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Abstract

Sepsis is a diagnostic and therapeutic challenge and is associated with morbidity and a high

risk of death. Metabolomic and lipidomic profiling in sepsis can identify alterations in metab-

olism and might provide useful insights into the dysregulated host response to infection, but

investigations in dogs are limited. We aimed to use untargeted metabolomics and lipidomics

to characterize metabolic pathways in dogs with sepsis to identify therapeutic targets and

potential diagnostic and prognostic biomarkers. In this prospective observational cohort

study, we examined the plasma metabolomes and lipidomes of 20 healthy control dogs and

compared them with those of 21 client-owned dogs with sepsis. Patient data including sig-

nalment, physical exam findings, clinicopathologic data and clinical outcome were recorded.

Metabolites were identified using an untargeted mass spectrometry approach and pathway

analysis identified multiple enriched metabolic pathways including pyruvaldehyde degrada-

tion; ketone body metabolism; the glucose-alanine cycle; vitamin-K metabolism; arginine

and betaine metabolism; the biosynthesis of various amino acid classes including the aro-

matic amino acids; branched chain amino acids; and metabolism of glutamine/glutamate

and the glycerophospholipid phosphatidylethanolamine. Metabolites were identified with

high discriminant abilities between groups which could serve as potential biomarkers of sep-

sis including 13,14-Dihydro-15-keto Prostaglandin A2; 12(13)-DiHOME (12,13-dihydroxy-

9Z-octadecenoic acid); and 9-HpODE (9-Hydroxyoctadecadienoic acid). Metabolites with

higher abundance in samples from nonsurvivors than survivors included 3-(2-hydroxyethyl)

indole, indoxyl sulfate and xanthurenic acid. Untargeted lipidomic profiling revealed multiple

sphingomyelin species (SM(d34:0)+H; SM(d36:0)+H; SM(d34:0)+HCOO; and SM

(d34:1D3)+HCOO); lysophosphatidylcholine molecules (LPC(18:2)+H) and lipophospho-

serine molecules (LPS(20:4)+H) that were discriminating for dogs with sepsis. These bio-

markers could aid in the diagnosis of dogs with sepsis, provide prognostic information, or

act as potential therapeutic targets.
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Introduction

Sepsis is a consequence of a dysregulated host response to infection resulting in organ damage [1],

characterized by circulatory, cellular, and metabolic derangements that are life-threatening, with

case fatality rates reported to be up to 70% in dogs [2]. Humans with sepsis exhibit a catabolic

state with rapid breakdown of protein, carbohydrate, and fat reserves causing severe energy defi-

cits [3]. Moreover, many humans also have gastrointestinal dysfunction that increases the risk of

malnutrition [4]. The metabolic derangements in sepsis are myriad [5], and impair wound heal-

ing, reduce gut function, and enable intestinal bacterial translocation [6]. Nutritional treatments

can improve clinical outcomes by attenuating the metabolic response to stress, reducing oxidative

injury, and modulating the immune response [6]. Trials in humans with sepsis have shown that

targeted nutritional support reduces organ dysfunction, hospital-acquired infections, and death

[7, 8] and retrospective studies of dogs with sepsis suggest that early enteral nutrition might

decrease length of hospitalization [9], and improve survival rates [10].

Metabolomics utilizes high-performance chromatography and tandem mass spectrometry

to simultaneously identify, quantify, and characterize large numbers of metabolites in complex

biological samples [11]. However, unambiguous identification of metabolites in complex

matrices remains challenging due to the lack of appropriate public metabolome databases.

This has led to the emergence of new comprehensive approaches to improve accuracy and

confidence in metabolite identification. Comprehensive metabolic profiling offers huge poten-

tial for pathophysiologic insight, biomarker discovery, and identification of therapeutic targets

[12]. These techniques have been applied to humans with sepsis [13], and have identified some

specific derangements in lipid metabolism and amino acid handling [14], but similar studies

have not been performed in dogs. Lipidomics is a branch of metabolomics that specifically

identifies and quantifies the lipid molecules of major lipid classes to aid in the understanding

of cellular lipid metabolic pathways. Technological improvements in both chromatography

and mass spectrometry instruments and methods aid the confident identification and quanti-

tation of lipid molecules and have helped establish the importance of lipids in sepsis. Lipido-

mics is facilitating improvements in our understanding of sepsis pathogenesis and the

identification of new biomarkers [15]. Studies in mice indicate that numerous plasma lipid

species are quantitatively altered in sepsis [16]. The administration of lipid nutritional supple-

ments ameliorates some of these effects and reduces case fatality rates [17]. Various mecha-

nisms have been proposed for these alterations in lipid profiles. Eicosanoids, O-3 and O-6 fatty

acids, lysophosphatidylcholine, and ceramide play significant roles in sepsis [18] and plasma

lysophosphatidylcholine, sphingomyelin and unsaturated phosphatidylcholine concentrations

are altered in humans with sepsis [19]. It is also known that pro-inflammatory cytokines signif-

icantly impact lipid metabolism, alter lipoprotein metabolism, and decrease total cholesterol

concentrations [20].

The overall objectives of our study were to characterize the metabolic derangements in

dogs with sepsis and to identify potential diagnostic and prognostic biomarkers in their meta-

bolomes. The study aimed to use global untargeted metabolomics and lipidomics approaches

to discover novel metabolite biomarkers [21], enhance our understanding of the metabolic

derangements in sepsis and suggest pathways that might be amenable to therapeutic interven-

tions. It was hypothesized that dogs with sepsis have metabolomic and lipidomic profiles that

are distinct from those of healthy control dogs; that significantly changed levels of individual

metabolites in dogs with sepsis compared to healthy controls would allow us to identify puta-

tive biomarkers and or their patterns for early diagnosis of the syndrome; and that the pres-

ence of particular metabolites or metabolic profiles would be prognostic for survival in dogs

with sepsis.
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Materials and methods

Study design

This was a prospective observational cohort study of client-owned dogs with sepsis admitted

to the Cornell University Hospital for Animals. Dogs were eligible for enrollment if they

weighed >5kg, had a documented or highly suspected infection (such as pyometra, septic

peritonitis or pneumonia) and satisfied �2 systemic inflammatory response syndrome

(SIRS) criteria, specifically, hypo- or hyperthermia temperature <37.8˚C or >39.4˚C

(<100.0˚F or >102.9˚F); tachycardia, heart rate >140 bpm; tachypnea, respiratory rate >20

bpm; leukopenia or leukocytosis, <6 ×103/μL or >16 ×103/μL or >3% band neutrophils

[22, 23].

Dogs were ineligible if they had sepsis due to viral disease e.g., parvovirus or fungal disease

e.g., candidiasis, severe anemia, coagulopathy, or thrombocytopenia (Hb <5 g/dL; PT or aPTT

>150% normal; platelets <30 ×103/μL). Dogs not expected to live more than 12 hours or those

with pre-existing metabolic conditions or endocrinopathies such as diabetes mellitus or hypo-

thyroidism were also excluded. Dogs were enrolled with written informed client consent. The

local Institutional Animal Care and Use Committee approved the study protocol (Cornell

IACUC Protocol #2014–0053). There are no standardized methods for sample size estimation

in metabolomics studies, and traditional sample size calculation approaches are not easily

applied to untargeted metabolic phenotyping studies [24]. Preliminary data (unpublished)

suggested that 20 dogs per group would be sufficient to distinguish sepsis cases from controls

and data from a comparable study in humans [25] suggested this number of animals would be

sufficient to identify potential prognostic markers. Healthy dogs were recruited from staff-

owned pets and were eligible for the study if they weighed >5kg, were aged between 1-9y, had

no chronic or recent illness, and had received no medications other than preventative health-

care (e.g., parasiticides) in the preceding three months. Dogs were classified as healthy based

on history, physical examination, and the results of complete blood count and serum biochem-

istry profile results.

Case management and evaluation

Respective primary clinicians determined all aspects of case management. Signalment and

physical examination findings at hospital admission were recorded. Blood gases, electrolytes

and lactate concentrations were measured immediately after sample collection with a point-of-

care device (RapidPoint 500, Siemens Healthcare, Malvern, PA). Complete blood counts

(CBC) (ADVIA 2120, Siemens Healthcare) with clinical pathologist review and serum bio-

chemistry profiles (Cobas C501, Roche Diagnostics, Indianapolis, IN) were analyzed immedi-

ately whenever possible, but always within 48 hours of collection. Mentation score, blood

glucose, albumin and lactate concentrations and platelet counts were used to calculate the

acute patient physiologic and laboratory evaluation illness severity score (APPLEfast) [26, 27].

Outcome status at discharge was recorded as survived, died or euthanized. Blood samples were

collected at study entry into evacuated tubes (Vacutainer, BD and Co, Franklin Lakes, NJ) con-

taining no-additive (for serum biochemistry analyses), lithium heparin (for metabolomics and

lipidomics) or K2-EDTA (for complete blood counts). Heparin plasma was prepared from

whole blood by centrifugation for 10 minutes at 1370 g (Ultra-8V Centrifuge, LW Scientific,

Lawrenceville, GA). Plasma was decanted into polypropylene freezer tubes (Polypropylene

Screw-Cap Microcentrifuge Tubes, VWR, Radnor, PA) with some plasma deliberately left in

each tube to minimize the risk of cell contamination and frozen at -80˚C pending batch

analysis.

PLOS ONE Untargeted metabolomics and lipidomics in dogs with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0271137 July 8, 2022 3 / 31

https://doi.org/10.1371/journal.pone.0271137


Untargeted metabolomics

Plasma samples obtained from 20 healthy dogs and 21 dogs with sepsis were thawed at 4˚C,

gently vortexed and 200 μL of each sample were transferred into 1.5 mL microcentrifuge tubes

and stored on ice (Fig 1). The volume for one sepsis dog sample (#18) was very limited, for this

sample only 100 μL was analyzed. To each sample, 600 μL of ice cold 100% methanol was

added, the samples vortexed for 10 s and then incubated at 4˚C for 60 min for protein precipi-

tation. After incubation, samples were centrifuged (16,200 g, 10 min, 4˚C) and 300 μL of the

supernatants transferred into two clean 1.5 mL microcentrifuge tubes (one for each column

type). The methanol volume for protein precipitation was halved for sample #18. The superna-

tants obtained were then evaporated to dryness by speed vacuum and stored at -20˚C for fur-

ther reconstitution in buffer for LC MS/MS analysis. Each dried sample was reconstituted in

80 μL of 20% acetonitrile with 0.1% formic acid containing a panel of 3 internal standards

Fig 1. Schematic diagram for untargeted metabolomics and lipidomics workflow for analysis of plasma samples

collected from dogs with sepsis and from healthy controls. Small-molecule metabolites and lipids were extracted

from the sample matrix. Metabolites and lipids were separated using chromatographic steps, ionized, and analyzed

using mass spectrometry (MS). Features of interest were selected from the raw data using univariate and multivariate

statistical approaches and then identified using database searches, comparisons to authentic standards, and MS/MS.

Identified features were then used for pathway analysis, and to distinguish potential metabolite biomarkers.

https://doi.org/10.1371/journal.pone.0271137.g001
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-0.5 ppm sulfadimethoxine (SFDT), 2.5 ppm 13C pyruvic acid and 2.5 ppm 13C valine. The

reconstituted samples were then analyzed in LC MS/MS using reverse phase octadecyl-carbon

chain (C18) column for identification of non-polar metabolites. For hydrophilic interaction

chromatography (HILIC) analysis, each dried sample was reconstituted in 80 μL of 20% aceto-

nitrile containing 0.5 ppm SFDT, 2.5 ppm 13C pyruvic acid and 2.5 ppm 13C valine. Added vol-

umes were halved for sample #18. For all metabolomic analyses, the following quality controls

(QC) were made: one global QC consisted of a pool of 3 μL from all samples (n = 41, ∑
123 μL); two group QCs with one control QC consisting of a pool of 3 μL from all healthy con-

trol samples (n = 20, ∑ 60 μL); and another sepsis QC containing a pool of 3 μL from all sepsis

samples (n = 20, ∑ 60 μL).

For C18 analysis, a Vanquish UPHLC system with a 1.5 μm column (2.1 mm id x 100mm)

(Accucore Vanquish C18+, Thermo Fisher Scientific, Waltham, MA) at 45˚C was used for the

separation of metabolites. Solvent flow rate was 320 μL/min. The autosampler tray was held at

4˚C and sample injection volume was 2 μL. The following solvents and elution gradients were

used. Solvent A: Water / 0.1% formic acid; Solvent B: Acetonitrile / 0.1% formic acid. Elution

gradient: 0.0–2.0 min (0.5–1% B), 2.0–6.5 min (1–20% B), 6.5–11.5 min (20–95% B), 11.5–13.5

min (95–99% B), 13.5–16.5 min (99–100% B), 16.5–19 min (100–0.5% B), 19–24 min (0.5% B).

In the case of HILIC analysis for the identification of polar metabolites in plasma samples, a

column (5μm, 2.1 mm id x 150mm) (SeQuant ZIC pHILIC, Millipore Sigma, Burlington, MA)

at 24˚C was used. Solvent flow rate was 250 μL/min. The autosampler tray was held at 4˚C and

sample injection volume was 2 μL. The following solvents and elution gradients were used. Sol-

vent A: 10 mM AcONH4 in H2O, pH 9.8; Solvent B: Acetonitrile. Elution gradient: 0.0–1.0

min (90% B), 1.0–15 min (90–30% B), 15–18 min (30% B), 18–19 min (30–90% B), 19–29 min

(90% B). The experimental conditions for the tandem mass spectrometry MS/MS were the

same for both C18 and HILIC analyses. Tandem MS analyses were performed on an orbitrap

mass spectrometer (Q-Exactive Hybrid Quadrupole-Orbitrap, Thermo Fisher Scientific, San

Jose, CA). The ESI voltage was kept at 3.5 kV, the sheath gas flow rate was 50 AU, the auxiliary

gas flow rate was 10 AU, and the sweep gas flow rate was 1 AU. The capillary temperature was

275˚C and the auxiliary gas heater temperature was 375˚C. The S-Lens RF level was 55% and

all analyses were conducted in both positive and negative ion modes.

Data analysis was conducted using commercial software (Compound Discoverer 3.1,

Thermo Fisher Scientific) for normalization, peak alignment, related statistical analyses and

compound identification. An in-house mzVault spectral library and the public mzCloud data-

base were used to annotate compounds on an MS/MS level with a mass tolerance of 10ppm

and additional databases including ChemSpider, BioCyc, Human Metabolome Database, and

KEGG database were searched for annotations and pathway analyses. The initially identified

molecules in plasma samples were filtered out in CD3.1 through background subtraction and

exclusion of false positive or repetitive features without MS2 spectra, and removal of com-

pounds not found in QC samples. Separate software packages were used for creating super-

vised models including OPLS-DA (orthogonal partial least-squares discriminant analysis) for

making score plots (Simca P, Umetrics, Sartorius, Goettingen, Germany) on filtered data and

volcano plots, heatmap construction and pathway analysis (Metaboanalyst 5.0, https://www.

metaboanalyst.ca, [28]). Univariate analysis based on ROC (receiver operating characteristic)

curves was also performed to identify potential biomarkers for sepsis.

Untargeted lipidomics

Plasma samples from two different groups of dogs (20 controls and 21 sepsis cases) were

thawed at 4˚C, gently vortexed and 30 μL were transferred into high G-force 1.5 mL
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microcentrifuge tubes (catalog #20170–038, VWR, Radnor, PA) and stored on ice. To each

sample, 30 μL of a panel of 7 internal standards containing 25 μg/mL each of triglycerides

(15:0)3, phosphatidylglycerol (14:0)2, phosphatidylserine (16:0)2, ceramide (d18:1_12:0), cho-

lesterol (17:0) and 5 μg/mL lysophosphatidylcholine (18:1-d7), phosphatidylcholine

(18:1-d7_15:0) (Avanti Polar Lipids Inc, Alabaster, AL) in dichloromethane/methanol (2:1)

were added for normalization of each lipid class (S1 Data). In addition, 190 μL of ice-cold

100% methanol, 380 μL of dichloromethane and 120 μL of water were added to each sample

with vortexing. Sample mixtures were allowed to equilibrate for 10 minutes at room tempera-

ture, followed by centrifugation (18,000 g, 10 min, 4˚C). Gel loading tips were then used to

transfer 350 μL (175 μL twice) of the lower lipid rich phase into a clean glass culture tube. Sam-

ples were then evaporated to dryness by speed vacuum, capped and stored at -20˚C for further

lipid analysis in LC MS/MS. In preparation for lipid analysis, samples were reconstituted with

360 μL of acetonitrile / isopropanol / water (65:30:5 v/v).

Lipidomic analysis were carried out using a column (2.6 μm, 2.1 mm id x 150mm) (Accu-

core C30, Thermo Fisher Scientific) at 55˚C. Solvent flow rate was 260 μL/min. The autosam-

pler tray was held at 4˚C and sample injection volume was 2 μL. The following solvents and

elution gradients were used. Solvent A: 60% acetonitrile, 40% water, 10 mM ammonium for-

mate with 0.1% formic acid. Solvent B: 90% isopropanol, 10% acetonitrile, 10 mM ammonium

formate with 0.1% formic acid. Elution gradient: 0.0–1.5 min (32% B), 1.5–4.0 min (32–45%

B), 4.0–5.0 min (45–52% B), 5.0–8.0 min (52–58% B), 8.0–11 min (58–66% B), 11–14 min (66–

70% B), 14–18 min (70–75% B), 18–21 min (75–97% B), 21–25 min (97% B), 25–30 min (97–

32% B). The experimental conditions for the tandem mass spectrometry for C30 analyses were

as follows. The ESI voltage was 4 kV, the sheath gas flow rate was 50 AU, the auxiliary gas flow

rate was 5 AU, and the sweep gas flow rate was 1 AU. The capillary temperature was 320˚C

and the auxiliary gas heater temperature was 350˚C. The S-Lens RF level was 50% and all anal-

yses were run in both positive and negative ion modes.

Data analysis was conducted using commercial software (LipidSearch 4.2, Thermo Fisher

Scientific) to perform normalization, peak alignment, compound identification using the

online Lipid Maps database and related statistical analyses. Other statistical analyses of these

data were as described above for untargeted metabolomics analyses.

General statistical methods

Continuous data (e.g., dog characteristics, physical examination findings and clinicopathologic

values) were assessed for normality using the D’Agostino Pearson test and appropriate descrip-

tive statistics calculated. Correlations between C18 and HILIC prognostic biomarker abun-

dance and illness severity scores (APPLEfast) were calculated using non-parametric methods

(Spearman’s r) following natural log transformation of the abundance data. General statistical

analyses were performed using commercial software (Prism 9 for macOS, GraphPad, La Jolla,

CA) with alpha set at 0.05.

Results

Animals

A total of 41 dogs were enrolled; 21 dogs with sepsis and 20 healthy controls. The 21 dogs with

sepsis had a variety of different causes and mechanisms, specifically 4 dogs had abscesses or

cellulitis, 3 dogs had peritonitis, 3 dogs had pneumonia, 3 dogs had pyometra, and 2 dogs had

mastitis. Other causes included anaplasmosis, gastroenteritis (with bacteremia), metritis, oste-

omyelitis, pyothorax and urosepsis (all n = 1). Of the 21 dogs, 3 were euthanized for disease

severity prior to discharge, the remainder survived to discharge, equivalent to a 14% case
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fatality rate. Of the 18 dogs that survived to hospital discharge, 17 dogs were alive at day 28,

with 1 dog lost to follow up, equivalent to a 15% 28-day case fatality rate. Demographic charac-

teristics, initial assessments and clinicopathologic variables are summarized in Table 1. Dogs

were prescribed a variety of medications prior to study enrolment, summarized in Table 2.

Positive cultures were obtained in 67% (10/15) dogs for which culture samples were submitted.

Various bacterial organisms were cultured from the dogs including Escherichia coli (n = 5),

Bacteroides spp. (n = 2), Clostridium perfringens (n = 2), Staphylococcus pseudintermedius
(n = 2), Actinomyces canis, Enterococcus faecium, Fusobacterium sp., Microbacterium phyllo-
sphaerae, Mycoplasma sp., Peptostreptococcus sp., Pseudarthrobacter sp., and Streptococcus
canis (all n = 1). The diets were known for 14/21 dogs with sepsis; all were eating commercial

cooked diets from various manufacturers and 7 were eating more than one type of food. The

Table 1. Summary of population characteristics including complete blood count and serum biochemistry data

from study entry.

Variable (SI units) Dogs with sepsis (n = 21) Healthy control dogs (n = 20)

Age (y) 4.4 ± 3.4 4.6 ± 2.6

Bodyweight (kg) 27.7 ± 14.9 33.9 ± 12.3

Sex (F/FS/M/MC) 6 / 6 / 3 / 5 0 / 13 / 1 / 6

T (˚C) 39.4 (38.3–40.6) -

HR (bpm) 142 ± 21 -

RR (bpm) 32 (26–40) -

SAP (mmHg) 139 ± 32 -

MAP (mmHg) 107 ± 27 -

DAP (mmHg) 92 ± 27 -

SpO2 (%) 96 ± 3 -

SIRS criteria (n) 3 (3–3) [Max 4] -

APPLEfast score 22 (17–26) [Max 50] -

LoH (d) 3 (2–5) -

AMD duration (d) 16 (12–23) -

AMDs prescribed (n) 3 (3–4) -

AMD classes (n) 2 (2–3) -

Lactate 2.0 (1.4–3.4) -

BG (mg/dL) 97 (82–113) 97 (90–103)

HCT (%) 44 ± 8.4 [41–58] 51 ± 6.3 [41–58]

Leukocytes (×109/L) 16.6 ± 8.0 [5.7–14.2] 8.4 ± 4.0 [5.7–14.2]

Neutrophils (×109/L) 11.4 ± 8.0 [2.7–9.4] 5.2 ± 3.2 [2.7–9.4]

Bands (×109/L) 1.6 (0.4–3.5) [0.0–0.1] 0.0 (0.0–0.0) [0.0–0.1]

Lymphocytes (×109/L) 1.2 (0.5–2.9) [0.9–4.7] 2.0 (1.3–2.3) [0.9–4.7]

Monocytes (×109/L) 1.1 (0.5–2.0) [0.1–1.3] 0.3 (0.3–0.5) [0.1–1.3]

Eosinophils (×109/L) 0.0 (0.0–0.1) [0.1–2.1] 0.5 (0.3–0.7) [0.1–2.1]

Platelets (×109/L) 218 (114–273) [186–545] 234 (191–274) [186–545]

Albumin (g/L) 25 (22–31) [32–41] 3.9 (3.7–4.0) [3.2–4.1]

ALT (U/L) 50 (27–104) [17–95] 45 (36–59) [17–95]

Total bilirubin (μmol/L) 1.7 (1.7–6.8) [0.0–3.4] 0.0 (0.0–0.0) [0.0–0.2]

BUN (mmol/L) 4.3 (3.2–7.5) [3.2–9.3] 6.1 (5.4–7.1) [3.2–9.3]

Creatinine (μmol/L) 106 ± 111 [53–124] 97 (80–97) [53–124]

Data are presented as mean ± standard deviation for normally distributed data and median (interquartile range) for

non-normally distributed data. Reference intervals are presented in square parentheses [].

https://doi.org/10.1371/journal.pone.0271137.t001
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20 healthy control dogs consisted of 12 mixed breed dogs and 8 purebred dogs including 2

mastiffs and 1 dog of each of the following breeds: akita, Bernese Mountain dog, golden

retriever, Labrador retriever, redbone coonhound, rottweiler. The healthy dogs consisted of 13

spayed females, 6 castrated males and 1 intact male dog. In the healthy dog population, 19/20

dogs were eating commercial cooked diets, with 3 dogs eating more than one type of commer-

cial food, and 1 dog was fed a home-prepared raw food diet. Two healthy dogs were fed nutri-

tional supplements intended to maintain joint health including glucosamine and chondroitin,

green lipped mussel extract, methyl sulfonyl methane, hyaluronic acid, ascorbic acid, and DL-

phenylalanine. None of the dogs sampled for this study were intentionally fasted prior to sam-

ple collection. Some dogs with sepsis were inappetent for variable amounts of time prior to

sampling, however.

Untargeted metabolomics C18

The OPLS-DA score plot of the metabolomes of dogs with sepsis and healthy controls from

C18 datasets demonstrated tight clustering and clear separation of the data from both groups

and QC samples (Fig 2A). The QC samples were also highly repeatable and well demarcated

from both groups of dogs. After automatic and manual curation to identify and remove likely

drug metabolites and duplicate identifications, 198 compounds were identified by C18, posi-

tive mode analysis, and 349 compounds identified by C18, negative mode analysis. Combining

these lists and removing duplicates produced a list of 536 unique compounds identified by

C18 analysis (S2 Data). Volcano plots (Fig 2B) were constructed to analyze these compounds

for fold change and statistical significance having fold change >2.0 and FDR P-values <0.05

and identified groups of compounds that were both significantly increased (n = 281) and

decreased in sepsis (n = 127) compared to healthy controls. A substantial number (n = 147) of

compounds were not significantly different between the two groups. Heatmaps were con-

structed to enable visualization of data for the top 25 highly significant compounds that had

large changes in abundance in dogs with sepsis at the lowest P-values <0.001 (Fig 2C).

Small molecule pathway database (SMPDB) metabolic pathway analysis (performed in

MetaboAnalyst 5.0) for filtered annotated compounds in both C18 modes were ranked by P-

value. This identified 4 major metabolic pathways that were 20- to 30-fold enriched in the

metabolome with a corresponding P-value <0.05 (-log10P >1.3). These pathways were pyru-

valdehyde degradation, ketone body metabolism, the glucose-alanine cycle and Vitamin-K

metabolism (Fig 3A). Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database yielded identification of 5 pathways that were 2- to 6-fold enriched in the

metabolome: phenylalanine, tyrosine and tryptophan biosynthesis; aminoacyl-tRNA

Table 2. Medications prescribed to dogs with sepsis prior to study enrolment.

Medication class n

Antimicrobial drugs (AMD)

• Beta-lactams (n = 10)

• Fluoroquinolones (n = 6)

• Nitroimidazoles (n = 5)

• Tetracyclines (n = 1)

• Unknown AMD (n = 1)

23

Antiemetics / Gastroprotectants 7

Non-steroidal anti-inflammatory drugs 6

Other analgesics 2

Glucocorticoids 1

Anxiolytics 1

https://doi.org/10.1371/journal.pone.0271137.t002
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biosynthesis, valine, leucine and isoleucine biosynthesis; arginine and proline metabolism;

phenylalanine metabolism. Of these, only phenylalanine, tyrosine and tryptophan biosynthesis

were significantly enriched (P<0.05) (Fig 3B).

Fig 2. Untargeted metabolomic analyses of plasma samples from dogs with sepsis compared to healthy controls. (A) OPLS-DA plot for C18

metabolites. R2X = 0.608, R2Y = 0.934, Q2 = 0.892. (B) Volcano plots for C18 metabolites. P-value<0.05, FC = S/C. (C) Heatmap: Top 25 significant

metabolites in C18 (total 536 unique metabolites in C18 positive and negative modes). (D) OPLS-DA plot for HILIC metabolites. R2X = 0.472,

R2Y = 0.954, Q2 = 0.879. (E) Volcano plots for HILIC metabolites. P<0.05, FC = S/C. (F) Top 25 significant metabolites in HILIC (total 386 unique

metabolites in HILIC positive and negative modes).

https://doi.org/10.1371/journal.pone.0271137.g002
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Untargeted metabolomics HILIC

As for C18 analysis, OPLS-DA score plot of the metabolomes of dogs with sepsis and healthy

controls from HILIC datasets also demonstrated tight clustering and clear separation of dogs

with sepsis from healthy controls, and with distinct representation of QC data (Fig 2D). After

automatic and manual curation to identify likely drug metabolites and duplicate identifica-

tions, 164 compounds were identified by HILIC in positive ion mode, and 226 compounds

identified in negative mode. Combining these lists and removing duplicate annotations

Fig 3. Metabolomics pathway analyses. (A) Small molecule pathway database (SMPDB) metabolic pathway analysis for filtered annotated compounds in both

C18 modes ranked by P-value. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis for filtered annotated compounds in both

C18 modes ranked by P-value. (C) Small molecule pathway database (SMPDB) metabolic pathway analysis for filtered annotated compounds in both HILIC

modes ranked by P-value. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis for filtered annotated compounds in both

HILIC modes ranked by P-value.

https://doi.org/10.1371/journal.pone.0271137.g003
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produced a list of 476 unique compounds identified by HILIC analysis (S2 Data). Volcano

plots (Fig 2E) showed 48 compounds that were significantly increased having fold change

>2.0 and FDR P-values <0.05, 68 compounds that were decreased in sepsis and 360 com-

pounds that were not significantly different between the two groups. Heatmaps were con-

structed to enable visualization of data for the 25 compounds with the lowest P-values <0.001

(Fig 2F). In total across both C18 and HILIC analyses, 803 unique compounds were identified.

Within the HILIC dataset, pathway analysis using the SMPDB approach identified two

pathways that were 2- to 2.5-fold enriched within the metabolome with associated P-values

<0.05: betaine metabolism and phosphatidylethanolamine metabolism (Fig 3C). Evaluation of

the HILIC dataset using KEGG pathway analysis identified 5 pathways that were significantly

(P<0.05) enriched by 2- to 3-fold within the metabolome: arginine biosynthesis; alanine and

aspartate metabolism; histidine metabolism; glutamine/glutamate metabolism and the citric

acid (tricarboxylic acid) cycle (Fig 3D).

Comparisons with human sepsis

To contextualize the dog sepsis metabolome data using previously reported data on the meta-

bolome in human sepsis metabolome data we compared our C18 and HILIC data with publicly

available data from a study of the metabolomes of 197 critically ill humans with early sepsis

[29]. Specifically, we compared combined curated C18 and HILIC data (filtered based on MS2

spectra confirmation and curated to remove known exposome compounds, plasticizers, and

drug metabolites) with those from Rogers et al. [29]. We identified 107 metabolites (predomi-

nantly amino acids, fatty acids, lipids classes including sphingomyelins and phosphocholines,

and TCA metabolites like lactate, citrate, oxoglutarate) that were common between dogs and

humans (Fig 4, S3 Data).

Potential biomarkers for sepsis diagnosis

Two approaches were used to identify putative biomarkers for sepsis using combined data

from both C18 and HILIC analyses. Tabulated data detailing fold-change and corresponding

statistical significance were used to identify compounds with the greatest product of log2[fold-

change] and -log[P-value] for compounds with increased abundance in sepsis (Table 3) and of

-log2[fold-change] and -log[P-value] for compounds with decreased abundance in sepsis

(Table 4). These compounds correspond to the points in the upper-right and upper-left parts

of the volcano plots. In addition, receiver operating characteristic curves with corresponding

box-whisker discrimination plots were generated for highly statistically significant metabolites.

Multiple compounds showed high discriminant abilities (Fig 5) with AUC values of ROC plots

above 0.8. Three compounds with increased abundance in sepsis had AUC values of 1.0:

13,14-Dihydro-15-keto Prostaglandin A2 with a fold-change of 7.73, P = 1.38×10−15; 12(13)-

DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) with a fold-change of 15.0, P = 6.62×10−16;

and 9-HpODE (9-Hydroperoxyoctadecadienoic acid) with a fold-change of 13.2,

P = 8.77×10−14.

Potential prognostic biomarkers

Metabolomic profiles of the 3 non-survivors were compared with those of the 18 dogs that

were discharged alive to identify potential biomarkers associated with outcome (S2 Data).

Principal component analysis of data from both C18 and HILIC analyses clearly demarcated

survivors from non-survivors (Figs 6 and 7). Similarly, heatmap analyses and volcano plots

suggested that numerous metabolites were increased in abundance in non-survivors compared

to survivors (Figs 6 and 7), with a smaller number of compounds increased in survivors (i.e.,
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decreased in dogs that were euthanized). Analysis of metabolites up-regulated in nonsurvivors

identified several compounds derived from intestinal microbiota tryptophan metabolism

including 3-(2-hydroxyethyl) indole, indoxyl sulfate and xanthurenic acid and various com-

pounds derived from bacterial metabolism including p-Cresol glucuronide and 2-aminoaceto-

phenone. Compounds down-regulated in nonsurvivors included O-feruloylquinate, thiamine,

Fig 4. Venn diagram comparing metabolites in human and canine sepsis. Comparisons between metabolites identified in a study of humans with early

sepsis and curated combined data from C18 and HILIC analyses in dogs identified 107 compounds in common, with 496 compounds unique to dogs, and 869

compounds unique to humans.

https://doi.org/10.1371/journal.pone.0271137.g004

Table 3. Top 10 compounds upregulated in dogs with sepsis.

Compound FC Log2FC P-value -Log P Log2FC × -Log P

Androst-4-en-3-one 19.764 4.3058 9.75×10−18 17.01 73.23

12(13)-DiHOME 15.000 3.907 6.62×10−16 15.18 59.30

9-HpODE 13.224 3.725 8.77×10−14 13.06 48.64

3-oxopalmitic acid 13.232 3.726 8.03×10−13 12.10 45.07

13,14-Dihydro-15-keto Prostaglandin A2 7.732 2.951 1.38×10−15 14.86 43.85

2’,3’-Dideoxyinosine 22.241 4.475 6.05×10−10 9.22 41.25

19(R)-hydroxy Prostaglandin A2 15.788 3.981 1.10×10−10 9.96 39.64

(15Z)-9,12,13-Trihydroxy-15-octadecenoic acid 17.249 4.108 5.94×10−10 9.23 37.91

10,16-Dihydroxy hexadecenoic acid 7.579 2.922 1.79×10−11 10.75 31.40

13S-hydroperoxy-9Z,11E,14Z-octadecatrienoic acid 9.157 3.195 3.34×10−10 9.48 30.27

https://doi.org/10.1371/journal.pone.0271137.t003
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5-phenyl nicotinic acid, cytosine, 1,5-Anhydro-D-glucitol and arachidonic acid. To further

assess the utility of these biomarkers, non-parametric correlations between the clinical illness

severity score (APPLEfast) and the abundances of the top 50 biomarkers for both C18 and

HILIC analyses were calculated (S1 Fig). Multiple prognostic biomarkers were significantly

associated with illness severity, suggesting that prognostic metabolomic biomarkers identified

likely reflect the severity of sepsis in dogs.

Untargeted lipidomics

In positive mode, C30 LC-MS/MS analyses identified 323 lipids including isomers. The pre-

dominant lipid class was triglycerides (TG), with phosphatidylcholine (PC) isomers and sphin-

gomyelins (SM) the two other major classes (Fig 8A). OPLS-DA score plots of the lipidomes of

Table 4. Top 10 compounds downregulated in dogs with sepsis.

Compound FC 1/FC Log2FC P-value -Log10 P -Log2FC × -Log10 P

4-tert-Amylphenol 0.030 32.918 5.041 8.63×10−10 9.06 45.69

Quinoline 0.128 7.810 2.965 1.91×10−8 7.72 22.89

Ferulic acid 4-sulfate 0.126 7.948 2.991 3.00×10−8 7.52 22.50

2-Aminoindan-2-carboxylic acid 0.130 7.687 2.942 6.81×10−8 7.17 21.09

8-Hydroxyquinoline 0.153 6.545 2.710 8.05×10−8 7.09 19.23

2,4,6-Trihydroxy benzophenone 0.151 6.626 2.728 9.82×10−8 7.01 19.12

cis-4-Hydroxy-D-proline 0.217 4.619 2.208 2.43×10−9 8.61 19.02

9-Oxononanoicacid 0.222 4.505 2.171 1.61×10−8 7.79 16.92

L-(+)-Citrulline 0.316 3.161 1.661 1.41×10−9 8.85 14.70

4-Vinylpyridine 0.195 5.121 2.356 8.38×10−7 6.08 14.32

https://doi.org/10.1371/journal.pone.0271137.t004

Fig 5. ROC plots of putative biomarkers for sepsis. (A-H) ROC plots of putative positive biomarkers for sepsis. (I-L) ROC plots of putative negative

biomarkers for sepsis. Corresponding box-whisker plots for optimal cutoffs are displayed in tandem with each ROC curve.

https://doi.org/10.1371/journal.pone.0271137.g005
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dogs with sepsis and healthy controls from the C30 lipidome dataset acquired in positive mode

demonstrated adequate clustering and clear separation of the data from both groups (Fig 8B).

Multivariate and significant features detection analyses identified various SM forms and

Fig 6. Identification of potential prognostic biomarkers for sepsis in dogs using untargeted metabolomics (C18 analyses). (A) OPLS-DA plot for C18

metabolites. R2X = 0.442, R2Y = 0.997, Q2 = 0.859. (B) Volcano plots for C18 metabolites. Nonsurvivor / survivor. P-value<0.05 FDR, log2(fold change)>2.0.

(C) S-plot of metabolites identified by C18 analysis and their modeled class designation. (D) Heatmap: Top 50 significant metabolites in C18 after log

transformation and pareto scaling.

https://doi.org/10.1371/journal.pone.0271137.g006

Fig 7. Identification of potential prognostic biomarkers for sepsis in dogs using untargeted metabolomics (HILIC analyses). (A) OPLS-DA plot for HILIC

metabolites. R2X = 0.453, R2Y = 0.993, Q2 = 0.893. (B) Volcano plots for HILIC metabolites. Nonsurvivor / survivor. P-value<0.05 FDR, log2(fold change)>

2.0. (C) S-plot of metabolites identified by HILIC analysis and their modeled class designation. (D) Heatmap: Top 50 significant metabolites in HILIC after log

transformation and pareto scaling.

https://doi.org/10.1371/journal.pone.0271137.g007

PLOS ONE Untargeted metabolomics and lipidomics in dogs with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0271137 July 8, 2022 14 / 31

https://doi.org/10.1371/journal.pone.0271137.g006
https://doi.org/10.1371/journal.pone.0271137.g007
https://doi.org/10.1371/journal.pone.0271137


lysophosphatidylcholines (LPCs) that were discriminating for sepsis or for controls (Fig 8C).

Heatmaps were constructed to enable visualization of data for the 25 lipids with the lowest P-

values (Fig 8D). Tabulated data detailing relative abundance in dogs with sepsis and healthy

controls were used to identify compounds up- and down-regulated in sepsis (Table 5). The top

10 lipids most increased in abundance in dogs with sepsis were a mixture of lipid classes, pre-

dominantly TGs composed of saturated or monounsaturated fatty acids and PCs. The 10 lipids

most decreased in abundance in dogs with sepsis were all TG consisting primarily of polyun-

saturated fatty acids (Table 5).

In negative mode, C30 LC-MS/MS analyses identified 183 lipids including isomers. The

predominant lipid class was phosphatidylcholine (PC) isomers, with phosphatidylethanol-

amines (PE) and sphingomyelins (SMs) constituting the two other major classes (Fig 9A).

OPLS-DA score plots of the lipidomes of dogs with sepsis and healthy controls demonstrated

Fig 8. Lipids identified in positive mode 323 lipids (inc. isomers after filtering data). Highest amount corresponded to TG. C30 positive mode: OPLS-DA

plot and Heatmap. Multivariate and significant features detection analysis. Compounds detected in C30 positive mode ranked by average importance.

https://doi.org/10.1371/journal.pone.0271137.g008
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adequate clustering and clear separation of the data from both groups (Fig 9B). Multivariate

and significant features detection analyses identified two SM isomers were particularly dis-

criminating for sepsis or for controls (Fig 9C). Heatmaps were constructed to enable visualiza-

tion of data for the 25 compounds with the lowest P-values (Fig 9D). Through analysis of

tabulated data from negative ion mode analysis, the 10 lipids most increased in dogs with sep-

sis were predominantly PC and PE compounds typically containing saturated or monounsatu-

rated fatty acids. The 10 lipids as most decreased in dogs with sepsis were predominantly PC

and LPC compounds consisting primarily of polyunsaturated fatty acids (Table 6).

Discussion

The heterogeneous nature of sepsis in dogs presents a diagnostic and prognostic challenge for

both clinicians and researchers. Novel treatment strategies are needed to improve outcomes.

Metabolomics is an emerging tool for studying the pathophysiology of sepsis. Metabolomics

might also yield therapeutic opportunities and identify discriminating biomarkers for deter-

mining the diagnosis and prognosis of sepsis in humans [30–32]. In rodent models of sepsis,

concentrations of a panel of lipid metabolites were shown to be highly predictive of survival.

These metabolites included: linolenic acid, linoleic acid, oleic acid, stearic acid, docosahexae-

noic acid and docosapentaenoic acid [30]. The study also revealed that a panel of metabolites,

predominantly involved in energy metabolism, were prognostic in 87% of animals. These

metabolites included lactate, alanine, acetate, acetoacetate, hydroxybutyrate, and formate [31].

Increased serum concentrations of alanine, creatine, phosphoethanolamine, and acetoacetate

and decreased concentrations of formate are highly sensitive and specific for the diagnosis of

sepsis in rodents [32]. Metabolomic and lipidomic profiling of humans with sepsis has identi-

fied potential diagnostic biomarkers and distinct metabolomic patterns with the potential to

guide clinical decision-making [13, 33–35]. For instance, in a case-control study, the metabo-

lomic profiles of humans with septic shock had significant increases in phenylalanine, myo-

Table 5. Top 10 lipids upregulated and downregulated in dogs with sepsis C30 positive ion mode.

Lipid Fatty Acids Ion Formula Relative abundance S/C

TG(50:2)+NH4 (16:0_16:0_18:2) C53 H102 O6 N1 5.880

TG(50:3)+NH4 (18:1_14:0_18:2) C53 H100 O6 N1 5.434

SM(d36:0)+H (d36:0) C41 H86 O6 N2 P1 5.028

PE(34:1)+H (34:1) C39 H77 O8 N1 P1 4.660

PC(28:0)+H (28:0) C36 H73 O8 N1 P1 4.257

PC(38:3)+H (38:3) C46 H87 O8 N1 P1 3.905

TG(46:1)+NH4 (16:0_12:0_18:1) C49 H96 O6 N1 3.793

PC(30:0)+H (6:0_24:0) C38 H77 O8 N1 P1 2.868

TG(49:2)+NH4 (18:1_13:0_18:1) C52 H100 O6 N1 2.856

TG(48:0)+NH4 (16:0_16:0_16:0) C51 H102 O6 N1 2.709

TG(50:5)+NH4 (18:2_14:1_18:2) C53 H96 O6 N1 0.278

TG(62:3)+NH4 (26:0_18:1_18:2) C65 H124 O6 N1 0.206

TG(60:2)+NH4 (18:1_18:1_24:0) C63 H122 O6 N1 0.170

TG(58:2)+NH4 (16:0_18:2_24:0) C61 H118 O6 N1 0.169

TG(60:3)+NH4 (18:1_18:2_24:0) C63 H120 O6 N1 0.143

TG(54:8)+NH4 (18:3_18:2_18:3) C57 H98 O6 N1 0.129

TG(58:3)+NH4 (18:1_18:2_22:0) C61 H116 O6 N1 0.125

TG(54:7)+NH4 (18:3_18:2_18:2) C57 H100 O6 N1 0.123

TG(60:4)+NH4 (24:0_18:2_18:2) C63 H118 O6 N1 0.100

https://doi.org/10.1371/journal.pone.0271137.t005
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inositol, isobutyrate and hydroxybutyrate and reductions in the amino acids arginine, valine,

and threonine, as compared to human ICU patients with non-septic SIRS [33]. Furthermore,

increased concentrations of 2-hydroxyisovalerate and fructose, and decreased concentrations

of dimethylamine were associated with nonsurvival. In a pediatric sepsis cohort, metabolomic

profiles outperformed procalcitonin measurements and the Pediatric Risk of Mortality III-A-

cute Physiology Score for discrimination of septic shock from non-septic SIRS and for survival

prediction [13].

Comparable metabolic profiling in dogs with sepsis has so far been limited. To address this

knowledge-gap we employed metabolomics to identify diagnostic biomarkers and altered met-

abolic pathways that could serve as future therapeutic targets. We identified 803 unique metab-

olites in plasma samples from dogs with sepsis. Within those 803 compounds, 329 metabolites

were identified that were significantly increased in dogs with sepsis compared to healthy

Fig 9. Lipids identified in negative mode 183 lipids (inc. isomers after filtering data). Highest amount corresponded to PC. C30 negative mode: OPLS-DA

plot and Heatmap. Multivariate and significant features detection analysis. Compounds detected in C30 negative mode ranked by average importance.

https://doi.org/10.1371/journal.pone.0271137.g009
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controls, whereas 195 were decreased in dogs with sepsis. Pathway analysis identified multiple

enriched metabolic pathways including pyruvaldehyde degradation; ketone body metabolism;

the glucose-alanine cycle; vitamin-K metabolism; arginine and betaine metabolism; the bio-

synthesis of various amino acid classes including the aromatic amino acids (phe, trp, tyr);

branched chain amino acids (BCAA) (ile, leu, val); and metabolism of glutamine/glutamate

and the glycerophospholipid phosphatidylethanolamine.

Many of the metabolites and metabolic pathways up- and down-regulated in dogs in our

study have been identified as molecules or pathways of interest in studies of humans with sep-

sis or septic shock [29]. Overall, the metabolomic profiles of dogs with sepsis suggest a cellular

energy crisis with consequent mobilization of resources to address a negative energy balance

and maintain blood glucose concentrations through upregulation of the tricarboxylic acid

(TCA) cycle and ongoing protein and fat catabolism [36]. Enrichment of TCA cycle intermedi-

ates such as pyruvate, proline, glutamine, glutamate, phenylalanine, and alanine likely repre-

sent host attempts to enhance energy production and might be associated with cytopathic

hypoxia that is associated with poor outcomes in sepsis [37]. The profiles also suggest the

potential for hepatocellular injury and alterations in the handling of Vitamin K. Several poten-

tial bacterial-derived metabolites, such as R-lactate were represented in the dog metabolomes

and certain pathways including glutamine/glutamate metabolism were upregulated, suggesting

dysregulation of host-microbial interactions in dogs with sepsis.

Metabolites associated with ketone body metabolism were significantly enriched in the sep-

sis samples, indicating enhanced fat breakdown and a tendency towards ketoacidosis, consis-

tent with the hypercatabolic state described in sepsis [38–40]. Ketone bodies are synthesized

from acetyl-coenzyme A as alternative energy sources when intracellular glucose concentra-

tions are insufficient to meet metabolic demands. Synthesis and accumulation of acetyl-CoA

and hence of ketone bodies is enhanced when glucagon concentrations increase, insulin

Table 6. Top 10 lipids upregulated and downregulated in dogs with sepsis C30 negative ion mode.

Lipid Fatty Acids Ion Formula Relative abundance S/C

PC(28:0)+HCOO (14:0_14:0) C37 H73 O10 N1 P1 18.879

PE(34:3)-H (16:0_18:3) C39 H71 O8 N1 P1 12.836

PE(34:1)-H (16:0_18:1) C39 H75 O8 N1 P1 6.070

PE(35:1)-H (17:0_18:1) C40 H77 O8 N1 P1 5.959

PC(34:3)+HCOO (16:1_18:2) C43 H79 O10 N1 P1 5.070

PE(38:3)-H (18:0_20:3) C43 H79 O8 N1 P1 3.380

PC(34:2)+HCOO (16:1_18:1) C43 H81 O10 N1 P1 3.011

PC(36:3)+HCOO (16:0_20:3) C45 H83 O10 N1 P1 3.011

PE(38:4)-H (16:0_22:4) C43 H77 O8 N1 P1 2.908

PG(36:1)-H (18:0_18:1) C42 H80 O10 N0 P1 2.803

LPE(18:2)-H (18:2) C23 H43 O7 N1 P1 0.445

LPC(20:4)+HCOO (20:4) C29 H51 O9 N1 P1 0.442

PC(36:6e)+HCOO (16:1e_20:5) C45 H79 O9 N1 P1 0.414

PC(40:5)+HCOO (18:1_22:4) C49 H87 O10 N1 P1 0.368

LPC(18:2)+HCOO (18:2) C27 H51 O9 N1 P1 0.364

LPC(18:2)-CH3 (18:2) C25 H47 O7 N1 P1 0.358

PC(40:6)+HCOO (18:1_22:5) C49 H85 O10 N1 P1 0.345

PC(36:4)+HCOO (18:2_18:2) C45 H81 O10 N1 P1 0.330

PC(38:6)+HCOO (18:1_20:5) C47 H81 O10 N1 P1 0.315

PC(36:5)+HCOO (16:1_20:4) C45 H79 O10 N1 P1 0.198

https://doi.org/10.1371/journal.pone.0271137.t006
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concentrations decrease, or insulin antagonism occurs. Glucagon also leads to catabolism

through enhanced glycogenolysis, proteolysis, and lipolysis. Cytokine dysregulation is likely

involved in the pathophysiology of these processes leading to enhanced ketone body metabo-

lism. Concentrations of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (also

known as CC motif chemokine ligand 2) are significantly higher in dogs with diabetes, whereas

dogs with ketoacidosis have increased concentrations of keratinocyte chemoattractant, IL-18

and granulocyte-monocyte colony-stimulating factor [41]. Studies of dogs with sepsis have

identified similar patterns of cytokine expression [42–45]. Ketone bodies also suppress the

immune system [46], with increased concentrations associated with poor prognosis in human

critical illness [47].

Enriched biosynthesis of the BCAA leucine, isoleucine, and valine are seen during muscle

protein breakdown, consistent with the catabolic state in sepsis [48–52]. Alterations in BCAA

levels have been reported in conditions resulting in systemic inflammation wherein cytokine

production, sympathetic nervous system activation, and hypercortisolemia generate insulin

resistance and result in muscle protein degradation and diminished uptake with a resultant

loss of lean body mass [53]. This finding might support the supplementation of BCAA in dogs

with sepsis to provide energy substrates for muscles, enable protein anabolism and to act as

glutamine precursors to enhance immune function and maintain gut integrity [54, 55]. Upre-

gulated histidine and phenylalanine metabolic pathways are similarly associated with muscular

protein breakdown, amino acid oxidation, decreased energy supply, and organ failure seen in

inflammatory states and septic shock, and have been associated with poor prognosis in criti-

cally ill humans [56–62]. Enhanced arginine pathways in humans with septic shock might be

associated with nitric oxide synthesis, with increased arginine concentrations shown to impact

acute phase protein synthesis [63, 64]. Increased alanine, glutamate, and phenylalanine con-

centrations are also seen in hemolysis associated with sepsis [65] Enriched phosphatidyletha-

nolamine metabolism suggests dysregulated conversion of phosphatidylethanolamine to

phosphatidylcholine that is associated with hepatocellular damage [66]. Enriched betaine

metabolism is associated with enhanced fatty acid oxidation and export of hepatic lipids asso-

ciated with fat catabolism [67].

Pathway analysis identified enrichment of glutamine/glutamate metabolism in dogs with

sepsis. Glutamine is the most abundant nonessential amino acid in humans and exists in both

L- and D- enantiomeric forms, whereas only L-glutamate is a metabolic intermediate in mam-

mals. D-glutamate is not endogenously produced in humans or dogs and the substantial con-

centrations seen in liver and other tissues is derived from plants or from the cell walls of

bacteria [68]. In our study the glutamine/glutamate pathway was upregulated, although it is

not possible to be certain if this reflects the levo- or dextro- forms based solely on the mass

spectra. Both L- and D-glutamine have the same mass spectra and fragment in the same way,

and can only be differentiated by chiral chromatography, not reverse phase C18 chromatogra-

phy as performed here. Endotoxemia in rats is associated with reduced glutamine and gluta-

mate concentrations [69] and in humans with fatal septic shock plasma L-glutamate

concentrations and plasma glutamate/glutamine ratios are low [51]. This might be due to

enhanced organ glutamate and glutamine production or consumption rates [70]. In a metabo-

lomic study of humans with sepsis [71], D-glutamine / D-glutamate metabolites were dimin-

ished in the sepsis samples which might not have been the case here. Our findings in dogs

warrant replication and further investigation employing chiral chromatography to differenti-

ate the two glutamine/glutamate enantiomers. The explanation for the up regulation of gluta-

mine/glutamate metabolism in dogs with sepsis is uncertain but if this represents the dextro-

forms then it might relate to intestinal dysbiosis and an increase in absorption of bacterial

metabolites or translocation of bacteria into circulation.
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We also identified enriched vitamin K metabolism in dogs with sepsis. The role of vitamin

K in the activation of coagulation proteins (factors II, VII, IX, X, proteins C and S) is well

known. Vitamin K deficiency causes insufficient carboxylation of endothelial protein S,

increasing risk for thrombosis [72], but more typically causes an increased bleeding risk that

might be misdiagnosed as disseminated intravascular coagulation in critically ill humans [73].

Comparable coagulation disturbances have been well-documented in dogs with sepsis [23, 74].

Vitamin K-dependent matrix γ-carboxyglutamic protein (MGP) is involved in preventing soft

tissue calcification and protects against elastic fiber degradation in the lungs and arteries [75].

During inflammation, macrophage derived matrix metalloproteinases accelerate elastic fiber

degradation and increase vitamin K utilization for MGP carboxylation [76] that can result in

vitamin K deficiency, MGP depletion and consequent pulmonary damage [77]. Vitamin K is

also utilized in the regulation of sphingolipid metabolism [78], a process altered in dogs in our

study.

Some compounds were enriched in the serum of healthy dogs relative to dogs with sepsis

(i.e. diminished in abundance in dogs with sepsis). Of the 10 compounds with the lowest rela-

tive abundance in dogs with sepsis, 7 were components of the exposome [79, 80]. These com-

pounds, including 4-tert-amylphenol, quinoline, and trihydroxybenzophenone are not

naturally occurring metabolites and are found only in individuals exposed in their environ-

ments. Of the non-exposome compounds downregulated in dogs with sepsis, L-ascorbic acid

2-sulfate was the most notable. In humans, ascorbate (Vitamin C) is an essential nutrient that

acts as an antioxidant that mitigates oxidative stress [81], whereas in dogs it can be synthesized

endogenously [82]. In the context of human sepsis, vitamin C has been advocated as part of a

metabolic resuscitation strategy combined with thiamine and glucocorticoids [83]. However,

recent large clinical trials have not demonstrated a benefit of this strategy [84–86]. In dogs,

vitamin C concentrations have been documented to increase in animals hospitalized in an

intensive care unit [87], which is counter to the findings from dogs in our study. As such, fur-

ther investigation of vitamin C concentrations in dogs with sepsis is warranted.

Multiple metabolites were identified that were highly discriminating for sepsis that could

serve as potential diagnostic biomarkers. The three best performing markers were 15-keto-

13,14-Dihydro-prostaglandin A2; 12(13)-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid);

and 9-HpODE (9-Hydroxyoctadecadienoic acid). The prostaglandin metabolite 15-keto-

13,14-dihydro-PGA2 is derived from PGE2 [88, 89], a potent inflammatory mediator generated

by cyclooxygenase 2 (COX-2) conversion of arachidonic acid. Synthesis of PGE2 is upregulated

by COX-2 expression after stimulation by lipopolysaccharide or proinflammatory cytokines

that in turn enables activation, maturation and secretion by innate immune cells such as mac-

rophages, neutrophils, and natural killer cells. In the setting of sepsis, PGE2 synthesis is

induced by both Gram-negative and Gram-positive bacteria [90]. PGE2 is significantly ele-

vated in inflammation and contributes to immune suppression and increased concentrations

are associated with poor prognosis in humans with sepsis [91].

Dietary plant oils containing n-6 polyunsaturated fatty acids (n-6 PUFA), such as linoleic

acid, are the precursors for bioactive eicosanoids and epoxides including 9,10-epoxyoctadece-

noic acid (9,10-EpOME) and 12,13-epoxyoctadecenoic acid (12,13-EpOME) [92], which are

further metabolized by soluble epoxide hydrolase (sEH) to form the corresponding linoleic

diols 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME) and 12,13-dihydroxyoctadecenoic

acid (12,13-DiHOME) [93]. These epoxides and in particular their secondary diol containing

metabolites are potentially cytotoxic [94, 95]. 12,13-DiHOME is a diol containing metabolite

of linoleic acid that is derived from 12,13-EpOME (isoleukotoxin) through the activity of solu-

ble epoxide hydrolase in neutrophils. The leukotoxins are produced by activated neutrophils

and high concentrations have been observed in acute respiratory distress syndrome and burns.
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These leukotoxins have neutrophil chemotactic activity and modulate neutrophil respiratory

burst activity [96]. In a fatal human sepsis case report, increased concentrations of various lin-

oleic acid metabolites including 12,13-DiHOME were detected [97].

The endogenous fatty acid agonist 9-HpODE is another linoleic acid derivative than can be

generated by the activity of COX, lipoxygenase, and cytochrome P450 enzymes or after lipid

peroxidation by reactive oxygen species [98–100]. Linoleic acid metabolites such as 9-HpODE

are thus potential markers of oxidative stress in cells and tissues in sepsis [101]. The 9-HpODE

metabolite is typically rapidly reduced into dimorphecolic acid (9-HODE) which is an agonist

of peroxisome proliferator-activated receptor gamma (PPARγ) [102], that can stimulate matu-

ration of monocytes into macrophages [103] and increases plasminogen activator inhibitor

type-1 expression by endothelial cells [104]. Further studies are needed to assess the specificity

and sensitivity of these biomarkers in clinical practice and it would be beneficial to use a con-

trol sample of critically ill dogs with evidence of systemic inflammation but without sepsis.

In addition to identification of potential diagnostic biomarkers, we also identified various

potential prognostic biomarkers. As with other markers discussed above, metabolites were

both increased and decreased in abundance in samples from nonsurvivors compared to survi-

vors. These relative changes offer potential insights into the pathophysiology of sepsis and

could represent opportunities for therapeutic interventions in the future. Metabolites that

were more abundant in samples from nonsurvivors included 3-(2-hydroxyethyl) indole,

indoxyl sulfate and xanthurenic acid, all of which are derived from intestinal microbiota

metabolism of dietary L-tryptophan, and several are known uremic toxins. Indoxyl sulfate is

one such uremic toxin, that has been documented to be increased in humans with sepsis and

associated kidney injury [105]. Other compounds that were increased in abundance included

p-cresol glucuronide and 2-aminoacetophenone, both of which are potentially microbial-

derived. Indoxyl sulfate and p-cresol compounds are produced by the colonic microbiota and

can lead to progression of kidney injury [106]. Metabolites that were less abundant in samples

from nonsurvivors included two B-vitamins or their derivatives (thiamine; 5-phenyl nicotinic

acid). Vitamins are key effectors in many biological processes relevant to sepsis and relative

vitamin deficiencies are common in humans with sepsis. Vitamin treatment has been associ-

ated with improved outcomes in some human pediatric and adult cohorts, although these ben-

efits have not been consistently obtained [107]. The naturally occurring monosaccharide

1,5-anhydro-D-glucitol was decreased in nonsurvivors. This is noteworthy, because in humans

blood concentrations of 1,5-anhydro-D-glucitol decrease during hyperglycemia, returning to

normal once euglycemia is restored [108]. Hyperglycemia is potentially detrimental in criti-

cally ill humans [109], and numerous studies have investigated the use of insulin to control

sepsis-associated hyperglycemia in humans [110]. The decreased abundance of arachidonic

acid in nonsurvivors is also noteworthy, because this lipid mediator is the parent molecule

from which numerous eicosanoid inflammatory mediators are derived [111]. Alterations in

the concentrations of the bioactive mediators derived from arachidonic acid have been associ-

ated with outcome in sepsis in humans [112]. Irrespective of the similar associations with out-

come documented in humans, it should be noted that these putative biomarkers are derived

from comparisons of data from survivors with those of only 3 dogs that were euthanized. All 3

dogs were euthanized for disease severity, but it is uncertain if these dogs would have died if

ongoing maximal intensive care had been continued. As such, it will be necessary to determine

if these preliminary findings derived from a small sample size can be replicated in larger stud-

ies of dogs with sepsis, and particularly in those dogs that die of their disease despite critical

care interventions.

In dogs in our study, untargeted lipidomic profiling identified 506 lipid isomers and

revealed multiple sphingomyelin (SM) (SM(d34:0)+H; SM(d36:0)+H; SM(d34:0)+HCOO;
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and SM(d34:1D3)+HCOO) and lysophosphatidylcholine (LPC) molecules (LPC(18:2)+H and

lipophosphoserine molecules (LPS(20:4)+H) that were discriminating for dogs with sepsis.

These findings are consistent with lipidomic biomarker investigations in humans with sepsis

[19] and community acquired pneumonia [113]. The lipidomes of dogs with sepsis demon-

strated upregulated saturated fatty acids, monounsaturated fatty acids (MUFAs), some phos-

phatidylcholines (PC) and phosphatidylethanolamines (PE). Downregulated compounds

included polyunsaturated fatty acids (PUFAs), some phosphatidylcholines (PC), and LPC.

Downregulation of LPC is well documented in humans with sepsis [25, 114, 115], septic

shock [116], and community acquired pneumonia [113, 117]. LPC is produced from the action

of pro-inflammatory phospholipase A2 that liberates arachidonic acid from PC. LPC can then

go on to serve as a ligand for the immunoregulatory receptor G2A expressed on mature T-

and B-cells. Depletion of LPC by conversion to anti-inflammatory lysophosphatidic acid

might be associated with the excessive immune response seen in sepsis [19, 115] and is corre-

lated with death [114].

In our study, some PC compounds were upregulated whereas others were downregulated; a

finding consistent with lipidomic studies of humans with sepsis [118]. This finding might be

due to differences in the timing of sample collection relative to the course of disease since PC

levels change as sepsis progresses. In humans, increased PC concentrations might help dis-

criminate sepsis from SIRS, potentially due to increased lipoprotein concentrations [119]. In

humans with sepsis, decreased PC concentrations might be associated with death [25], an asso-

ciation that could be due to inadequate supply of fatty acid precursors required for PC biosyn-

thesis secondary to dysregulated beta-oxidation [120]. In an experimental swine septic shock

model, decreased PC was documented in animals with septic shock [116], hypothesized to be

due to altered functionality of hepatic lipid-modifying enzymes and ongoing hepatocyte dam-

age [121]. This association between hepatocellular injury and PC dysregulation is consistent

with our metabolic profiling of dogs with sepsis that documented enriched phosphatidyletha-

nolamine metabolism.

As in humans with sepsis, PUFAs were downregulated in dogs with sepsis. These molecules

reduce T-cell activation and dampen inflammation [122], which might underpin the associa-

tion between reduced PUFA concentrations and death from sepsis [25]. The reduced PUFA

concentrations we observed might be due to degradation by peroxidation from reactive oxy-

gen species or through utilization for synthesis of inflammatory mediators such as prostaglan-

dins [123]. Upregulation of saturated fatty acids and MUFAs observed in dogs in our study is

also seen in humans with sepsis and likely reflects increased lipolysis [19]. Elevated MUFA

concentrations are associated with hypoalbuminemia and myocardial injury and might con-

tribute to organ dysfunction and death in sepsis [124–127].

Our study has some limitations. We studied a heterogenous sample of dogs with sepsis,

with various sources of infection and with sepsis caused by a range of different organisms.

This heterogeneity is likely representative of the populations of dogs with sepsis managed by

veterinarians and enhances the generalizability of our results. However, this heterogeneity

could also have limited our ability to discriminate patterns within the data and to identify

important but subtle differences between dogs with sepsis and controls. Similarly, the dogs

with sepsis enrolled into our study were not enrolled at the same stage of their disease pro-

cesses and were also affected to varying degrees by their disease process, as indicated by the

wide range of disease severity scores documented in this sample. Sepsis is a syndrome charac-

terized by the dysregulated host response to infection [1] and does not represent a single dis-

ease entity. As such, it includes a broad range of underlying causes, each of which might affect

the metabolome distinctly according to the nature, duration, magnitude, and source of infec-

tion and the animal’s pre-existing health status, physiologic reserves, and the impact of
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intercurrent diseases. The metabolomic data we analyzed represent a single snapshot of the

dogs with sepsis, yet metabolic processes are dynamic and change over time. Serial evaluations

might provide a fuller picture of the metabolic alterations in septic dogs. In addition, we could

not standardize the therapies, diets, or nutritional supplements that these dogs received, yet all

these factors likely impacted the resulting metabolomes. Similarly, we were not able to stan-

dardize the diets of the healthy control dogs sampled and this likely also introduced variation

in our data that is unrelated to sepsis. Given the heterogeneity of naturally occurring disease, it

will never be possible to standardize or control for every potential contributor to a metabolic

profile and indeed this might not be desirable because the data would lack real world validity.

Expanding the size of the cohort evaluated could help to overcome some of these influences,

however, by reducing the effect of individual variations on the average. Dietary information

was available for many dogs in our study, but there was very little consistency in the type or

source of the foodstuffs being consumed by these dogs, and the dogs had a range of prior nutri-

tional statuses (history of anorexia, obesity, evidence of catabolism, etc.) that inevitably

impacted the resulting metabolomic and lipidomic profiles, particularly in a comparatively

small sample size. Serial measurements throughout treatment might also enhance the perfor-

mance of biomarkers for monitoring response to treatment and outcome prediction. Here, we

deliberately chose to compare the metabolomes of dogs with sepsis with those of healthy con-

trol animals to maximize the differences between the two groups. However, the clinical rele-

vance of the diagnostic biomarkers we identified, and their discriminatory performance will

need to be assessed in subsequent studies using other critically ill, but non-septic, cohorts of

dogs.

In summary, we evaluated the metabolomic and lipidomic profiles of plasma samples from

dogs with sepsis and identified numerous metabolic derangements compared to healthy con-

trol animals. Dogs with sepsis had various disruptions of metabolic pathways that were consis-

tent with profiles of humans with sepsis and some distinct alterations that will need to be

replicated. Multiple potential metabolite and lipid biomarkers were identified that could aid in

the diagnosis of dogs with sepsis and could provide prognostic information or act as therapeu-

tic targets. The substantial alterations in numerous metabolic pathways identified strongly

indicates that sepsis radically alters host biochemical processes suggestive of catabolism and

disrupted energy generation. Future studies should compare the metabolomic profiles of dogs

with sepsis against those of other critically ill cohorts and determine if metabolomic profiling

can help stratify illness severity, monitor response to treatment, or guide nutritional or other

therapeutic interventions.
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S1 Fig. Scatterplots of correlations between illness severity and select prognostic biomark-

ers. Scatterplots were constructed to explore the relationships between illness severity as

assessed by the APPLEfast score and prognostic biomarker abundance. Displayed are the 12

biomarkers with the highest degree of correlation with the APPLEfast score. The associated

Spearman correlation coefficient (rs) and corresponding unadjusted P-value is displayed inset

on each scatterplot.
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