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Abstract

Background: Kinesin and dynein are the two families of microtubule-based motors that drive
much of the intracellular movements in eukaryotic cells. Using a gene knockout strategy, we
address here the individual function(s) of four of the 13 kinesin proteins in Dictyostelium. The goal
of our ongoing project is to establish a minimal motility proteome for this basal eukaryote, enabling
us to contrast motor functions here with the often far more elaborate motor families in the
metazoans.

Results: We performed individual disruptions of the kinesin genes, kif4, kif8, kifl 0, and kifl I. None
of the motors encoded by these genes are essential for development or viability of Dictyostelium.
Removal of Kif4 (kinesin-7; CENP-E family) significantly impairs the rate of cell growth and, when
combined with a previously characterized dynein inhibition, results in dramatic defects in mitotic
spindle assembly. Kif8 (kinesin-4; chromokinesin family) and Kifl 0 (kinesin-8; Kip3 family) appear
to cooperate with dynein to organize the interphase radial microtubule array.

Conclusion: The results reported here extend the number of kinesin gene disruptions in
Dictyostelium, to now total 10, among the |3 isoforms. None of these motors, individually, are
required for short-term viability. In contrast, homologs of at least six of the |0 kinesins are
considered essential in humans. Our work underscores the functional redundancy of motor
isoforms in basal organisms while highlighting motor specificity in more complex metazoans. Since
motor disruption in Dictyostelium can readily be combined with other motility insults and stresses,
this organism offers an excellent system to investigate functional interactions among the kinesin
motor family.

Background

Dictyostelium discoideum is a compact amoeba that spends
much of its natural existence crawling through the soil,
searching for and ingesting bacteria. When food sources
are exhausted, individual amoebae trigger a developmen-
tal program that initiates both inter and intracellular sign-
aling, to aggregate ~100,000 amoebae and form a

multicellular mass. Each cell within this mass undergoes
multiple adhesions and conformational changes, forming
a cooperative slug that can migrate to new areas. The slug
undergoes further multicellular differentiation to form
supportive stalk cells, a rudimentary immuno-like surveil-
lance system, and regenerative spores that resist environ-
mental stresses. This dualistic life cycle and its associated
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transitions (single cell to metazoan organism) have made
Dictyostelium an attractive model in which to study cell
motility, signal transduction, and a relatively simple
developmental program (reviewed in [1], see also [2]).

Motility-wise, Dictyostelium behaves in a manner similar
to that of many vertebrate cells (crawling, sensing, and
engulfing targets, robust intracellular movements). Yet,
this organism clearly retains a simplicity associated with
its relatively small and compact genome, and exhibits fea-
tures commonly seen in protozoa and fungi (for example,
an intranuclear spindle for cell division). Characterization
of the actin cytoskeleton in Dictyostelium has led to the
identification of actin binding proteins, multiple myosin
motors, and signaling cascades whose functions are con-
served among eukaryotic cells. Preliminary characteriza-
tion of the microtubule-associated network has revealed a
level of complexity intermediate between some of the
simple single-celled eukaryotes and metazoans. For exam-
ple, the machinery in Dictyostelium that drives movement
along microtubules contains 14 motors (13 kinesin
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ATPases, 1 dynein ATPase, [3,4]); twice the number found
in Saccharomyces cerevisiae [5], but less than a quarter of
the number encoded in the human genome [6]. Paradox-
ically, deletions of kinesins whose homologs are essential
for vertebrate activities have produced relatively mild phe-
notypes in Dictyostelium. Are these results reflective of Dic-
tyostelium's unique life cycle? Or do they reveal core
functional redundancies and interactions that, like the
actin system work, can be utilized to understand microtu-
bule-based motor action in more complex systems?

Because of their homologies to motors with known func-
tions, 12 of the 13 kinesins in Dictyostelium can be placed
within existing kinesin families and subdivided into two
functional categories (Fig. 1). Four members are closely
related to kinesins in metazoans that have organelle trans-
port functions, while eight members are related to motors
significant for mitotic events. To date, six individual kines-
ins have been genetically disrupted by homologous
recombination in Dictyostelium (kif's 1, 2, 5, 7, 12, 13),
producing varied effects on cell function. Disruption of
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Kinesin Gene Family in Dictyostelium. Schematic representation of the |3 kinesin motors, identified by functional and/or
sequence analyses (adapted from ref [3]). The motor domain is indicated in blue, along with the common family name. The
remaining neck/linker/tail domains are drawn to scale in green. Both formal and Dictyostelium-specific gene names are listed.
Preexisting gene knockouts for six of the kinesins are indicated by the black X's (kif5, kif7, kifl, kifl 3, kifl 2, kif2, [7, 10, 12-14,
46]): new gene disruptions reported in this paper are indicated by the red X's.
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kif12 (kinesin-6; MKLP family) resulted in significant
cytokinetic defects [7,8]. kif12- cells failed to divide in sus-
pension, but were able to undergo non-mitotic cytofission
on a surface to enable their propagation. For each of the
other five kinesins, single deletions did not produce sig-
nificant effects on cell development or viability. However,
closer examination revealed defects suggestive of redun-
dant or cooperative effects with other motor activities. For
example, kifl- cells (kinesin-3, Unc104) showed a 62%
decrease in overall organelle movements in vivo [9]. There
was a 90% reduction in plus end-directed motility as
measured in an in vitro assay, but no demonstrable effects
on mitochondrial movement. When examined in detail,
kif13- cells (kinesin-5, BimC/Eg5) showed an increased
rate and decreased stability of mitotic spindle elongation
[10]. When combined with an otherwise viable dynein
perturbation (380 K, [11]), kif13-/380 K cells were unable
to divide properly. Fkif2- (kinesin-14, ncd/kar3), kif5-
(kinesin-1, KHC), and kif7- (kinesin-1, KHC) cells showed
mitotic, actin-filament, and developmental defects respec-
tively, but only when challenged with overexpression or
competition assays that further stressed the individual
cells [12-14]. In contrast, mammalian homologs of kif12,
kif13, kif2 (and kif4, kif8, kif10 in this report) were found
to be essential for cell viability [15]. Thus the non-lethal
disruption of these genes in Dictyostelium offers us the
opportunities to examine basal motor activities and inter-
actions, to further understand the motors functions and
regulation. We address here the consequences of individ-
ual disruption of four kinesin genes in Dictyostelium, and
we contrast the functional redundancies among such
motors in single-celled organisms with their functional
specificity in metazoan organisms.

Results

kif4, kif8, kifl 0, and kifl | are Not Essential Genes in
Dictyostelium

Genomic fragments of kif4, kif8, kif10, and kif11 were iso-
lated by PCR amplification of wild-type AX-2 cell DNA,
and were used to generate deletion-mutant alleles for their
respective kinesin genes (Fig. 2A, Methods). A similar
strategy was followed for each gene. Internal restriction
enzyme sites of the amplified fragments were utilized to
replace coding sequence with a 1.6-kb blasticidin resist-
ance cassette. Genomic sequences flanking the cassette
(275-763 bp) targeted the insertion of these mutant alle-
les into their wild-type gene by homologous recombina-
tion, and thus disrupted transcription of the native gene
product. Integration of the mutant alleles at their correct
sites was confirmed by PCR and Southern blot analyses
(Fig. 2B). Northern blot analysis further confirmed loss of
full-length mRNA in kif8-, kif10-, and kif11- transformants
(Fig. 2C). There was no evidence for shorter transcripts
that would indicate partial expression of the sequence
upstream of the integration site for these three clones.
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Northern blots of kif4- were performed, but we were una-
ble to detect the native message in wild-type cells. Very
low message levels of the kif4 gene, undetectable during
log phase growth has been previously reported [12], and
is consistent with tight cell-cycle regulation of kinesin-7/
CENP-E homologs in other organisms [16,17].

Individual disruptions of all four kinesins resulted in via-
ble cells with no gross morphological defects. Cells were
comparable in size with wild-type controls and retained
the ability to undergo a complete developmental cycle so
as to generate viable spores (data not shown). kif8-, kif10-
, and kif11- cells grew at log-phase rates indistinguishable
from wild-type AX-2 cells (Fig. 3). Interestingly, kif4- cells
grew significantly more slowly than the wild type, or the
other three kinesin-null strains. This reduced growth rate
was observed both in solution (Fig. 3) and on solid sup-
port in Petri dishes. kif11- cells appeared to reach station-
ary phase at a higher density than the other strains, but
otherwise showed no difference in viability or morphol-
ogy than wild type cells.

Microtubule Distributions Appear Normal in Kinesin Null

Cells

Since these motors interact with and move along microtu-
bules, and since motor activity is responsible for signifi-
cant microtubule movement in Dictyostelium, we stained
fixed cells with tubulin antibodies to determine whether
deletions led to any aberrant microtubule distributions.
Figure 4 shows a gallery of interphase cells from wild-type
AX-2 cells and from the four kinesin mutant lines. All cells
display the conventional radial distribution of microtu-
bules that emanate from a centrally located organizing
center (MTOC), and, in the few examples shown of binu-
cleate cells, the two centrosomes remain spatially distinct.
Interestingly, MTOC:s are less distinct in the kif8-and kif10-
cell lines than they are in wild-type, kif4-, or kif11- cells.
MTOC's are present in the individual image slices of kif8-
or kif10- cells, but when summed as projections, the ring
like appearance of the Dictyostelium centrosome is either
less apparent or the microtubules do not seem as tightly
focused into this structure (inserts in Fig. 4). There were
no obvious morphological defects in mitotic microtubule
arrays in any of the four kinesin null strains (not shown),
although this qualitative observation should be examined
in greater detail (see below).

Kif8, Kif10, and Dynein Cooperate to Organize Interphase
Microtubules

We previously characterized a dominant-negative,
dynein-mediated defect whereby the entire microtubule
network in interphase cells became motile and circulated
throughout the cytoplasm (380 K cells) [11,18,19]. The
directionality of such motion suggested a role for a
kinesin-like motor that pushes against microtubules. To
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Figure 2

Kinesin Gene Disruptions. (A). Schematics of constructs, showing details of the homologous regions and relevant enzymes
used to target recombination and to confirm disruption. The position of the bsr" cassette used for selection is also shown. ATG
indicates the start of the protein-coding region. (B). Southern blot comparisons of wild-type AX-2 control (WT), kif8, kifl 0,
kifl I, and kif4 knockout (KO) DNAs. DNA was digested with the indicated enzymes and probed with the entire amplified
kinesin gene fragment. Since we were unable to detect kif4 mRNA in wild type cells (see text), we include multiple digests in
this panel to demonstrate disruption. All resulting DNA fragments are as predicted from the wild-type and recombination
sequences. (C). Northern analysis of AX-2, kif8, kifl 0 and kifl | knockout cells. Top panel shows mRNA hybridization, bottom
panel shows a loading control (4.1 kb 26S rRNA). Note the abundant level of kinesin message in wild-type cells, but the com-
plete absence of message in the disrupted clones.
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Comparison of Growth Rates. Dictyostelium enters stationary phase at ~1-3 % 107 cells/ml, a point reached here after 4
days of growth. Wild-type, kif8-, kifl 0-, and kifl I- cells exhibit very similar rates of logarithmic phase growth, with a doubling
time in axenic medium of 8-9 hrs. Kif4- cells grow significantly more slowly than any of the three kinesin nulls as well as the
wild-type control. Kifl I- cells appear to delay their entry into stationary phase (96 hrs), but remain within the normal range of

maximum cell density reported for Dictyostelium.

address whether any of the kinesins examined here could
have been responsible for generating that aberrant motil-
ity, we expressed the 380-kDa dynein motor fragment in
each of the four kinesin null backgrounds. The distinctive
comet-like microtubule phenotype was found in 82.3% of
the control 380 K cells, and in roughly half of the kif4-and
kif11- cell lines (55% and 39.8%, respectively) (Fig. 5,
Table 1). However, expression of the 380-kDa polypep-
tide in either kif8- or kif10- cells, at levels comparable to
affect microtubule organization in control cells (Fig. 6, see
also [18,20]), failed to create aberrant microtubule arrays
(0%, 4.6%, respectively) (Fig. 5, Table 1). These results
suggest that dynein, Kif8, and Kif10 cooperate in produc-

ing lateral microtubule motions that organize the inter-
phase microtubule distribution.

Kif4 and Dynein Cooperate in Mitotic Spindle Assembly

The kif4- deletion is notable, since these cells grow signifi-
cantly slower than the three other kinesin knockout
strains. Interestingly, kif4- cells appear normal in shape
and size, indicating that the slow growth is not the result
of structurally defective cell division (karyo- or cytokinetic
failure). When kif4- cells were transformed with the 380-
kDa expression plasmid, the cell growth rate was reduced
even further. While cells grown on a solid surface gradu-
ally increased in number, suspension cultures of kif4-/380
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Figure 4

Microtubule Patterns in Interphase Cells. Maximum intensity projections of deconvolved image stacks showing inter-
phase microtubule distributions in wild-type AX-2 and kinesin-null cells (fixed cells imaged by indirect immunofluoresence,
using a tubulin antibody). Each row displays four examples of the cell strain indicated on the left. Inserts in the first column
show 2X enlargements of the MTOC area. For AX-2, kif4-and kifl I- cells, a distinctive ring-like appearance of the centrosome
can be seen. This feature is less apparent in the kif8- and kif! 0- cells, moreover, a convergence of microtubules into the centro-
some in the kifl 0~ cell is less obvious. Scale bar =5 pum.
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Figure 5

Microtubule Patterns in Dynein-Inhibited Interphase Cells. Interphase microtubule distributions, similar to Figure 4
except that each cell line is also transformed with the dynein motor domain expression plasmid (380 K). AX-2, kif4- and kif! I-
cells display the distinctive 380 K comet-tail phenotype. However, note the relatively normal, radial distribution of microtu-
bules in the kif8-and kifl 0- backgrounds. Scale bar = 5 um.
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Table I: MT Array Morphology in Interphase Cells

Cell-type Radial MT Comet-Tail MT Comets (%)
AX-2 Control 588 19 3.1%
380 K 60 279 82.3%
kif8- 461 | 0%
kif8-/380 K 451 0 0%
kif1 0- 583 12 2.0%
kifl 0-/380 K 475 23 4.6%
kifl I- 212 26 10.9%
kifl 1-/380 K 127 84 39.8%
kif4- 189 9 4%
kif4-1380 K 68 84 55%

Numbers represent individual fixed cells, either containing a normal,
radial interphase microtubule array (Radial MT), or a mutant comet-
like microtubule array (Comet-Tail MT) resulting from dynein motor
overexpression (380 K) in different control or kinesin null cell stains.
% Comet refers to the percentage of total cells that showed the
distinctive mutant phenotype.

K cells remained at their initial cell density, even when
measured for as long as a week. Although defective mitotic
figures were not evident in the kinesin-alone knockouts,
there was a significant increase in aberrant spindle forma-
tion in kif4-/380 K cells. 66% of the observed mitotic kif4-
/380 K cells (10/15) showed division defects of various
types, including multi-polar spindles and supernumerary
or fragmented centrosomes (Fig. 7). Although normal-
appearing spindles were found among the cell popula-
tion, it is probable that defective spindle assembly plays a
major role in the decreased growth rate of these cells. The
results described here indicate that Kif4 and dynein coop-
erate in some aspect of mitotic spindle assembly; closer
evaluation of cell division in these cells is in progress.

Discussion

We have presented gene deletions for four of the 13
kinesin family members in Dictyostelium, and have
described the effects of these deletions on cell growth and
viability. Individually, none of the four gene products is
essential for cell viability nor do the proteins play critical
roles in this organism's ability to undergo chemotaxis or
to develop upon starvation. The knockout strains do,
however, show subtle defects suggesting that many of the
key forms of intracellular motility essential for Dictyostel-
ium biosynthesis and reproduction are supported by more
than one motor protein.

In wild-type Dictyostelium cells, both plus end-directed
microtubule pushing, and minus end-directed pulling
forces are important for maintenance of centrosome posi-
tion and the radial distribution of interphase microtu-
bules [18,21]. If minus end-directed dynein motility is
impaired, a kinesin-like activity appears to dominate and
push both the centrosome and microtubule array
throughout the cytoplasm [19]. Here we have identified
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Figure 6

Expression of the Dynein Motor in kif8- and kifl 0-
Cells. Coomassie-stained gel lanes showing high speed
supernatants from wild-type control cells, and from kif8-,
kifl 0-, and AX-2 cells that have been transformed with the
380 K expression plasmid. The panel confirms the expression
of the 380 kDa dynein motor domain polypeptide in kif8-and
kif10- cells (arrow), at a level comparable to the AX-2 cells
shown in Figure 5.

two kinesins, kif8 (kinesin-4 family) and kif10 (kinesin-8
family), that appear to collaborate with dynein in this
organization process. In other eukaryotic cells, kinesin-4
motors participate in a number of diverse activities [22].
One subset of kinesin-4 family members (KIF4) function
during mitotic events, with chromatin- and spindle-asso-
ciated motors that organize bipolar microtubule assem-
blies and facilitate chromosome alignment [23]. Other
subsets of kinesin-4 motors (e.g., KIF21) appear to power
interphase organelle transport in cultured cells such as
fibroblasts and post-mitotic neurons [24,25]. The single
Dictyostelium kinesin-4 (kif8) is a divergent member of this
family, the motor domain is most closely homologous
with KIF4 subfamily, yet it contains carboxy-terminal
WD-40 repeat motifs in the heavy chain tail that are char-
acteristic of the KIF21 subfamily [3,22]. The kinesin-8
family of motors (kif10 in Dictyostelium) is thought to
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Figure 7

Spindle Morphologies in kif4-/380 K cells. Representative examples of normal and aberrant mitotic spindles in kif4-/380 K
cultures. The two left-most panels show cells with normal appearing metaphase arrangements, with bipolar spindle MTs (in
green) that flank condensed chromosomes (blue). These two figures are indistinguishable from mitotic wild type cells. The
remaining four panels show examples of aberrant mitotic figures (multipolar spindles, supernumerary or fragmented spindle
poles, asynchronous chromatin condensation) that are not normally found in wild-type, kif4-, or 380 K cells alone. This panel
suggests that a combination of dynein and Kif4 (kinesin-7, CENP-E) activity is required for proper spindle assembly. Scale bar =

5 pm.

mediate chromosome movements through a combina-
tion of translocation and microtubule depolymerization
activities (recently reviewed in [26], see also [27,28]. The
S. cerevisiae isoform (Kip3) has previously been shown to
cooperate with dynein in positioning mitotic spindles
through cortically mediated force production and
through control of microtubule length [27,29,30]. Dele-
tions of kinesin-8 isoforms in Schizosaccharomyces pombe
also suggest a combined force and length control mecha-
nism that positions nuclei and spindles through microtu-
bule-cortex interactions [31,32]. In the absence of either
kinesin-4 or kinesin-8 in Dictyostelium, we are unable to
induce the distinctive centrosome movements via dynein
motor overexpression. It is conceivable that Kif8 and
Kif10 counterbalance dynein-mediated forces through
force-production or anchoring activities at the cell cortex
(e.g. kinesin-8) and via lateral microtubule-microtubule
interactions (e.g. kinesin-4) that supply sufficient rigidity
to allow plus end-directed motors to effectively push (and
not simply bend) microtubules. In wild-type Dictyostel-
ium, the balance between opposing dynein and kinesin
motor activities serves to reinforce the centrosome posi-
tion and help maintain the radial character of the inter-
phase microtubule array as these cells crawl around and
change shape.

Disruption of the kinesin-7 motor (CENP-E) in the mouse
is embryonic lethal [33]; this motor is thought to be
essential for the proper connection between kinetochores
of condensed chromosomes and the mitotic spindle [34].
In contrast, neither member of the kinesin-7 family in
Dictyostelium (Kif4, Kifl1) is essential for mitosis,
although removal of Kif4, the isoform that is most homol-
ogous to the vertebrate kinetochore CENP-E greatly affects
cell growth rate. Preliminary characterization of Kif4 sug-
gests that this motor functions together with dynein in
organizing spindle assembly during cell division. While
the motor domain of Kifll is homologous with the

kinesin-7 family [3], this polypeptide is significantly
shorter and expressed at a much higher level than other
CENP-E-like proteins. Outside of a minor enhancement
of stationary phase cell density, removal of this motor has
no obvious effect on cell viability or function. Closer
inspection of each kinesin, and of cells lacking their
expression will be required before we can fully understand
their individual function(s)

Our study here extends previous work from several labo-
ratories that, taken together, have individually deleted 10
of the total 13 kinesins in Dictyostelium [7,9,10,12-14]. All
of these deletions have proven to generate cell lines that
can survive over multiple generations of growth, indicat-
ing that none of these 10 kinesin motors is immediately
required for cell viability. Although the Kif12 disruption
(kinesin-6, MKLP) produced significant defects in cytoki-
nesis, mutant cells were still able to undergo some form of
division that allows strain propagation [7]. The only,
potentially essential, kinesin gene reported so far in Dicty-
ostelium encodes one of the organelle transporter motors,
kif3 (kinesin-1 family)[35]. Kif3 can be isolated biochem-
ically and shown capable of powering microtubule glid-
ing, but efforts by Rohlk et al, [35] and in our own lab
(Nag, Tikhonenko, and Koonce, unpublished) have not
yet yielded viable cells lacking this motor. The resiliency
of Dictyostelium to motor disruptions is similar to system-
atic analyses of kinesin isoforms in S. cerevisiae, where all
six kinesin-related motors (and one dynein isoform) can
be individually deleted without loss of viability [5]. The
yeast work provided a major guiding principle, for it was
the first to suggest that high degree of functional redun-
dancy is present among kinesin family members, and that
deletion of motor combinations is required to inhibit cell
division. Although, to our knowledge, complete survey
disruptions have not yet been reported in other simple
eukaryotes, there are clear indications of motor redun-
dancy in some cell models such as S. pombe [36], Aspergil-
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Table 2: Mitotic kinesin disruptions in simple eukaryotes vs metazoans.

Kinesin Family S. cerevisiae Dictyostelium C. elegans Drosophila Human
Mitotic Function

Kinesin-4 (Chromokin) Kif8 Kip-19 Kip3A Kif4A, Kif4B
Kinesin-5 (BimC/Eg5) Cin8, Kipl Kifl3 BMK I Kip6 I F Eg5
Kinesin-6 (MKLP) Kifl2 Zen-4 Pavarotti MKLPI, MKLP2
Kinesin-7 (CENP-E) Kip2 Kif4, Kifl | CENP-E Meta CENP-E
Kinesin- 8 (Kip3) Kip3 Kif10 Kip67A Kifl 8
Kinesin-13 (MCAK) ? Kip-7 KLPI0A Kif2A, 2B, MCAK
Kinesin-14 (NCD/Kar3) Kar3 Kif2 Kip-3,15,16,17 Ncd KifCl
Other Function

Kinesin-3 (Unc104) Kifl Kifl 4
Kinesin-10 (Nod) Nod Kid
Kinesinl2 (Xklp2) Kip-18

Normal text (viable), italicized text (not viable) differentiates the individual kinesin-isoform disruptions (knockout, knockdown, or mutation) and
their effects on mitosis. The bold text for the kinesin-6 family members indicates cytokinesis defects. In this case, cells can proceed through one or
more divisions, but longer term, the mutated protein is essential for organism viability. References for S.c [5], D.d[7-10, 12-14], C.e [39, 47-51], D.m

[40], and H.s [15, 52].

lus nidulans, [37]and Ustilago maydis [38]. The kinesins in
Dictyostelium likewise possess overlapping functions.

The evolutionary transition from very simple single-celled
eukaryotes into metazoans generally correlates with an
increased number of gene family members. S. cerevisiae
contains 6 kinesin genes [5]; S. pombe has 8 [38]; U. maydis
has 10 [38]; and A. nidulans has 11 [37]). In contrast, even
the primitive metazoan Caenorhabditis elegans has 21
kinesin genes [39]; Drosophila melanogaster has 25 [40],
and the human genome codes for 45 kinesins [6] (obvi-
ously there are exceptions to this general trend, e.g Giardia
lamblia contains as many as 23 kinesin genes [41]). One
might expect that larger gene families enhance the oppor-
tunity for redundant mechanisms, but at least for kines-
ins, the opposite seems to hold true (summarized in Table
2). Despite the greater number of motor sequences,
human cell lines appear far more sensitive to disruption of
individual kinesins than do yeast or Dictyostelium. Cell
division and organelle transport is likely more complex in
metazoans, entailing open nuclear spindles, strict spindle
position and orientation requirements, cell-type specifici-
ties, and many transport features that are not required in
unicellular organisms. Thus one could argue that in meta-
zoans, each kinesin motor is custom built for one selective
function while in simpler eukaryotes, the motors retain a
more generic ability to power microtubule-based trans-
port in a variety of contexts. Understanding the functional
details of the same kinesin ortholog in different organ-
isms will therefore define sequence motifs that lead to
essential and non-essential functions of basically the same
engine, and thus will lead to a more complete understand-
ing of how the motor protein operates.

Conclusion

Analysis of the kinesin gene family in Dictyostelium sug-
gests that a significant level of functional redundancy or
overlap exists among the organism's motor activities. This
result is similar to findings from functional analyses per-
formed in basal organisms such as yeast and fungi, but it
contrasts sharply with the roles of individual motors in
metazoans. At first glance, most of the kinesins in Dictyos-
telium can be deleted individually without penalty to
growth or viability. Yet, upon closer scrutiny or in cases
where we impose under additional stresses, we can dis-
cern clear phenotypic changes in the cell that provide
insight into motor function that may not be obvious in
other organisms. Given its greater complement of motor
isoforms, and its greater utility of microtubule function
relative to other basal eukaryotes, Dictyostelium offers an
interesting model in which to investigate functional inter-
actions and the regulation of multiple motor proteins.

Methods

Molecular Genetics

Kinesin gene sequences were obtained from the dictybase
website (see Availability and requirements section). The
following primer combinations were used to amplify
kinesin gene fragments from AX2 cell genomic DNA; also
listed are the downstream kinesin gene-specific primers
used for screening recombinants:

kif4 (DDB0191404)

Forward: 5'CGCAAGCTTAGCCACCAAGACCATTACTT-
GGACCA 3' (-501 to -476)

Reverse:  5'CGCGAGCTCTTAAACTACCACCAATTATT-
GCGTCATT 3' (+1318 to +1345)
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Screen:  5'CATCATCATCCTCTTCACCACTACTATT 3!
(+1501 to +1528)

kif8 (DDB0191403)

Forward:  5'CGCGGATCCGGGTTGCATTAAGAGTTA-
GACCC 3' (+44 to +66)

Reverse: 5'CCCAAGCTTGAATCGGCAGGACTAACA-
CATGC 3' (+ 1302 to +1324)

Screen: 5'GATTGGTTAATACACACCTAATTG 3' (+1381 to
+1404)

kif10 (DDB0215386)

Forward  5'CGCGGATCCTGATCAATATGCAACTCAA-
GAAGAAG 3' (+249 to +274)

Reverse 5'CCCAAGCTTGATCATTGTCATCATCATCATC 3'
(+1408 to +1429)

Screen: 5'GTATCATTGATTCATCATTATCCCT 3' (+1501 to
+1525)

kifl1 (DDB0201556)

Forward: 5'CGCGGATCCGAATGAACGAGAATATATCG-
GTTAGC 3' (-2 to +24)

Reverse:  5'CCCAAGCTTCCATTACCACTACCACTAC-
CACCT 3' (+1497 to +1520)

Screen: 5 TGACTTGGTGAAACAAATGTTGATC 3' (+1532
to +1556)

+1 of the numbering scheme refers to the position A of the
ATG start codon. Restriction enzyme sites were engineered
into the ends of each primer (BamH1, Hindlll or Sacl,
shown in bold type) to facilitate cloning of the amplified
DNA into a pUC19 host plasmid, and (in most cases) to
excise the DNA construct for transformation. Each con-
struct was sequenced to confirm the identity of the kinesin
fragment. Native restrictions sites (Fig. 2) were used to
excise and replace an internal fragment of the kinesin
sequences (47-669 bp) with a 1.6-kb blasticidin resist-
ance cassette (Bsr") (Smal digest) from pLRBLP [42],
obtained from the Dictyostelium Stock Center (see Availa-
bility and requirements section for URL). Final constructs
were again sequenced to determine the orientation of the
Bsr cassette (diagramed in Fig. 2). The kif8 construct was
designed to terminate message coding at S202; kifl0 at
N223; kifl1 at S151; and kif4 at W45. In all cases, these
disruptions occur upstream of the microtubule-binding
domain of the motor.

http://www.biomedcentral.com/1471-2121/9/21

Standard molecular biology procedures were followed for
DNA isolation, manipulation, and blotting. RNA was iso-
lated using the RNeasy kit from Qiagen, following the
manufacturer's instructions. kif8, kif10, and kif11 blots
were probed with 32P-labeled DNA. the kif4 Southern blot
was performed using chemiluminescence procedures
(ECL, Amersham Biosciences). All blots (Southern and
Northern) were probed with the initial amplified genomic
target corresponding to the relevant kinesin clone, as indi-
cated above and in Figure 2A.

Cell Transformation

A calcium phosphate procedure was used to transform
Dictyostelium AX-2 cells, with 15 pg of linearized DNA per
near confluent 10-cm dish (107 cells) [43]. Transformants
were selected with 5 pg/ml blasticidin. Individual colo-
nies were picked with a pipette into 24 well plates, and
were screened by PCR for homologous recombination.
Amplification of a 1.6-kb target with a primer internal to
the Bsr™ marker (5' GAATGGCAAGITAGTCAAAACTACG
3') and a primer downstream of the recombination site
(indicated above for each kinesin sequence) was used to
initially identify positive recombinants. Cells from posi-
tive colonies were further purified by serial dilution, and
were again confirmed by PCR with downstream and
upstream primer combinations. For dynein disruptions,
we introduced a motor domain expression plasmid (aa
1384-4725), into kinesin null cells by either a CaPO, or
an electroporation method [44]. kif/380 K expressing
cells were selected with 10 pg/ml G-418 (geneticin, Sigma
Chemical Co).

Light Microscopy

Cells were flattened on glass coverslips using an agarose
sheet, fixed with formaldehyde, labeled with a tubulin
antibody [45], and in some cases Hoechst 33342, as
described in [11]. Z-series of images were obtained on a
DeltaVision light microscopy workstation and were
deconvolved using softWoRx 2.5 (Applied Precision,
Issaquah, WA). Maximum intensity projections were com-
piled using Image] (NIH); figures were assembled in
Adobe Photoshop. For cell growth measurements, tripli-
cate 100-ml cultures were seeded with 9 x 104 cells/ml,
shaken at 200 rpm at RT, and counted with a hemocytom-
eter every 24 hr. Growth curves were calculated and dis-
played with Microsoft Excel; error bars indicate standard
deviation.

Availability and requirements

The Dictybase website: http://dictybase.org/

Dictyostelium Stock Center: http://dictybase.org/Stock

Center/StockCenter.html
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