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Abstract

Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has
led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these
disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological or-
ganization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models.
Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale model-
ling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale
modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In
contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important
human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational
approaches for multiscale modelling of host–pathogen interactions and point out current challenges. Finally, we provide an
outlook for future requirements of multiscale modelling.
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Introduction

A computational model is a simplified representation of a more
complex, real system. Using models and data from the real system,

one can deduct and infer properties about that system. Modelling
has successfully been applied in various areas ranging from phys-
ics and economics to biology. There are numerous examples where
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even simple models are sufficient to draw conclusions that could
not have been drawn without the models, or where previous con-
clusions drawn without the models have led to erroneous results
[1, 2]. However, sometimes the structure of the underlying problem
requires the use of more complex models: multiscale models.

Multiscale modelling is applied to systems that have import-
ant features across many orders of magnitude in time and
space. For instance, computational weather forecasts became
more realistic in the early 1980s by including the interactions of
soil and vegetation with the atmosphere. The development of
multiscale modelling started in the 1970s in various disciplines
such as physics, meteorology and chemistry. This was driven by
the advent of powerful computing platforms and the availability
of a huge amount of measured data. In 2013, the Nobel Prize in
Chemistry was awarded for the development of multiscale
models of large complex chemical systems and biochemical
reactions such as protein folding [3]. After 2000, with the devel-
opment of more holistic approaches in biology and medicine
(so-called ‘systems biology’ [4] and ‘systems medicine’), the
practice of multiscale modelling became more common in the
life sciences. Its aim is to describe and support the understand-
ing of human (patho)physiological functions. In the past few
years, multiscale modelling has been applied successfully to the
dynamics of the heart [5], liver [6–8], human metabolism [9–11]
and immune system [12–15], which all are systems regulated at
multiple scales of time and space and involve multiple com-
partments (e.g. cells, tissues and organs). This progress in the
life sciences has been driven by the availability of a vast quan-
tity of high-throughput measurements, so-called omics data, at
the genome, transcriptome (i.e. microarray and RNA-Seq data),
proteome and metabolome scales as well as progress in imaging
technologies [16]. Walpole et al. [17] and Castiglione et al. [14] re-
viewed best practices in multiscale modelling of complex biolo-
gical systems, coupling continuous and discrete modelling
techniques. The ‘Coordinating Action for the Implementation of
Systems Medicine’ across Europe published recommendations
for multiscale modelling in systems medicine, including the es-
tablishment of ontologies, suitable information technology in-
frastructure and the development of standard operating
procedures for data management and modelling [18].

Recently, we reviewed computational methods for model-
ling host–pathogen interactions (HPIs) [19]. It was highlighted
that the systems biology of immune defence and pathogen
activities needs to model HPI by including multiple scales. For
example, models of the interplay between pathogens and im-
mune cells have to include cellular interactions elucidated by
the emerging image-based systems biology of infection [20, 21].

Current research in infection biology focuses on the involve-
ment of multiple spatial and temporal scales in HPI as well as in
the diagnosis and treatment of infections. Multiscale modelling
in biology is the computational requisite for functional genomics
studies with clinical applications; it is based on genome-wide
approaches involving high-throughput methods rather than the
more traditional ‘gene-by-gene’ approach. Here, systems medi-
cine aims to develop multiscale computational models that inte-
grate data and knowledge from the clinical and basic sciences. In
other words, knowledge and data derived from in vitro experi-
ments and animal models will be translated to the situation of
individual patient’s [18]. To cope with this task, modelling of HPI
has to be carried out at different scales (Figure 1):

i. Molecular scale, including the genome, transcriptome,
proteome and metabolome. This scale encompasses the
interactome and complex molecular processes such as

gene expression, gene regulatory networks, signalling and
metabolic pathways involved in immunity and
inflammation.

ii. Cellular scale, including the activities and behaviour of the
different immune cells (e.g. T-cells and neutrophils) and
different pathogen processes (e.g. bacteria or fungal conidia
and hyphae formation).

iii. Inter-cellular and tissue scale, including inflammation
processes and biofilm formation (e.g. quorum sensing
mechanisms).

iv. Organ scale, including specific environmental conditions in
each organ relevant for the infection process and the con-
nection between organs (e.g. transfer of signals, toxins).

v. Body system scale, including multi-organ failure in sepsis
and the population dynamics of the pathogen.

Our review provides a summary of state-of-the-art multiscale
modelling of the interactions of microbial pathogens with the
human host. While previous reviews mainly focus on bacterial
infection, we additionally include results from the evolving mod-
elling approach for fungal infections. Epidemiological studies and
multiscale modelling of viral infections [22–24] are out of the
scope of the present review. Vodovotz et al. ([25] and references
therein) mainly focus on inflammation in the body, including
multiscale models of sepsis. However, there is a lack of models
considering both sides of HPI, i.e. both the pathogen and the host
side. In future, research has to be focused more on these inter-
action, but bearing in mind that the interaction between patho-
gens themselves (see e.g. [26, 27]) is also important. Since the
2000s, papers have been published on multiscale modelling of
bacterial HPIs (e.g. [28]), in particular for tuberculosis [29–38],
whereas for fungal infections, the integration of multiple scales is
currently in its early stages [39]. The low number of multiscale
models simulating the interaction between a fungal pathogen
and its host can be attributed to the more complex fungal genome
and cell structure in comparison with bacteria, putting challenges
on the development of suitable technical as well as computational
approaches. But also important, research on fungal pathogens
has attracted attention just in the past few decades, whereas bac-
terial pathogens had a longer research history. The increased
attention may be attributed to the increasing infection rate of
fungal pathogens [40]. We present—to our knowledge—the first
overview of these early fungal HPI models. Our aim is to discover
core areas for further research efforts and to identify the main
challenges in the field of multiscale modelling.

The benefit of state-of-the-art multiscale
models

Systems biology of microbial infections intents to describe and
analyse the confrontation of a host with bacterial and fungal
pathogens [41]. Therefore, the interactions of the host s
immune system with components of the pathogen should be
elucidated by iteratively using computational approaches and
experimental studies that provide spatiotemporal data. The
ultimate aim of systems biology is to unravel the key mecha-
nisms of pathogenicity and then apply this knowledge to iden-
tify diagnostic biomarkers and potential drug targets, thereby
improving the treatment of infectious diseases. For instance,
multiscale and multicompartment models of tuberculosis were
used for integration of data from multiple model systems over
multiple length and time scales of the in vivo immune response
to Mycobacterium tuberculosis [29–38]. Modelling development of
decades has reached a state that allows the application of
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model predicted hypothesis in clinical settings. With help of
model-based simulations, Linderman et al. [37] designed thera-
peutic interventions by immunomodulation with tumor
necrosis factor alpha and interleukin 10, i.e. pro-inflammatory
and anti-inflammatory cytokines, by antibiotic administration
and, finally, the effect of vaccination. Cilfone et al. [36] applied
such models to compare different therapeutic regimes for the
treatment of tuberculosis. They found that inhaled formulation
of the antibiotic isoniazid given at a significantly reduced dose
frequency has better sterilizing efficacy and reduced toxicity
than the conventional oral regimen. For modelling, they com-
bined dynamics of lung granuloma, carrier release kinetics,
pharmacokinetics and pharmacodynamics.

In general, multiscale models of HPI share the same benefits
as other models in systems biology. They provide a deeper in-
sight into the complex interplay of hosts and pathogens by pro-
viding a mechanistic understanding of the interaction network.
In particular, agent-based models (ABMs) are used to model the
interaction between hosts and pathogens and to improve our
understanding of the underlying mechanisms (see below
‘Multiscale modelling approaches of HPI’). This is because the
investigated system can be modelled in a natural way by inter-
acting individuals, and the model output allows us to capture
emergent phenomena (i.e. complex patterns emerge on a higher
scale through the interaction of individuals on a lower scale;

[42]). HPI models can also be used to guide the setting up of ex-
periments by in silico generation of hypotheses, which can be ex-
perimentally validated, frequently in an iterative cycle [43, 44].
In the field of translational systems biology, multiscale models
are used to improve diagnosis of infectious diseases by bio-
marker discovery or to predict the clinical outcome of infec-
tions. Furthermore, such models can be used to make
predictions about how a patient reacts under defined conditions
or how a therapy can be optimized (i.e. therapy decision support
and therapy optimization [25]).

For decades, multiscale models have been applied in
pharmaceutical research and industry for drug development to
predict the absorption, distribution, metabolism and excretion
of synthetic or natural substances in the host [45]. Historically,
such models have only been multiscale in the sense that they
include both descriptions of the internal drug dynamics within
an individual and the variation of key parameters across the
population. In other words, in such models, which often are for-
mulated using so-called non-linear mixed-effects models, the
pharmacokinetics and pharmacodynamics are captured using
simple quasi-phenomenological descriptions (PKPD models). In
the past one to two decades, there has been an increasing push
to also develop more realistic models, based on the physio-
logical understanding of the involved processes. Such so-called
physiologically based pharmacokinetic (PBPK) models are

Figure 1. Schematic diagram of the complex spatiotemporal nature of HPIs, including a summary of experimental methods, which can be used at each scale.

PAMP¼pathogen-associated molecular pattern; PRR¼pattern recognition receptor; PET¼positron emission tomography; CT¼ computer tomography;

CLSM¼ confocal laser scanning microscopy; MALDI¼matrix-assisted laser desorption/ionization.

Modelling of bacterial and fungal pathogen-host interactions | 59

Deleted Text:  
Deleted Text: etal
Deleted Text: etal
Deleted Text: ,
Deleted Text: ,
Deleted Text: s
Deleted Text: ,
Deleted Text: s
Deleted Text: ,
Deleted Text: -
Deleted Text: l
Deleted Text: 1-2
Deleted Text: -


compartmental and regression models, which include human
or animal anatomy, physicochemical and biochemical mechan-
isms or toxicological effects. This push has gained further mo-
mentum through the rise of the field Systems Pharmacology,
which attempts to combine intracellular systems biology mod-
els with whole-body scale PBPK models. In general, these kinds
of pharmacometric models, independently of the degree of de-
tail, have been used to successfully optimize the drug adminis-
tration regimes and to extrapolate from animal models to the
human host.

A typical application of multiscale models in infection biol-
ogy is antibiotic administration. Frequently, different drugs
with different molecular features are compared. Predictive
chemistry models, namely the so-called quantitative structure–
activity relationship (QSAR) models, may be integrated in
multiscale models. QSAR models have been used for risk man-
agement. They are recommended by regulatory authorities for
registration, evaluation, authorization and restriction of chem-
icals [46].

An important potential and benefit of multiscale modelling
of HPI is the replacement, refinement and reduction of animal
trials in research, the so-called ‘3Rs’, by in silico experiments
during the transition from in vitro experiments to clinical trials.
Regarding this, a major breakthrough was recently achieved in
type 1 diabetes: now the Food and Drug Administration allows
for the usage of a multi-PBPK model for glucose homeostasis in-
stead of test animals when certifying certain insulin treatments
[47].

Experimental methods relevant for
computational modelling

A central requirement for multiscale modelling in HPIs is the
availability of suitable measurement data (Figure 1). These data
are necessary to estimate model parameter values and to refine
model structure, as well as to validate the models by testing the
model-derived predictions.

At the molecular scale, various high-throughput measure-
ment techniques have been developed over the past decades.
Next-generation sequencing [48] allows us to assemble com-
plete high-quality genomes of microbes, to structurally and
functionally annotate genomes [49] and to identify genomic
changes as risk factors on the host side [50]. Expression data
can be used for diagnosis. For instance, in a genome-wide ex-
pression study, a supervised machine learning approach was
applied for classification of bacterial and fungal whole-blood in-
fections [51]. The latest advances in hybrid tandem mass spec-
trometry [e.g. triple quadrupole, quadrupole time-of-flight,
Orbitrap hybrid mass spectrometer (tandem-in-space instru-
ments) and ion-trapping mass spectrometers (tandem-in-time
instruments)] make it possible to analyse complex proteoms
with a high resolution, sensitivity and mass accuracy. In add-
ition, various mass spectrometry imaging [e.g. matrix-assisted
laser desorption/ionization (MALDI imaging)] and Raman spec-
troscopic imaging techniques can be used to measure the abun-
dances and spatial distributions of proteins and metabolites in
a tissue.

As eukaryotes, fungi have larger and more complex genomes
than bacteria. Therefore, complete sequenced genomes of fungi
were available at a later time point than bacterial genomes.
Availability of the genome sequence allows identification of
specific infection and interaction pathways, the discovery of
drug targets, as well as species-specific microarrays. Moreover,

genetic manipulations (knock-out, knock-down, overexpres-
sion) of fungi are more challenging.

A challenge in connecting the molecular scale to the cellular
scale is the heterogeneous nature of biological samples, i.e.
samples are composed of cell types with different gene expres-
sion profiles. In infection biology, this issue is most pronounced
for organ samples (e.g. lung, liver and brain) and blood assays.
To deal with mixed samples in gene expression analyses, in the
past decade, several groups developed expression deconvolu-
tion algorithms, e.g. [52–57]. These algorithms allow the extrac-
tion of information on a cell-based scale from heterogeneous
biological samples (for an introduction see [58, 59]). A variety of
these algorithms were combined in the R package CellMix [60],
which allows for an efficient estimation of cell type proportions
and cell type-specific expression profiles in mixed samples.
Similarly, the R package DeconRNASeq also enables deconvolu-
tion of mRNA-Seq data from mixed samples [61].

For storage and access of omics data, several data reposito-
ries are available (e.g. GenBank, Gene Expression Omnibus,
ArrayExpress, PRIDE). Other repositories provide knowledge on
functional genomics, i.e. genome annotation of both hosts and
pathogens [19, 39, 62]. The database PHISTO, a web-based HPI
search tool, stores known molecular relations between patho-
gens and the human host, extracted by text mining from scien-
tific papers [63]. Such molecular biological databases have been
used to infer interolog-based networks for the molecular inter-
action of the pathogen Candida albicans with its animal and
human hosts [64, 65].

While advances in omics techniques drive the progress of
multiscale modelling on the molecular scale, there has also
been significant progress on the cellular scale based on imaging
data from positron emission tomography/computer tomog-
raphy, bioluminescence imaging, confocal laser scanning mi-
croscopy, live cell imaging, time-lapse microscopy, single-cell
tracking, digital holographic microscopy and MALDI mass spec-
trometric imaging. Although the automated analysis of image
and video data from HPI remains a challenging task [66–68], it
holds great potential because it automatically extracts import-
ant parameters such as velocity or turning angles for individual
cells. Moreover, automatic analysis identifies interactions be-
tween individual host and pathogen cells, such as touching
events, adherence or phagocytosis. Such data drive the emerg-
ing image-based systems biology of infection [20, 21]. The inte-
gration of both omics and image-based sub-models in multiscale
models is challenging owing to the requirement of combining
different modelling techniques. Here, an outstanding task is to
combine the non-spatial omics data with the image-based sub-
models that generally have an inherent spatial scale.

For modelling at the cellular, tissue and organ scales, bio-
mechanical, rheological and physicochemical parameters be-
come important. For example, cytometric data and data
quantifying the deformability of erythrocytes (e.g. Plasmodium
falciparum-parasitized red blood cells) were analysed and mod-
elled using a particle-based simulation technique (i.e. dissipa-
tive particle dynamics) for different stages of malaria [69].

In general, the analysis tools to investigate HPI at the cellu-
lar, tissue, organ and whole body scales stem from various med-
ical disciplines such as radiology, clinical/medical microbiology,
clinical immunology, cytopathology, clinical chemistry/medical
biochemistry, haematology and clinical pathology. Diagnostics
of infectious diseases affecting the whole body are based on the
laboratory analysis of body fluids, such as blood, urine, sputum
and tissue extracts by macroscopic or microscopic analysis.
Clinical scores summarize the status of an infection by
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combining clinical parameters with observation of the infected
individual. For example, the ‘Clinical Pulmonary Infection
Score’ (CPIS) and the ‘Sepsis-related Organ Failure Assessment
Score’ (SOFA) [70], used to classify patients with severe sepsis,
are sometimes recorded as easily attainable data on the host
side. Clinical scores are also used in animal trials of infection
studies and usually include body temperature, weight, activity
and feeding patterns. In contrast, pathogens are identified in
the laboratory using microbiological cultures. The multiscale
model-based personalized treatment of infectious diseases will
be based on the stratification of patients by analysing both
observed clinical phenomena of physiologic variability and mo-
lecular patterns that characterize the immunological state.

In general, for experimental validation of multiscale models,
adequate experimental systems that focus on individual mod-
ules of interest are needed. To make model results reliable and
useful, for example for clinics, verification of a multiscale model
has to be conducted on each implemented scale. Therefore, it is
necessary to obtain experimental data from the different spatio-
temporal scales (Figure 1). In the future, so-called microphysio-
logical systems, e.g. organs-on-chips or tissue-engineered 3D
organ constructs that use human cells, provide an alternative to
animal testing [71]. On the bioinformatics side of validation,
Pârvu and Gilbert [72] developed a methodology for automatic
validation of multiscale computational models.

Multiscale modelling approaches of HPI

Dada and Mendes [73] and Walpole et al. [17] have characterized
the main modelling approaches; here, we provide an overview
of their application in multiscale HPI modelling (Table 1).
Simple modelling approaches, which can include multiple
scales of HPI but neglect time, are (evolutionary) game theoret-
ical concepts and constraint-based models. Often, HPI model-
ling requires the behaviour of the simulated system over time
to be considered (e.g. with regard to infection time or time for

immune response). In dynamic modelling, a system can be
simulated in a continuous or discrete-time context, depending
on the model aim and the chosen computational approach. In
this section, we start by reviewing time-independent models of
HPI, followed by models in continuous time and models using
discrete time. Finally, combining the advantages of different
modelling approaches on different scales offers an opportunity
for multiscale modelling. Thus, we introduce mixed models
linking different modelling approaches and exemplify their ap-
plication to HPI.

In general, game theory concepts [87] are used to examine
the possible outcomes of interactions, in which real world enti-
ties are represented as ‘players’ who take part in a ‘game’ with
the aim of optimizing some sort of pay-off. Players can choose
between different strategies. To find an optimal solution for the
game, the approach takes into account the costs and benefits of
each strategy in relation to the strategy chosen by the other
player. The application of this concept to evolving organisms or
populations is termed evolutionary game theory. With this ap-
proach the evolutionary dynamics of strategy changes of inter-
acting species can be examined depending on the frequencies
of strategies and the fitness gain for each strategy. As a recently
published example, Li et al. [88] studied the in vitro population
dynamics of two commensal bacteria that synergistically pro-
tect the metazoan host Hydra vulgaris from fungal infection.
Another example is the modelling of interplay of drug-resistant
and drug-sensitive pathogens under antibiotic treatment [89].
In HPI, evolutionary game theory may be used in future to eluci-
date the adaptation of evasion strategies of pathogens or
defence strategies of the host over time. With a more pheno-
typic and generalized view, game theory can also be applied to
model the interaction between pathogens and humans or the
interaction between different pathogens. For example, this ap-
proach was used to understand what advantages the human
fungal pathogen C. albicans experiences by changing its mor-
phological form [75, 90] in the context of interacting with the

Figure 2. Schematic overview of a multiscale model structure. Sub-models on various scales are used to examine multiscale HPIs. In each sub-model the iterative cycle

of modelling and experimental calibration and validation has to be passed through.
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host’s immune cells. Additionally, persistent bacterial infection
was described by developing a game theoretical model; predic-
tions regarding persistent bacterial infections were drawn by
considering the ability of a pathogen to survive extracellularly
and intracellularly, within an immune cell [76].

Another knowledge-based approach for large-scale model-
ling is so-called constraint-based modelling. The idea of con-
straint-based modelling is to describe a biological system by a
set of knowledge-based constraints, which characterize its pos-
sible behaviours but in general do not allow a precise prediction
to be made. This modelling approach has mainly been applied
to the modelling of metabolic networks [91–93]. Jamshidi and
Raghunathan [94] outlined a systematic procedure to produce
constraint-based HPI models. Interestingly, a constraint-based
network model of HPI was also presented to describe the dy-
namic outcome of the interplay between host immune compo-
nents and Bordetella bronchiseptica virulence factors [74].

Typical modelling approaches using a continuous time con-
text consist of ordinary differential equations (ODEs) or, if space
is included in the model, partial differential equations. ODE-
based modelling is widely used at the molecular scale, such as
for gene regulatory network models [95]. Here, gene expression
analysis by RNA-Seq offers the opportunity to monitor and
model the transcriptome of both the pathogen and host, as
shown for the interaction of C. albicans with murine dendritic
cells using an ODE-based approach [77]. Generalizing this work,
methods for exploiting dual RNA-Seq data for the inference of
gene regulatory networks of HPI has been presented [96].

In addition to their utility at the molecular scale, ODE
modelling is also applicable for whole cell simulations and at
the body scale (e.g. pathogen population scale; PBPK models
[45]). Palsson et al. [13] published a fully integrated immune re-
sponse model (FIRM) consisting of multiple sub-models, a
multi-organ structure, circulating blood, lymphoid tissue,
different immune cell types and cytokines and immune cell re-
cruitment. FIRM was tested by simulating the response to a
blood-borne pathogen (i.e. tuberculosis infection). An ODE-
based simulator has the flexibility to be expanded. It is suitable
for step-by-step interactive integration of further sub-models,
describing the processes within the pathogen and their inter-
action with the host. FIRM may be a starting point for multiscale
modelling of HPI.

In addition, the Lotka-Volterra model, well known for simu-
lations of predator–prey interactions, can be used for multiscale
modelling of HPI. The system consists primarily of a pair of
first-order, non-linear ODEs, but the equations can be general-
ized to include, for example, trophic interactions, spatial struc-
tures and more than two species (e.g. [97]). Stein et al. [98]
studied the dynamic stability of intestinal microbiota by use of
a generalized Lotka-Volterra model for focal species to account
for external perturbations representing antibiotics or diet.

Some aspects of HPI require the application of discrete time
intervals, therefore permitting the use of agent-based [99],
state-based [80] and cellular automata-based [81] Boolean [82]
or probabilistic models [83, 100]. These approaches were used to
model the HPI taking into account individual genes or cells (e.g.
immune and pathogen cells) in time and, partly, space [20, 21].

In an ABM, the behaviour and interaction of autonomous
agents are simulated over time to examine the emergence of
complex phenomena on a higher scale. Each agent gets a set of
rules determining its method of interaction and behaviour, thus
making ABMs a promising tool for studying HPI and, more gen-
erally, infectious diseases and inflammatory processes [101].
The advantage of the agent-based modelling approach is the

possibility of relatively easily integrating space (e.g. as a discrete
grid) and, additionally, accounting for variability (e.g. in behav-
iour or movement) among individual cells and/or cell types.

HPI in anastomotic leaks was examined by using the agent-
based modelling approach [102]. An ABM of epithelial restitu-
tion was augmented by individual Pseudomonas aeruginosa
agents interacting with the epithelium. The simulation of differ-
ent killing mechanisms leads to a mechanistic understanding
of tissue destruction.

An agent-based approach was also used by Tokarski et al.
[79] to investigate the clearance efficiency of Aspergillus fumiga-
tus conidia by neutrophil granulocytes. A combination of live
imaging and grid-based modelling of individual cells allows in
silico testing of different hypotheses for hunting strategies of
immune cells. This modelling approach demonstrated that che-
mokine sensing by immune cells is the most efficient strategy.
The ABM was implemented in the free software tool NetLogo
[103, 104]. This well-established tool facilitates a user-friendly
and efficient programming of ABMs. SPARK (Simple Platform for
Agent-based Representation of Knowledge) is an alternative
tool for multiscale ABMs that runs faster [105].

Besides the ABM approach, theoretical modelling in discrete
time can also be realized by the use of Boolean networks [106].
In the past, Boolean models were developed to describe and
simulate within-host immune interactions (reviewed by [82]).
This heuristic modelling approach allows prediction of new
interaction pathways or drug targets within the host–pathogen
infection system. For example, a Boolean modelling technique
was applied to model the signal transduction of the hepatocyte
growth factor pathway of the human host in response to infec-
tion by Helicobacter pylori [107]. This model predicts new molecu-
lar targets against H. pylori infection, which were
experimentally verified.

The combined application of different modelling approaches
on multiple scales may facilitate multiscale modelling of HPI.
As a prominent example, for multiscale modelling of M. tubercu-
losis infection, a system of ODEs to capture intracellular signal-
ling pathways was combined with a discrete probabilistic ABM
that describes cellular behaviour at the tissue scale [29–38] and
references therein). Also, for the interaction of C. albicans with
the human host, ODE-based, agent-based and game theory-
based modelling methods were compared and partially com-
bined [84].

A combination of ODE-based modelling with ABM was used
to model the mucosal responses during H. pylori infection [85].
This hybrid model considers immune effector cells (i.e. macro-
phages, T-helper cells and pro-inflammatory epithelial cells)
that secrete cytokines and chemokines, which recruit immune
cells and promote their activation and differentiation to inflam-
matory phenotypes, and, finally, secrete effector molecules that
destroy bacteria and may cause tissue damage.

A multiscale model simulating the distribution of chemo-
kine concentrations in A. fumigatus-infected human alveoli was
developed by combining an ABM of migration and interaction in
continuous space with spatiotemporal modelling on a discrete
grid [86].

In general, multiscale modelling has to reuse and link differ-
ent sub-models (Figure 2). This requires a multiscale computa-
tional infrastructure and (sub-)model repositories. The systems
biology markup language is the most developed standard con-
cept at the moment and is increasingly used to support the ex-
change of models in the modelling community. In future, this
concept may be expanded to support also multiscale models.
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Challenges and outlook

Systems biology of microbial infection encompasses all scales
of the pathogen and the host’s immune system, leading to a
complex interaction network on multiple scales. A common
challenge in systems biology is the successful combination of
both experimental and theoretical approaches. In this context,
an iterative cycle should be applied in which model develop-
ment and refinement, parameter calibration and in silico experi-
ments alternate with experimental data collection and
hypothesis/prediction validation (Figure 2). The application of
an iterative cycle of experiments and model refinement for fun-
gal pathogens is at the moment connected to more effort than
for bacterial pathogens. In bacteria, genes of the same pathway
and also virulence genes are often clustered together in an op-
eron allowing a shared regulation. This clustering facilitates the
study of regulatory mechanisms and enables a relatively simple
mathematical replication of the regulatory processes in bac-
teria. Such structured, regulatory units are not present in fungi
which makes it more difficult to find virulence genes, to under-
stand their regulation and finally to develop a representative
mathematical model of the regulatory network. In addition, in
fungi there are secondary metabolite gene clusters character-
ized by complex structures of co-regulation [108, 109].

Moreover, fungi have complex life cycles with multiple mor-
phological forms. They may occur as unicellular yeast or in a
filamentous form (dimorphism). This indicates the need of im-
plementing a broader spatial scale in fungal models than in bac-
terial interaction models. Furthermore, fungi have developed
multiple sophisticated, specific and unique pathogenicity
mechanisms including immune evasion strategies. Only a few
of them are modelled by game-theoretical methods and ABMs
[110] and many of the pathogenicity mechanisms are not well
understood, e.g. the production of hydrophobins on the spore
surface as an immune evasion strategy of the environmental
fungus A. fumigatus.

At the start of developing a multiscale model of a complex
biological system, researchers have to bear in mind that the
aim of a model is not to completely mirror the real system.
Essentially, the most important aspect of modelling relates to
the wise reduction of the complexity of the investigated sys-
tem to identify key properties. The parts to be implemented in
a model and the parts to be left out are dictated by the biolo-
gical question(s) that will be addressed with the model.
Kirschner et al. proposed a ‘tunable resolution’ for multiscale
models [111], in which sub-models at different scales are
defined and connected. In case a specific question requires
additional parameters, these can be added to one of the sub-
models. Vice versa, more coarse-grained sub-models can be
applied if the details on lower scales are not needed for the
question in focus.

A further challenge in multiscale modelling of HPI is the
combination of different time scales. While regulatory inter-
actions on the transcriptomic scale take place in minutes, it
may cause effects on the cell-, tissue- or organ-scale hours or
days later. Approaches allowing a transition from one time
scale to another need to be developed. For example, Chaves
et al. [112] presented three asynchronous algorithms to meet
this challenge for genetic regulatory networks using the ex-
ample of Boolean models, which could also be applicable to
multiscale problems.

Moreover, the number of features per scale is variable.
The human body consists of several organs; each organ itself
consists of millions of cells, and each cell has several

thousands of proteins and transcripts. Thus, to develop an
efficient multiscale model, stringent feature selection with a
strong focus on the simulated phenomenon and model aim is
essential.

A large number of parameters is an integral part of multi-
scale models, but the many parameters are also associated
with some problems that must be overcome. The allowance of
many parameters has positive implications, because it allows
for a more realistic description of the system. In contrast, few
parameters and minimal models may often imply that overly
simplified and lumped descriptions of states and processes
have to be used, which may be hard to interpret physiologic-
ally. One of the reasons why a high degree of parameters is
negative is that it is hard to ensure that all of them have realis-
tic values. Granted, some of the parameters may have values
that can be determined in independent experiments, but in
biology, and especially for large multiscale models, there are
often many parameters that have to be inferred simultan-
eously from systems-wide dynamic data. This determination is
often not unique: a problem known as parameter unidentifi-
ability [113]. If untreated, such unidentifiability implies that all
model predictions come with an arbitrarily large uncertainty
range, i.e. the predictions are suggestions and not unique con-
sequences of the model and data. Fortunately, recent progress
in model analysis has allowed for the identification of such
uniquely inferred predictions. Such predictions, sometimes
called core predictions, are predictions that are uniquely deter-
mined from the data, even though the parameter values are
non-unique. In practice, a three-step approach has been pro-
posed by Cedersund, which allows for the accurate identifica-
tion of the outer boundaries of such predictions [113].
Nevertheless, these methods are still only applicable to small-
and medium-sized models, ranging between 1 and 50 param-
eters. For truly large multiscale models, further method devel-
opments are needed.

For ethical reasons, experiments designed to calibrate par-
ameter values in a human model might not be realizable in the
human body or in animals. In these cases, the parameter values
have to be identified using sub-models and exploiting data
measured under in vitro conditions despite the fact that the
value may be different in vivo. The same may be true for model
validation, especially for HPI models. Suitable in vitro systems
that mimic the pathophysiology of infection in humans have to
be used.

In summary, HPIs should be described by a combination of
spatiotemporal models with interacting molecular networks of
both the host and the pathogen. Considerable advances in
multiscale modelling of microbial HPI have been made in the
study of tuberculosis. In this case, and for other human infec-
tions including fungal infection by C. albicans and A. fumigatus,
ODE-based, state-based and ABMs are the main techniques for
successful modelling at the molecular and cellular scales. In
the future, high-throughput omics and image data should be
simultaneously considered and modelled in an integrated
manner.

A promising approach to multiscale modelling is hierarch-
ical modelling (see also Figure 2), in which the sub-models at
each scale appear in a well-defined place in a super-model, in a
so-called tree-structure. Such models have a natural modular
structure, where one version of sub-models can be replaced for
one another, to better suit the particular data and question that
is studied. This approach has been relatively well-developed in
technical systems, and in biological systems an important ap-
plication involves glucose homeostasis and diabetes [9]. By
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combining input–output data with the data for a sub-module,
one can consider the modelling of a sub-module as an isolated
modelling problem. Any model for the sub-module can be ex-
pected to fit into the dynamics of the super-model as long as
the sub-model reproduces the measured output when exposed
to the measured input. Thus, these input–output data also
allow for a meaningful way of combining both in vitro and
in vivo data. This approach was presented in [9] and [10], and in
[11] the approach was used to unravel both where insulin re-
sistance appears inside individual fat cells, and how this resist-
ance spreads to the rest of the body.

Regarding hierarchical modelling of HPI, the software tool
SPARKS [106] might be useful, but the development of easy-to-
use software applications for multiscale modelling will be an
important task in the coming decades. Currently, there are fur-
ther initiatives to establish a computational framework for mul-
tiscale modelling [114]. Andasari et al. [115] presented a
multiscale, individual-based simulation environment that inte-
grates a lattice-based Cellular Potts Model on the cellular scale
(CompuCell3D) and an ODE-based Bionetsolver for intracellular
modelling of reaction-kinetic network dynamics. This hybrid
system has been applied to cancer research. The system may
also be suitable for HPI modelling. Furthermore, the
WholeCellKB is an open-source web-based software program
for multiscale omics modelling and, in particular, WholeCellKB-
MG enables whole-cell modelling of the human pathogen
Mycoplasma genitalium by integrating diverse data sources into a
single database [116, 117].

From a systems medicine perspective, the multi-layered HPI
models should ideally also make use of all the available clinical
information at hand, such as information regarding a patient’s
disease history and life-style factors, which probably will be ex-
tended to genotype information in the future. These factors
may affect the system’s response to stimuli via differences in
the initial conditions of the state variables or by altering the ef-
fective regulatory interactions.

Finally, we want to highlight the fact that interactions also
take place between different populations of bacteria and fungi
(e.g. quorum sensing), which may positively or negatively in-
fluence the infection process in the host and determine the
outcome of HPI (e.g. [118]). It is a future task to develop models
that account for the interactions among three or more species
(i.e. parasites, fungi, bacteria, viruses and host) by integrating
the species and their unique characteristics at various tem-
poral and spatial scales. Additionally, multiscale models need
to combine models for intra-species communication (e.g. [26,
27]) with models for HPI.

Key Points

• Multiscale modelling of host–pathogen interactions
has to consider processes at various temporal and spa-
tial resolutions.

• The scales range from minutes to days and include
the molecular, cellular, tissue and organism scales of
the host and the molecular, cellular and population
scales of the pathogen.

• Integrating across these scales requires multiple mod-
elling approaches, such as ordinary and partial differ-
ential equations, state-based models and agent-based
models.
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80. Hünniger K, Lehnert T, Bieber K, et al. A virtual infection
model quantifies innate effector mechanisms and Candida
albicans immune escape in human blood. PLoS Comput Biol
2014;10(2):e1003479.

81. Wcislo R, Miller S, Dzwinel W. PAM: Particle automata model
in simulation of Fusarium graminearum pathogen expansion.
J Theor Biol 2016;389:110–22.

82. Thakar J, Albert R. Boolean models of within-host immune
interactions. Curr Opin Microbiol 2010;13(3):377–81.

83. Grant AJ, Restif O, McKinley TJ, et al. Modelling within-host
spatiotemporal dynamics of invasive bacterial disease. PLoS
Biol 2008;6(4):757–70.

84. Tyc KM. A modeling perspective on Candida albicans inter-
actions with its human host. Dissertation, Berlin, 2012.

85. Carbo A, Bassaganya-Riera J, Pedragosa M, et al. Predictive
computational modeling of the mucosal immune responses
during Helicobacter pylori infection. PLoS One 2013;8(9):e73365.
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