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Abstract

Background

Birth by cesarean section is associated with increased risks of immune disorders. We tested

whether establishment of immune function at birth relates to mode of delivery, taking other

maternal and infant characteristics into account.

Methods and findings

Using a prospectively collected database, we retrieved information on maternal and infant

characteristics of 6,014 singleton infants delivered from February to April 2014 in Stock-

holm, Sweden, with gestational age�35 weeks, Apgar scores�7, and without congenital

malformations or any neonatal morbidity. We linked our data to blood levels of T-cell recep-

tor excision circles (TREC) and κ-deleting recombination excision circles (KREC), deter-

mined as part of a neonatal screening program for immune-deficiencies, and representing

quantities of newly formed T- and B-lymphocytes. Multivariate logistic regression was used

to calculate odds ratios (OR) with 95% confidence intervals (CI) for participants having

TREC and KREC levels in the lowest quintile. Multivariate models were adjusted for postna-

tal age at blood sampling, and included perinatal (mode of delivery, infant sex, gestational

age, and birth weight for gestational age), and maternal characteristics (age, parity, BMI,

smoking, diabetes, and hypertensive disease).
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Low TREC was associated with cesarean section before labor (adjusted OR:1.32 [95% CI

1.08–1.62]), male infant sex (aOR:1.60 [1.41–1.83]), preterm birth at 35–36 weeks of gesta-

tion (aOR:1.89 [1.21–2.96]) and small for gestational age (aOR:1.67 [1.00–2.79]). Low

KREC was associated with male sex (aOR:1.32 [1.15–1.50]), postterm birth at�42 weeks

(aOR:1.43 [1.13–1.82]) and small for gestational age (aOR:2.89 [1.78–4.69]). Maternal char-

acteristics showed no consistent associations with neonatal levels of either TREC or KREC.

Conclusion

Cesarean section before labor was associated with lower T-lymphocyte formation, irrespec-

tive of maternal characteristics, pregnancy, and neonatal risk factors. The significance of a

reduced birth-related surge in lymphocyte formation for future immune function and health

remains to be investigated.

Introduction

The worldwide rate of Cesarean section (CS) has quadrupled in less than two decades, making

CS the most common surgical procedure performed in women of child-bearing age [1, 2].

Whereas CS is judged as medically indicated in up to 20% of deliveries [3, 4], several national

CS-rates exceed this level, suggesting that many women probably undergo CS without a clear

medical indication [5]. Whereas short-term maternal and infant outcomes after CS are well

described [6], the long-term consequences of this global change in mode of childbirth are

mostly unknown.

Compared with vaginal delivery, CS delivery is associated with increased risks of immune

disorders later in life, such as asthma and allergies [7–10], type 1 diabetes [10, 11], celiac dis-

ease and inflammatory bowel diseases [10, 12–14], obesity [15], immune deficiencies, leuke-

mia, and other malignancies affecting young people [10, 16–18]. It is, however, unclear if and

how CS could affect the health in the offspring [19, 20]. Possible pathways for these associa-

tions may include lower and untimely activation of the fetal immune system due to absence of

labor with reduced stress of being born, and altered bacterial colonization of the infant gut

after CS [21]. As elective cesarean delivery is almost exclusively performed before term gesta-

tion, lower gestational age has also been suggested to be in the causal pathway between CS and

childhood and adult immune disease [19].

We have previously discovered that hematopoietic stem cells (CD34+) could have a cellular

memory of birth, expressed as an epigenetic imprint [22]. Accordingly, DNA from stem cells

in infants delivered by CS before labor was more methylated than DNA from infants delivered

vaginally, indicating less genomic stem cell activation after CS than after vaginal delivery [22].

Whether epigenetic expressions translate into differential cellular actions remains to be estab-

lished, however, we found differential DNA-methylation related to mode of delivery in regions

of genes involved in immunoglobulin synthesis [22]. It is known that hematopoietic stem cells

are important for the functional maturation of the immune system. Through differentiation,

they give rise to mature T- and B-lymphocytes. At birth, the rate of stem cell differentiation

peaks, after which a gradual decline occurs. Individual variations are substantial, and in the

neonatal period, the quantity of newly formed lymphocytes can vary up to a 100-fold [23]. The

underlying contributors to this variation in neonatal immune cell activation and differentia-

tion are unknown.
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Quantitative data on T-cell receptor excision circles (TRECs) and κ-deleting recombination

excision circles (KRECs) are used as part of a neonatal screening program for detection of pri-

mary immune deficiencies [24] and reflect de novo formation of T- and B-lymphocytes from

hematopoietic stem cells. In a large population-based cohort, we used this information to dis-

entangle contributions from mode of delivery, infant and maternal characteristics to neonatal

lymphocyte production after birth. Given how the pattern of DNA-methylation in lymphocyte

ancestors relates to mode of delivery, our primary hypothesis was that newborn infants deliv-

ered by CS before labor exhibit lower levels of newly formed T- and B-lymphocytes (decreased

levels of TRECs and KRECs) than infants born vaginally, irrespective of other perinatal factors.

We also hypothesized that T- and B-cell formation could be affected by fetal growth and gesta-

tional age.

Methods

Study population

This population-based cohort was based on 7,174 singleton, live-born infants, delivered in

February through April 2014 in Stockholm county, Sweden. We restricted the study popula-

tion to infants born at 35 completed weeks of gestation and later, with Apgar scores�7 at 1, 5

and 10 minutes, and without any record of ICD-10 diagnoses for congenital malformations or

neonatal morbidity (the Q- and P-chapters in ICD-10). After these exclusions of 1,160 infants,

the study population comprised 6,014 infants and their mothers, Fig 1.

Using the Stockholm-Gotland Obstetric Data Base, we retrieved maternal, pregnancy,

delivery and infant characteristics. Information in this data base was prospectively collected;

Fig 1. Study population of 6,014 live-born singleton infants born at 35–42 completed weeks of gestation.

https://doi.org/10.1371/journal.pone.0184748.g001
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from the first antenatal visit that occurred during the first 13 gestational weeks in 90% of preg-

nancies, until postpartum hospital discharge.

Main exposure

Mode of delivery was categorized as non-instrumental vaginal delivery, instrumental vaginal

delivery, emergency or elective CS. Elective CS was defined as CS before onset of labor.

Other perinatal covariates. Maternal age was computed from the national identification

number (mother’s birth date) at the date of delivery. Parity and self-reported smoking habits

were based on information obtained at the first antenatal visit. Maternal body mass index

(BMI; kg/m2) in early pregnancy was calculated from self-reported height and measured

weight at the first antenatal visit. Maternal diabetes or hypertensive disease was defined as

recorded ICD-10 diagnoses: diabetes included pre-gestational (ICD-10 codes E10-E14 and

O240-O243) and gestational diabetes (ICD-10 code O244). Hypertensive diseases included

pre-gestational (ICD-10 codes I10-I15, O10, O11) and gestational hypertension (ICD-10 code

O13), and preeclampsia (ICD-10 codes O14-O15). Gestational age was determined by the fol-

lowing hierarchy: a) date of embryo transfer (2.8%), b) early second trimester ultrasound

(96.1%), c) date of last menstrual period (1.1%), and d) from a postnatal assessment (<0.1%).

Birth weight for gestational age was estimated according to the sex-specific Swedish reference

curve for normal fetal growth. A normal birth weight for gestational age was defined as a birth

weight between the 3rd and 97th percentiles. Postnatal age at blood sample was calculated by

subtracting sampling date and time from birth date and time.

Perinatal covariates were categorized as presented in Table 1 and S1 Table.

Outcomes

The outcome variables, i.e. blood levels of TREC and KREC, were determined at the PKU labo-

ratory at the Karolinska University Hospital, Stockholm, Sweden. TREC- and KREC-levels

were analyzed as part of a neonatal screening project to detect severe combined immune defi-

ciencies [24].

With minor technical modifications, the TREC/KREC newborn screening assay [23] was

utilized. Using the original dried blood spots for the national neonatal screening program,

TREC and KREC levels were determined in 3.2 mm punches. Every single 3.2-mm punch was

analyzed in a 96-well format using quantitative triplex real-time qPCR for the simultaneous

quantification of TRECs, KRECs and beta-actin (ACTB) using a ViiA7 Real-Time PCR System

(Applied Biosystems, Foster City, CA, USA) as previously described [23]. Optimization of the

qPCR procedure was performed using custom reagents provided by Affymetrix (Santa Clara,

CA, USA). The purpose of the inclusion of ACTB in the assay was to assess that the extraction

and amplification were satisfactory from each dried blood spot, but this was disregarded if

TREC and KREC copy numbers were above the cutoff levels. Samples in which TREC or

KREC levels were below cutoff in association with a reduction in ACTB copy number were

considered inconclusive and were reanalyzed.

Statistical analyses

Perinatal characteristics were described as numbers and rates, and compared with chi-squared

test. Levels of TREC and KREC were log-transformed to achieve a normal distribution, and

divided into quintiles, from low to high values. Chi-square test was used to estimate differences

in distributions of exposure (mode of delivery and other perinatal covariates) in relation to

TREC- and KREC-quintiles. In addition, linear regression models were used to investigate

whether the log-transformed TREC- or KREC-values were associated with our perinatal
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covariates. We also used logistic regression to calculate odds ratios with 95% confidence inter-

vals for the risk of having a TREC- or KREC-value within the lowest quintile (Q1), with the

other quintiles (Q2-Q5) as the reference category. As postnatal age for blood sampling was

strongly associated with TREC- and KREC-values, we investigated whether postnatal age for

sampling modified associations. A statistical interaction was pre-defined as an interaction

term with p-value of less than 0.05. Finally, sensitivity analyses were performed in the subset of

infants with mothers without recorded diabetes and hypertensive disease.

The SAS software package version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for sta-

tistical analyses. The study was approved by the Regional Ethical Review Board in Stockholm,

Sweden (No. 2014/1292-31/4). Informed consent to the study was waived as all participants

previously had agreed on participation in the neonatal screening program and to data collec-

tion in the Stockholm-Gotland database, both for clinical and research purposes.

Results

Neonatal blood levels of TREC ranged from 16–622 copies/3,2 mm punch with a median value

of 166 copies/3,2 mm punch; KREC blood levels ranged from 2–638 copies/3,2 mm punch,

with a median of 97 copies/3,2 mm punch.

In the study population of 6,014 singleton infants born between 35–42 gestational weeks,

low TREC- and KREC-levels (within the first quintile) were more commonly found after elec-

tive CS, in male infants, after preterm birth (35–36 weeks), in infants with low birth weight for

Table 1. Perinatal characteristics of 6,014 singleton infants born at 35–42 weeks of gestation, and numbers and rates of TREC- and KREC-levels in

the lowest quintile.

Low TREC p-value* Low KREC p-value*

Total nb. nb rate (%) nb rate (%)

Mode of delivery

Elective C-section 640 176 (27.5) <0.01 156 (24.4) 0.02

Emergency C-section 452 100 (22.1) 96 (21.2)

Instrumental vaginal 325 58 (17.9) 64 (19.7)

Non-instrumental vaginal 4597 869 (18.9) 887 (19.3)

Infant sex

Male 3068 728 (23.7) <0.01 680 (22.2) <0.01

Female 2946 475 (16.1) 523 (17.8)

Gestational age

35–36 96 34 (35.2) <0.01 23 (24.0) <0.01

37–41 5457 1078 (19.8) 1061 (19.4)

42 461 91 (19.7) 119 (25.8)

Birth weight for gestational age

SGA, <3 perc 74 25 (33.8) 0.03 36 (48.7) <0.01

AGA, 3–97 perc 5801 1153 (20.0) 1156 (20.0)

LGA, >97 perc 137 24 (17.5) 11 (8.0)

Missing 2 - - - -

Postnatal age at blood sample

2 3147 809 (25.7) <0.01 894 (28.4) <0.01

3 1800 281 (15.6) 227 (12.6)

4–10 1058 112 (10.6) 82 (7.8)

Missing 9 1 - 1 -

* According to chi square-test.

https://doi.org/10.1371/journal.pone.0184748.t001
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gestational age, and when the blood sample was taken within the first 3–4 postnatal days

(Table 1). In addition, the distributions of TREC-levels were left-shifted (towards lower levels)

in infants delivered by elective CS compared with those delivered vaginally, in male compared

to female infants, after preterm (35–36 weeks) compared to term birth (37–41 weeks), and in

infants with low birth weight for gestational age as compared to infants with appropriate birth

weight for gestational age (Figs 2–5). In contrast, rates of low TREC and KREC did not differ

by maternal characteristics, such as age, parity, BMI and smoking (S1 Table). However, the

rate of a low TREC-level was higher in infants to diabetic mothers, and the rate of a low

KREC-level was higher in infants to mothers with hypertensive disease.

Fig 2. Rates (%) of TREC values in quintiles (1 = lowest quintile) after elective caesarean section and non-

instrumental vaginal delivery, respectively. (Chi-square p-value<0.001).

https://doi.org/10.1371/journal.pone.0184748.g002

Fig 3. Rates (%) of TREC values in quintiles (1 = lowest quintile) in male and female infants, respectively.

(Chi-square p-value<0.001).

https://doi.org/10.1371/journal.pone.0184748.g003
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The proportions of infants with TREC- and KREC-levels in the lowest quintile decreased

with infant postnatal age and therefore, all logistic regression models were adjusted for postna-

tal age at blood sampling.

In the adjusted models, elective CS, male infant sex, preterm birth at 35 to 36 weeks gesta-

tion and smallness for gestational age (SGA) were associated with increased odds for a TREC-

level in the lowest quintile (Table 2). Male infants, infants born post-term (� 42 weeks of ges-

tation) and SGA-infants had increased odds for low KREC-levels, whereas elective CS was not

associated with increased risk for low KREC (Table 2). Maternal characteristics showed no

consistent associations with risks of low TREC or KREC levels (S2 Table). As mode of delivery

Fig 5. Rates (%) of TREC values in quintiles (1 = lowest quintile) in infants with low (SGA) and appropriate

(AGA) birth weights for gestational age, respectively. (Chi-square p-value = 0.05).

https://doi.org/10.1371/journal.pone.0184748.g005

Fig 4. Rates (%) of TREC values in quintiles (1 = lowest quintile) after preterm birth (35–36 weeks) and term

birth (37–41 weeks), respectively. (Chi-square p-value<0.001).

https://doi.org/10.1371/journal.pone.0184748.g004
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may be related to gestational age, we tested whether gestational age modified associations

between mode of delivery and low TREC and low KREC, respectively. However, gestational

age did not interact with mode of delivery (interaction terms p = 0.29 and p = 0.97,

respectively).

Given the strong and inverse association between postnatal age and low TREC- and KREC-

levels, we investigated whether postnatal day for blood sampling modified the associations

between other perinatal covariates with regard to risks of low TREC- or KREC-levels. How-

ever, we found no statistical interactions between postnatal day for blood sampling and mode

of delivery, gestational age, infant sex or birth weight for gestational age, respectively.

Since rates of low TREC- and KREC-values were higher in infants to mothers with diabetes

and hypertensive disease (S1 Table), we repeated the logistic regression analyses within the

subset of 5,681 infants to mothers without diabetes and hypertensive disease. Compared to the

associations within the complete cohort, similar results were found in these sub-analyses (S3

Table).

Discussion

In this study, we found that de novo production of neonatal lymphocytes was associated with

mode of delivery and other perinatal characteristics. Compared to vaginal delivery, CS was

associated with 32% higher risk of having an infant with a lower number of newly formed

Table 2. Risks of a low TREC- and KREC-levels related to perinatal characteristics of 6,014 singleton infants born at 35–42 weeks of gestation.

Low TREC Low KREC

Odds Ratio (95% confidence interval) Odds Ratio (95% confidence interval)

Crude Adjusted* Crude Adjusted*

Mode of delivery

Elective C-section 1.63 (1.35–1.97) 1.32 (1.08–1.62) 1.35 (1.11–1.64) 1.13 (0.91–1.39)

Emergency C-section 1.22 (0.96–1.54) 0.95 (0.74–1,22) 1.13 (0.89–1.43) 0.75 (0.58–0.97)

Instrumental vaginal 0.93 (0.70–1.25) 0.87 (0.64–1.17) 1.03 (0.77–1.36) 0.80 (0.59–1.08)

Non-instrumental vaginal 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

Infant sex

Male 1.62 (1.42–1.84) 1.60 (1.41–1.83) 1.32 (1.16–1.50) 1.32 (1.15–1.50)

Female 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

Gestational age

35–36 2.23 (1.46–3.40) 1.89 (1.21–2.96) 1,31 (0.81–2.10) 1.07 (0.65–1.75)

37–41 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

42 1.00 (0,79–1.27) 0.99 (0.77–1.28) 1.44 (1.16–1.80) 1.43 (1.13–1.82)

Birth weight for gestational age

SGA, <3 perc 2.06 (1.27–3.34) 1.67 (1.00–2.79) 3.81 (2.4–6.03) 2.89 (1.78–4.69)

AGA, 3–97 perc 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

LGA, >97 perc 0.86 (0.55–1.34) 0.81 (0.51–1.28) 0.35 (0.19–0.65) 0.37 (0.20–0.70)

Postnatal day at blood sample

2 1.00 (ref.) 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

3 0.54 (0.46–0.62) 0.55 (0.47–0.64) 0.36 (0.31–0.43) 0.38 (0.32–0.45)

4–10 0.34 (0.28–0.42) 0.34 (0.27–0.42) 0.21 (0.17–0.27) 0.22 (0.17–0.28)

* Adjusted for perinatal characteristics (mode of delivery, infant sex, gestational age, birth weight for gestational age and postnatal age at blood sample)

and for maternal characteristics (age, parity, BMI, smoking, diabetes, and hypertensive disease). Crude and adjusted odds ratios for maternal

characteristics are presented in S2 Table.

https://doi.org/10.1371/journal.pone.0184748.t002
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T-lymphocytes (TREC values within the lowest quintile). In addition, male sex, delivery at 35

to 36 gestational weeks, and being born SGA were also associated with a shift towards lower T-

lymphocyte formation. Infants born SGA were also at increased risk of low levels of B-lympho-

cytes (KREC values within the lowest quintile) compared to infants with normal birth weight

for gestational age. Associations between KREC values and mode of delivery or other infant

characteristics were less pronounced or absent. Importantly, maternal characteristics or com-

plications during pregnancy were not associated with levels of TRECs or KRECs in the off-

spring. To our knowledge, these associations have not been previously reported and the

selective contributions from each of these risk factors to the neonatal immune phenotype have

not been possible to disentangle before.

Birth has previously been associated with acute leukocyte recruitment [25–29]. This estab-

lishment of immune function is thought to be mediated by the stress of being born. With pro-

gressive increase in fetal stress during delivery, significant cord blood elevations in total

number of white blood cells as well as increased levels of IL-8, soluble E-Selectin and Inter-

feron-c levels were reported [30, 31]. Accordingly, labor and birth stress may act as primers

and regulators of the neonatal immune system. Given that stress of being born is strongly

related to mode of delivery, with much lower sympatho-adrenal activation after elective CS

than after vaginal delivery [32, 33], mode of delivery appears to be an important determinant

of the postnatal adaption of the offspring immune system [30].

The present findings extend our knowledge on how mode of delivery affects the immune

system. We found that elective CS was associated with a reduced differentiation into T-lym-

phocytes after birth. Whether or not this is just a transient neonatal phenomenon remains to

be established. Differentiation of immature T-, and B-cells gives rise to a pool of long-lived

lymphocytes [34]. If this pool is reduced already from start, it may have clinical implications at

a later stage, particularly when the growing individual becomes exposed to infectious agents

and antigens. Even if there could be other explanations besides a poor activation of the neona-

tal immune system such as a perturbation of the gut microbiome [21], we note that birth by

CS increases the risk of gastroenteritis in childhood [35].

Accumulating evidence links early fetal-neonatal living conditions to later health in adult

life [36]. Recent epidemiological studies have confirmed that CS is associated with a moder-

ately increased risk for immune disorders later in life, also after taking potential confounders

into account [10]. The mechanisms behind such early imprints are still largely unclear. As

indicated herein, reduced differentiation into effector or memory T-cells after CS could be one

option. Other data indicate an epigenetic origin. In a previous study of neonatal hematopoietic

stem cells, i.e., the precursors of T- and B-cells, we found differential DNA-methylation in

relation to mode of delivery [22]. Interestingly, locus-specific differences in DNA-methylation

related to mode of delivery included at least one gene associated with a genetic predisposition

for diabetes type 1 [22].

In addition to mode of delivery, we identified male sex as a risk factor for low TRECs after

birth. Consistent with our findings, cord blood from female infants contains a higher number

of CD4+ T-lymphocytes, higher CD4/CD8 T-lymphocyte ratios and lower numbers of CD8

+ T-lymphocytes and NK cells than cord blood from male infants, whereas the number of B-

lymphocytes is comparable in males and females [37, 38]. Sex differences related to immune

disorders have also been shown previously [39]. Diabetes type 1 [40], asthma [41, 42], hyper-

tensive disease [42] and inflammatory bowel disease [43] mostly affect males more than

females. A male disadvantage in immune responses to infectious diseases [44] and outcome

after sepsis [45] has also been demonstrated.

Preterm born infants have functional deficiencies in their immune system and are more

vulnerable to infections [46]. The fundamental mechanisms of the innate immune system and
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how immaturity contributes to the overall risk of infection during the neonatal period are not

completely understood, but preterm birth is considered the largest risk factor for infections

during the neonatal period [47]. In this study we demonstrated that also near-term birth, i.e.,

at 35–36 weeks, was associated with a significant reduction in T-lymphocytes. We also found

strong associations between smallness for gestational age and low TRECs and KRECs values,

respectively. Previous studies reported that infants born small for gestational age have a signifi-

cantly smaller number of T- and B-lymphocytes [48] and constitutional small for gestational

age fetuses had a disproportionately small thymus [49]. The most obvious implication of these

findings is that gestational age and fetal growth should be taken into account when studying

associations between mode of delivery and structure and function of the neonatal immune sys-

tem, as well as associations between mode of delivery and later health-related outcomes. More-

over, we note that low birth weight has been identified as a risk factor for adult diseases where

inflammation plays a key role, namely hypertension, coronary heart disease, dyslipidemia,

type 2 diabetes and obesity [50–53].

Strengths of this study include its population-based design, minimizing selection bias and

ensuring generalizability to pregnant women and their infants in high-resource countries like

Sweden. We studied a relatively large cohort with numbers that exceeded most previous stud-

ies of the neonatal immune system, and with detailed exposure and outcome data. The sample

size enabled us to adjust for potential confounders, and to disentangle the selective contribu-

tions from important covariates. The method for TREC and KREC determinations has been

validated [23].

This study also has limitations. We measured TREC and KREC levels in blood representing

the number of newly formed lymphocytes, but not in tissues. Stress induces a mobilization of

lymphocytes into the blood, followed by a trafficking of these cells out of the blood into differ-

ent body compartments [54]. Therefore, we cannot exclude that redistribution of lymphocytes

could affect our results. Our database does not contain data on time of cord clamping and

even if we have national and local guidelines instructing the staff to perform late cord clamping

in all but emergency cases (and irrespective of mode of delivery), we cannot exclude that tim-

ing of cord clamping—and thereby postnatal placental transfusion of blood cells to the infant

—may have differed in relation to mode of delivery. Although analyses were adjusted for a

range of potential confounders, and sensitivity analyses after excluding mothers with diabetes

or hypertensive diseases did not alter our results, we cannot exclude the possibility of residual

confounding. We acknowledge that levels of TREC and KREC changed over time from birth

and therefore adjusted for postnatal age at blood sampling but we lacked longitudinal data

beyond the first week of life to determine if our findings represent a transient phenomenon or

a lasting difference in the lymphocyte pool. Our data did not permit any exploration of innate

immunity, tolerance or microbiota colonization, and we missed information on any autoim-

mune disease or inflammatory status in the mother during pregnancy. Finally, short- or long-

term clinical implications of our findings are unclear.

In conclusion, this study provides another piece of knowledge on establishment of immune

function at birth and its relation to various perinatal risk factors, such as gestational age, mode

of delivery and birth weight. The rapidly increasing rates of CS worldwide and the greater risk

for immune disorders later in life add fuel to efforts trying to resolve these issues. Our study

has identified several important risk factors for reduced number of T- and B-lymphocytes in

newborn infants, and CS delivery without a clear medical indication may be the one that can

be modified most rapidly. Future research on elective CS and health effects in offspring should

focus on longitudinal aspects targeting lymphocyte numbers and function, as well as on how

low neonatal lymphocyte numbers relate to infections as well as disorders related to immune

function later in life.
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