced cardiac fibrosis in mice, mouse CFbs Both in vitro and vivo Inhibit fibrosis: CyPA / CD147, NLRP3, NOX2, TGF-β/MAPK, TGF-β/ 
Smad2/ Smad3↓

Cardiac TPL [23]

ISO induced MF in rats In vivo Inhibit myocardial damage and fibrosis: Foxp3↓ Cardiac TPL [24]

Transverse aortic constriction induced MF in mouse, Mouse 
Cardiac Muscle Cell Line

Both in vitro and vivo Inhibit EndMT: USP14/Keap1/Nrf2, Snail, Slug and Twist↓ Cardiac TPL [25]

ISO induced MF in rats In vivo Inhibit fibrosis: PTEN↑ Cardiac TPL [26]

RIPF in rats, mouse AMs isolated from the BALM model, 
NIH3T3 cells

Both in vitro and vivo Inhibit oxidative stress and fibrosis: AMs 
/NADPH oxidase /ROS/myofibroblasts ↓

Pulmonary TPL [27]

HFL-1 cells In vitro Inhibit cells proliferation, migration and fibrosis: FAK/calpain↓ Pulmonary TPL [28]

BLM induced PF in rats, primary mouse lung fibroblasts Both in vitro and vivo Inhibit fibrosis: TGF-β/SMAD, MMPs/LOX/integrin, integrin-β1/FAK/YAP↓ Pulmonary TPL [29]
Radiation induced PF in mouse In vivo Inhibit fibrosis: IKKβ/NFκB, LOX↓ Pulmonary TPL [30]

Radiation induced PF in mouse, NIH3T3 cells Both in vitro and vivo Inhibit the activation of myofibroblasts: TGF-β1/ERK/Smad3↓ Pulmonary TPL [31]

Paraquat induced PF in mouse, BEAS–2B cells Both in vitro and vivo Inhibit cells migration and EMT: TGF-β↓ Pulmonary TPL [32,33]
BLM induced PF in mouse In vivo Inhibit EMT: NF-κB/Twist 1↓ Pulmonary TPL [34]

BLM induced PF in mouse In vivo Relieve ERS: GRP 78, CHOP↓ Pulmonary TPL [35]

BLM induced PF in mice, NHLF cells Both in vitro and vivo Inhibit fibrosis: TGF-β↓ Pulmonary PG490-88 [36]
DMN induced HF in rats, HSC-T6 cells Both in vitro and vivo Inhibit inflammation and fibrosis: NF-κB↓ Hepatic TPL [37]

CCL4 induced HF in mouse, mouse PBMCs, Both in vitro and vivo Regulates immunity and fibrosis: Th1, Th2, Th17 cells↓, Treg cells↑ Hepatic TPL [38]

Bile duct ligation induced HF in mice, Human intrahepatic 
biliary epithelial cells

Both in vitro and vivo Inhibit tissue necrosis, inflammation and fibrosis: RelB↓ Hepatic TPL [39]

obese db/db mice and methionine/choline-deficient diet- 

induced nonalcoholic fatty liver disease in mice

In vivo Inhibit inflammation and fibrosis: AMPK↑ Hepatic TPL [40]

DOCA-salt hypertension induced renal injury in mice In vivo Inhibit inflammation: NF-κB↓ Renal TPL [41]

NRK-49F cells In vitro Inhibit fibrosis: p38, ERK1/2↑Smad2↓ Renal TPL [42]

STZ induced diabetes in rats In vivo Inhibit fibrosis: RANTES↓ Renal TPL [43]
high-fat diet and STZ induced DKD in rats, HMCs Both in vitro and vivo Regulate autophagy and fibrosis: Akt, mTOR, PTEN↑, miR-141-3p↓ Renal TPL [44]

high-fat diet induced DKD, HK-2 cells Both in vitro and vivo Inhibit EMT: miR-188-5p /PTEN /PI3K/AKT↓ Renal TPL [45]

db/db diabetic mice, SV40-MES-13 cells Both in vitro and vivo Inhibit oxidative stress and fibrosis: Nrf2, HO-1, SOD↑ ROS, NOX4, 
GSK3β, p-GSK3β↓

Renal TPL [46]
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Table 1 (Continued). 

Models In vitro/In vivo Effects and Related Mechanisms Organ Drug References

db/db diabetic mice In vivo Inhibit EMT: Kindlin-2, TGF-β/Smad3↓ Renal TPL [47]
Adriamycin induced AN in mice, primary mouse podocytes Both in vitro and vivo Relieve injury: ROS, cytochrome c↓ Renal Minnelide [48]

Adriamycin induced AN in Angptl3 knockout (Angptl3-/-) 

mice

In vivo Inhibits apoptosis, inflammation and fibrosis: TGF-β1/Smad2 and p53↓ Renal Minnelide [49]

subepithelial myofibroblasts from patients undergoing 

a partial colectomy for carcinomas

In vitro Inhibit inflammation and fibrosis: NF-κB↓ Intestinal TPL [50]

C3H/HeJBir IL-10−/− and wild-type mice, intestinal 
fibroblasts from anastomotic tissue specimens from Crohn’s 

patients and paired normal tissues adjacent to the 

anastomosis

Both in vitro and vivo Inhibit cells proliferation and migration, inflammation and fibrosis: 
miR-16-1/HSP70↓

Intestinal TPL [51,52]

C3H/HeJBir IL-10−/− mice In vivo Inhibit inflammation: miR-155↓, SHIP-1↑ Intestinal TPL [53]

Laser photocoagulation induced CNV in mice, THP-1 cells, 

ARPE-19 cells, EA.hy926 cells

Both in vitro and vivo Inhibit inflammation and fibrosis: TGF-β/Smad↓ Retina TPL [54]

Wild-type and systemic Hic-5 knockout C57BL/6 mice, 

PSCs from pancreas of Hic-5 knockout C57BL/6 mice

Both in vitro and vivo Inhibit fibrosis: NF-κB/p65↓ Pancreatic TPL [55]

Human fibroblasts, laminectomy induced epidural fibrosis in rats Both in vitro and vivo Regulates cell proliferation, migration, apoptosis, autophagy and 
fibrosis: PI3K/AKT/mTOR↓

Epidural TPL [56]
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Anti-Fibrotic Effect of TPL
Heart
Myocardial fibrosis (MF) exists in almost all chronic heart diseases, and damages heart function, playing a crucial role in 
the progression and consequences of heart failure. Abnormal proliferation and activation of cardiac fibroblasts (CFbs), 
deposition of ECM, and formation of scar tissue are its major pathological features.59,60

Inflammatory mediators are implicated in the pathogenesis of MF. Long-term chronic inflammation may lead to 
cardiomyocyte necrosis, and necrotic cardiomyocytes are replaced by collagen scars to cause reparative fibrosis.61 NF-κB 
pathway is a classic inflammatory pathway. It has been shown that TPL can inhibit Toll-like receptor 4 (TLR4) /NF-κB and 
NF-κB pathways to improve cardiac immune inflammatory response and alleviate myocardial fibrosis in rats with diabetic 
cardiomyopathy (DCM).17,18 TPL can improve the expression of fibrosis-associated factors, such as transforming growth 
factor (TGF)-β1, type I collagen (Col I), and type III collagen (Col III) mRNA, in rats by inhibiting the activation of NOD-like 
receptor thermal protein domain associated protein 3(NLRP3) inflammasome mediators downstream of the NF-κB pathway.19 

TPL also depresses pro-fibrotic TGF-β1 pathways and inflammatory mediators downstream of NLRP3 inflammasome, such 
as IL-1β, IL-18, monocyte chemotactic protein (MCP)-1 and vascular cell-adhesion molecule −1, and inhibits infiltration of 
macrophages in a dose-dependent manner.20

Via direct and TGF-β-mediated actions, the local release of angiotensin II (Ang II) plays an effective role in activating and 
stimulating cardiac fibrosis.62,63 In vitro, TPL inhibited Ang II-induced CFbs proliferation and decreased Ang II-induced 
fibrosis signaling TGF-β1 /Smad3 expression.21 In vivo, TPL treatment could inhibit the generation of pro-fibrosis factors 
such as Ang II and TGF-β induced by pressure overload, and significantly suppress left ventricular end-diastolic pressure, 
myocardial collagen volume fraction (CVF), and Col I/III deposition.22 The down-regulation of pro-inflammatory cytokines 

Figure 3 Mechanism diagram of triptolide and its derivatives against fibrosis. Star indicates TPL and its derivatives.
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(IL-1β and IL-6) in serum and NF-κB in myocardial tissue was also observed in the TPL group.22 Further studies have shown 
that TPL can alleviate MF by attenuating Ang II-induced TGF- β signal by inhibiting intracellular and extracellular 
Cyclophilin A (CyPA) / CD147.23 Transcriptional factors participate in the modulation of MF. TPL can improve myocardial 
injury and myocardial fibrosis score and inhibit cardiac hypertrophy by up-regulating the expression of forkhead box protein 
P3 (Foxp3).24 TPL can also significantly improve endothelial-mesenchymal transition (EndMT) and alleviate MF by 
regulating Ubiquitin-Specific Protease 14 (USP14)/ Kelch-like ECH-Associated Protein 1 (Keap1)/ Nuclear factor erythroid 
2-related factor 2 (Nrf2) pathway and transcription factors such as Snail, Slug and Twist.25 In addition, the effect of TPL on 
reducing myocardial collagen content, perivascular collagen area, and myocardial CVF was related to the up-regulation of 
phosphatase and tensin homologue (PTEN).26

Lung
A group of chronic lung conditions known as pulmonary fibrosis (PF) causes progressive damage to the pulmonary 
interstitium, impairing gas exchange, producing dyspnea, lowering quality of life, and ultimately leading to respiratory 
failure and death.64

Studies have confirmed that inflammation and oxidative stress are closely associated with the occurrence and 
development of PF.65 Yang et al66 found that TPL can inhibit the production of pro-fibrotic cytokines (IL-1β, TGF- 
β1, and IL-13) in the radiation-induced pulmonary fibrosis (RIPF) model, and improve the 5-month survival rate, lung 
density, and function. Subsequent studies have identified alveolar macrophages (AMs) as a major source of reactive 
oxygen species (ROS) in RIPF, and TPL exerts its antifibrotic effects by inhibiting myofibroblast activation and collagen 
accumulation via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-ROS axis in AMs.27 TPL also 
represses migration and invasion of lung fibroblasts and inhibits the expression of fibrosis factors Col I and Col III and 
the production of inflammatory factors IL-6 through the focal adhesion kinase (FAK)/troponin axis.28

The increase in myofibroblast production and ECM protein deposition are some pathological features associated with 
the development of PF.67 It has been shown that TPL can not only regulate matrix metalloproteinases (MMPs), which are 
involved in ECM deposition but also mediate TGF-β1/Smad fibrosis signal pathway to inhibit the transformation of lung 
fibroblasts into myofibroblasts.29,68 It was also found that TPL could block integrin-β1/FAK/YAP signal transduction in 
the biomechanical stress transduction pathway and attenuate the pro-fibrotic effect of fibrogenic ECM on fibroblasts via 
integrin suppression.29 In addition, TPL can inhibit PF through inhibitor of kappa B kinase (IKKβ)/NFκB pathway and 

Table 2 Application of NPs Delivery System in TPL Anti-Fibrosis

Models In vitro/In 
vivo

Effects Organ Drug References

CM (M-0531) induced autoimmune myocarditis in 

mice

In vivo Increase the solubility and bioavailability 

of TPL, Inhibit fibrosis and inflammation: 

NF-κB↓

Cardiac TPL 

nanosuspensions

[57]

RAW 264.7 cells, H9C2 cells, myocardial infarction 

induced by ligation of left anterior descending 

coronary artery in mice

Both in vitro 

and vivo

Relieve TPL toxicity, inhibit fibrosis and 

cardiomyocytes apoptosis, long-term 

anti-inflammatory

Cardiac TPL@PLGA@F127 [58]

Laser photocoagulation induced CNV in mice, THP-1 

cells, ARPE-19 cells, EA.hy926 cells

Both in vitro 

and vivo

Enhance the anti-inflammatory and anti- 

fibrosis effects of TPL

Retinal TPL-nanolip-PEG [54]

Abbreviations: TPL, triptolide; TwHF, Tripterygium wilfordii Hook. F; ERS, endoplasmic reticulum stress; NPs, nanoparticles; ECM, extracellular matrix; RF, renal fibrosis; 
MF, Myocardial fibrosis; CFbs, cardiac fibroblasts; TLR4, Toll-like receptor 4; DCM, diabetic cardiomyopathy; Col I, type I collagen; Col III, type III collagen; NLRP3, NOD-like 
receptor thermal protein domain associated protein 3; MCP, monocyte chemotactic protein; Ang II, angiotensin II; TGF, transforming growth factor; CyPA, Cyclophilin A; 
Foxp3, forkhead box protein P3; USP14, Ubiquitin-Specific Protease 14; Keap1, Kelch-like ECH-Associated Protein 1; CVF, collagen volume fraction; PF, pulmonary fibrosis; 
RIPF, radiation-induced pulmonary fibrosis; AMs, alveolar macrophages; NADPH, Nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; FAK, focal 
adhesion kinase; MMPs, matrix metalloproteinases; IKKβ, inhibitor of kappa B kinase; LOX, lysyl oxidases; EMT, epithelial-mesenchymal transdifferentiation; EndMT, 
endothelial-mesenchymal transition; α-SMA, α-smooth muscle actin; AEC II s, alveolar type II epithelial cells; GRP78, glucose-regulated protein 78; CHOP, C/EBP 
homologous protein; HF, Hepatic fibrosis; HSCs, hepatic stellate cells; DMN, dimethylnitrosamine; CCL4, carbon tetrachloride; AMPK, AMP-activated protein kinase; 
DOCA, deoxycorticosterone acetate; RANTES, regulation upon activation of normal T-cell expressed and secreted; DKD, diabetic kidney disease; PTEN, phosphatase and 
tensin homologue; NOX, NADPH oxidase; GSK3β, glycogen synthase kinase 3 beta; Nrf2, nuclear factor E2-related factor 2; HO-1, heme oxygenase-1; HSP70, heat shock 
protein 70; CNV, choroidal neovascularization; CD, Crohn’s disease; AN, Adriamycin Nephropathy; Angptl3, anti-angiogenin-like protein 3; mAb, monoclonal antibody; STZ, 
Streptozotocin.
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reduce the production of lysyl oxidases (LOX) which catalyzes matrix protein cross-linking.29,30 Zhang et al31 found that 
TPL can inhibit TGF-β1/ERK/Smad3 pathway and reduce myofibroblast activation both in vivo and in vitro. In addition, 
in PF, myofibroblasts can also originate from cell sources other than fibroblasts, such as epithelial and endothelial cells, 
which gain a mesenchymal phenotype through epithelial-mesenchymal transdifferentiation (EMT) or EndMT, and show 
classic markers of myofibroblast differentiation, like vimentin, α-smooth muscle actin (α-SMA) expression and 
others.69,70 Many studies demonstrated that TPL inhibits the migration and invasion of human lung epithelial cells and 
inhibits the expression of EMT-related factors through TGF-β1 signal.32,33 TPL can reverse the EMT of alveolar type II 
epithelial cells (AEC II s) and relieve PF by regulating NF-κB/Twist1 signal.34 TPL can also inhibit the expression of 
glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) in AEC II s, relieve ERS, reduce 
collagen deposition in lung tissue, and significantly improve lung function in mice.35

Liver
Hepatic fibrosis (HF) is mainly induced by chronic hepatotoxic injury (such as chronic hepatitis and non-alcoholic 
steatohepatitis) and cholestatic injury (such as primary and secondary cholangitis, primary sclerosing cholangitis and 
biliary atresia).71

The main mesenchymal cells in the liver are hepatic stellate cells (HSCs), and activated HSCs is a key factor in the 
pathological progression of HF.72 Chong et al37 have shown that TPL can inhibit the expression of fibrosis factor α-SMA 
through anti-NF-κB activation pathway. In addition, TPL treatment significantly reduced the increase of inflammatory 
cytokines (TNF-α and IL-6) induced by dimethylnitrosamine (DMN) in rats. Immune regulation is a key factor in the 
pathological process of fibrosis. Jiang et al38 reported for the first time that TPL attenuates carbon tetrachloride (CCL4)- 
induced HF by modulating the differentiation of CD4+T (Th2, Th1, Th17, and Treg) cells. RelB is related to liver 
fibrosis. By lowering the expression of RelB in bile duct cells, TPL can suppress the bile duct response brought on by 
common bile duct ligation, hence lowering liver damage, fibrosis, and inflammation.39 TPL can also improve liver 
lipogenesis, HF, and fatty acid oxidation in nonalcoholic fatty liver disease mice by activating AMP-activated protein 
kinase (AMPK).40

Kidney
RF, particularly tubulointerstitial fibrosis, is the primary indicator and dependable prognostic index of renal insufficiency, 
including glomerulosclerosis, renal tubule atrophy, and renal interstitial fibrosis.73,74 It is also a common marker and 
pathway of several progressive chronic kidney diseases.

TPL has multiple protective effects on RF, including reducing inflammatory cell infiltration and fibrosis, reducing the 
expression of many chemokines and cytokines, and reducing renal injury. It was shown that TPL significantly decreased 
macrophage and myofibroblast infiltration and collagen deposition in the renal interstitial fibrosis model.75 Similarly, in the 
model of renal injury induced by deoxycorticosterone acetate (DOCA)-salt hypertension, TPL can inhibit the NF-κB pathway to 
protect cells from inflammatory damage and reduce renal collagen levels.41 Zhu et al42 found that TPL can inhibit ECM synthesis 
in NRK-49F cells by regulating the activities of Smad2, p38, and ERK1/2. It was shown that TPL ameliorated glomerulosclerosis 
and interstitial fibrosis in diabetic rats in association with inhibition of regulation upon activation of normal T-cell expressed and 
secreted (RANTES) overexpression in renal tissues.43 MicroRNAs are small non-coding RNAs that play an influential role in the 
fight against RF. Li et al44 found that TPL can relieve RF caused by diabetic kidney disease (DKD) by restoring autophagy 
through miR-141-3p/ PTEN/Akt/mTOR pathway. Subsequent studies confirmed that TPL can improve renal tubulointerstitial 
fibrosis by targeting miR-188-5p/PTEN/PI3K/AKT signal pathway to reverse tubulointerstitial fibrosis induced by high 
glucose.45 More importantly, TPL can delay the development of nephropathy in diabetic rats, especially in the stage of massive 
albuminuria, which may be related to the inhibition of monocyte-macrophage aggregation and the reduction of inflammatory 
factor expression by TPL.76 Fan et al46 have shown that TPL can not only improve the proteinuria of DKD mice, but also regulate 
the expression of superoxide dismutase (SOD), ROS, and prototype NADPH oxidase (NOX) 4 in kidney tissue to improve 
oxidative stress and alleviate RF in DKD by regulating glycogen synthase kinase 3 beta (GSK3β)/ Nrf2/heme oxygenase-1 (HO- 
1) signal transduction pathway. In addition, TPL was protective against structural damage and loss of function of podocytes in 
DKD mice.47 TPL alleviates diabetes-induced podocyte EMT by inhibiting TGF- β1/Smad3 signal pathway and kindlin-2.47
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Intestine
Intestinal fibrosis is a common complication of chronic inflammatory bowel diseases, such as ulcerative colitis and 
Crohn’s disease (CD).77 Previous studies have shown that TPL inhibits IL-1β-induced expression of IL-8, MCP-1, and 
MMP-3 in human colonic subepithelial myofibroblasts by suppressing NF-κB activity.78 In the colon fibrosis model of 
chronic colitis, TPL can reduce the deposition of ECM and the production of total collagen in the colon, and inhibit the 
expression of Col I protein and collagen Iα1 mRNA in myofibroblasts.50 Ileocecal anastomotic fibrosis and stricture are 
common complications after ileocecal resection of CD. Hou et al51 reported that TPL can improve the inflammation and 
fibrosis of CD anastomotic fibrosis mice through miR-16-1/heat shock protein 70 (HSP70) signal. A subsequent study 
showed that TPL could also inhibit the migration, proliferation, and fibrosis of fibroblasts derived from ileocolon 
anastomosis in CD patients by regulating miR-16-1/HSP70 pathway in vitro.52 Similarly, TPL can also target miR- 
155/SHIP-1 signal pathway to reduce the expression of pro-inflammatory cytokines in CD anastomotic fibrosis mice.53

Others
Retinal fibrosis is one of the end-stage complications of neovascular age-associated macular degeneration, leading to 
severe, permanent, and high risk of irreversible visual impairment.79 The studies of Lai et al54 showed that TPL inhibited 
the production of vascular endothelial growth factor and neovascularization in retinal fibrosis mice related to choroidal 
neovascularization (CNV), promoted M2 macrophage polarization, and mediated TGF-β1/Smad signal pathway to 
improve EMT/EndoMT. In vivo studies have shown that TPL inhibits the expression of IL-6 and α-SMA mediated by 
the NF-κB/p65 pathway, thereby alleviating pancreatic fibrosis in mice with chronic pancreatitis.55 Ileocolic anastomotic 
fibrosis and stenosis are common complications after CD ileocolic resection. TPL can improve epidural fibrosis by 
inhibiting PI3K/AKT/mTOR signal, inhibiting fibroblast proliferation, and stimulating apoptosis and autophagy.56

Antifibrotic Effect of Triptolide Derivatives
When a phosphate group is added to TPL, a water-soluble derivative called Minnelide is produced, which is widely used 
in the treatment of cancer.10 Li et al48 have shown that Minnelide alone can significantly alleviate proteinuria and renal 
injury in Adriamycin Nephropathy (AN) mice, which is related to the ROS-mediated mitochondrial pathway. However, 
Minnelide combined with anti-angiogenin-like protein 3 (Angptl3)-FLD monoclonal antibody (mAb) almost completely 
improved the proteinuria and restored the ultrastructure of podocytes in AN mice, which was associated with the 
promotion of podocyte autophagy and suppression of apoptosis.80 Subsequent studies have demonstrated that Minnelide 
can reduce the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in Angptl3 knockout AN mice, and 
improve apoptosis and fibrosis through TGF-β1/Smad2 and p53 signal.49

Compared with TPL, LLDT-8 substituted hydrogen with a hydroxyl group at C-5 position, and PG490-88 introduced 
fatty acid structure at C-14 position. They play an active role in the therapy of PF. In the bleomycin (BLM)-induced PF 
mouse model, LLDT-8 could alleviate weight loss and increase lung index, reduce the production of inflammatory cells 
(neutrophils and lymphocytes) and cytokines (IL-4, TNF-α, and TGF-β), promote the activity of antioxidant factor SOD, 
inhibit the level of hydroxyproline and improve lung histological injury.81 In the same model, PG490-88 significantly 
decreased the number of myofibroblasts and blocked the increase of TGF-β gene expression induced by BLM in human 
lung fibroblasts.36 The latest studies have shown that LLDT-8 can suppress the generation of inflammatory and fibrogenic 
factors by macrophages to improve proteinuria and structural renal damage and delay fibrosis in DKD mice.82

Application of Nanoparticle Drug Delivery System in Anti-Fibrosis of TPL
Although studies have shown that low-dose TPL has no obvious toxicity, a toxic dose of TPL has a protective effect on 
organs under pathological conditions.15,83 But the toxicity of TPL is still a concern. The use of NPs can not only improve 
the dissolution, transport and cellular uptake of bioactive components, but also reduce the toxicity of TPL.16,84 At 
present, the NPs carrier technology used in TPL anti-fibrosis includes nano-suspension, nano-gel, and nano-liposome. 
Nanosuspensions are a versatile formulation method for improving drug delivery of hydrophobic drugs and one of the 
most prosperous ways to improve the performance of poorly water-soluble drugs.85 Li et al57 used TPL nano-suspension 
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to treat autoimmune myocarditis rats, delayed left ventricular remodeling, and significantly improved fibrosis indexes 
such as myocardial collagen proliferation, CVF, and perivascular collagen area, I/ III collagen ratio. NF-κB pathway may 
partially mediate the decrease of peripheral blood inflammatory factors, as IL-1, TNF- α, IL-6, and MCP-1. Wang et al58 

combined with FDA-approved polylactic acid-glycolic acid copolymer (PLGA) NPs and F127 hydrogel, prepared TPL- 
loaded nano-hydrogel platform (TPL@PLGA@F127), which can reduce the hepatotoxicity by releasing TPL more 
slowly and stably. The study has shown that TPL@PLGA@F127 can promote the polarization of macrophages to M2 
(anti-inflammatory cells) on the 3rd day after myocardial infarction to play a long-term anti-inflammatory effect, inhibit 
myocardial fibrosis, and protect cardiomyocytes, and improve cardiac function58 Liposome is one of the most mature 
nano-delivery carriers, and it is one of the few nano-preparations used in clinical treatment. Its particle size ranges from 
50 to 1000nm.86 Lai et al54 showed that polyethylene glycol nanoliposomes (TPL-nanolip-PEG) loaded with TPL could 
enhance the inhibitory effect of TPL on the infiltration of retinal fibrosis and M2 macrophages, and had no toxic effect on 
the morphology and function of the retina.

Discussion and Prospect
TPL and its derivatives have an obvious anti-fibrosis effect and can play a role in a variety of tissues and organs. The 
anti-fibrosis mechanisms of TPL and its derivatives can be summarized as follows: (1) relieving oxidative stress and 
ERS; (2) inhibiting immune inflammatory response; (3) regulating collagen deposition (4) inhibiting myofibroblast 
production; (5) regulating cell migration, proliferation, apoptosis, and autophagy.

However, at present, the anti-fibrosis studies of TPL and its derivatives are based on the level of cellular and animal 
research, and lack of clinical data verification, so further strict large-scale randomized controlled trials and further 
scientific research should be carried out to fully evaluate its clinical efficacy and safety. In addition, the application of 
TPL derivatives, especially Minnelide, and NPs delivery systems, to overcome the water solubility and toxicity of TPL is 
a promising treatment and should be focused on.
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