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Introduction
Immune checkpoint inhibitors (ICIs) have revolu-
tionized the field of cancer therapy. Although 
chemotherapy and radiotherapy remain the pri-
mary treatments for most cancers, ICIs are now 
effective treatments for many unresectable solid or 
nonsolid tumors, with response rates between 
20% and 40% for most tumor indications.1 ICIs 
also have excellent performance in neoadjuvant 
and adjuvant therapy. Neoadjuvant nivolumab 
did not delay surgery and caused major pathologic 
responses in nearly half (45%) of resectable non-
small-cell lung cancer (NSCLC) with minimal 

side effects.2 Pembrolizumab as adjuvant therapy 
for stage IIB or IIC melanoma significantly 
reduces the risk of disease recurrence or death 
compared to placebo while having a manageable 
safety profile.3 As the most commonly used immu-
notherapy, ICIs work by relieving the functional 
suppression of T cells, inducing potent activation 
of the immune system and an effective antitumor 
response. To date, the US Food and Drug 
Administration has approved ICIs against four 
different targets for use in humans: antibodies 
against cytotoxic T lymphocyte-associated protein 
4 (CTLA-4), programmed cell death protein 1 
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(PD-1) and its ligand, PD-L1, and lymphocyte-
activation gene 3 protein.4,5 Over the years, the 
clinical use of anti-PD-1 and PD-L1 antibodies 
has significantly surpassed that of anti-CTLA-4 
antibodies because of greater clinical efficacy and 
better tolerability.

Although some patients experienced dramatic 
tumor regression after treatment with ICIs, most 
did not respond. Among the melanoma patients 
with the highest response rates to ICIs, 40–50% 
showed no objective response to the combination 
of nivolumab and ipilimumab.6,7 In patients with 
mismatch repair proficient/microsatellite stable 
metastatic colorectal cancer, no efficacy was 
observed with ICIs alone,8 and the objective 
response rate in a phase II clinical trial of dur-
valumab combined with tremelimumab was only 
1%.9 Why most patients do not respond to ICIs 
deserves to be studied. A complex and intercon-
nected set of factors, such as host, tumor, and 
environmental variables,10 can contribute to drug 
resistance, including gut microbiota. The gut 
microbiota plays a vital role as a regulator of phys-
iological functions, including obtaining nutrients 
from the diet, maintaining the integrity of the 
mucosal barrier, and promoting the development 
and homeostasis of the immune system.11 It 
affects the threshold of the anticancer immune 
response.12,13 Increasing numbers of preclinical 
and clinical studies have demonstrated that the 
efficacy and prognosis of ICI treatment are closely 
related to gut microbiota diversity and variety.14 
Therefore, strategies to modulate gut microbiota 
[e.g. fecal microbiota transplantation (FMT), 
probiotics, and dietary interventions] are being 
developed and used to improve clinical outcomes 
in patients using ICIs.

In this review, we present evidence for the role of 
gut microbiota in the therapeutic response to 
ICIs, outline the potential mechanisms, summa-
rize the advances in research modulating the effi-
cacy of ICIs by intervening with gut microbiota, 
and provide an outlook on future directions.

The gut microbiota is closely related to the 
efficacy of ICIs
The gut microbiota regulates cancer at multiple 
levels of initiation, genetic instability, susceptibil-
ity to host immune response, progression, and 
response to treatment.15 There is evidence that 
the gut microbiota may play a role in the response 
to chemotherapy.16 The immune system is an 

essential pathway by which the microbiome influ-
ences the chemotherapeutic response.16,17 As a 
treatment that is most closely associated with the 
immune response, the relationship between ICIs 
and the gut microbiota has attracted attention.

Two landmark studies published in 2015 uncov-
ered a link between gut microbiota and ICIs in 
preclinical murine models. They indicated that 
CTLA-4 and PD-1 blockade only reduced tumor 
growth in mice carrying specific commensal bac-
teria and that modulation of gut microbiota could 
enhance treatment response.18,19 Three subse-
quent studies in 2018 further explored the gut 
microbiota characteristics of responders (Rs) and 
nonresponders (NRs) to ICIs and successfully 
reduced tumor volumes in preclinical murine 
models by FMT from responders.20–22 Moreover, 
two independent cohorts showed that antibiotic-
induced dysbiosis adversely affected the response 
to ICI therapy.22,23 The importance of specific 
bacterial composition has been supported by sev-
eral clinical studies investigating the relationship 
between different gut microbiota character 
istics and clinical benefits (Supplemental  
Table 1).20–22,24–43 Most of these studies focused 
on NSCLC, melanoma, and hepatocellular carci-
noma, where alpha diversity and some specific gut 
microbiome constituents have been associated 
with successful treatment with ICIs, such as 
Bifidobacterium species, Lactobacillus species, 
Akkermansia species, Faecalibacterium species, 
Firmicutes species, and Lachnospiraceae. A favora-
ble gut microbiome improves effector T-cell func-
tion in the peripheral and tumor microenvironment 
(TME).44,45 Bacteria currently identified as more 
abundant in responders were associated with an 
increased frequency of dendritic cells (DCs) and 
greater T helper cell 1 (TH1) responses.46 For 
example, signals from commensal Bifidobacterium 
and Akkermansia muciniphila regulate the activa-
tion of DCs at a steady state and improve the 
effector function of tumor-specific CD8+ T 
cells.18,47 A. muciniphila generates a ‘balanced’ 
commensal colonization, which induces local and 
systemic recall of TH1 immune responses and 
enhances tumor immunosurveillance.22,46,48

Due to the limited sample size, differences in the 
characteristic microbiome among cancers were 
not detected. Even in patients with the same can-
cers responding to the same ICIs, a low overlap of 
gut microbiota was observed, which may be 
related to different reference databases, diverse 
sample analysis techniques, and individual 
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differences. It may also suggest that, rather than 
individual strains, the integral gut ecosystem is 
more likely to be a key determinant of the response 
to ICIs. The human gut microbiome includes 
multiple discrete ecologically balanced communi-
ties.49,50 Most current studies link individual taxa 
to medication outcomes, but little is known about 
the gut ecosystem. McCulloch et  al.28 trans-
formed multidimensional 16S rRNA gene ampli-
con data into two-dimensional flat data using a 
t-distributed stochastic neighbor embedding plot 
to define 27 ‘microbiotypes’ and divided them 
into two favorable and two unfavorable ‘super-
clusters’ based on the proportion of patients with 
different outcomes.28 This approach presents the 
data visually and concisely while retaining impor-
tant features, shifting the focus from individual 
taxa to gut microbiotypes and translating a large 
amount of scattered community information into 
a simplified, well-distinguished general profile 
that is more useful for predicting outcomes.

In addition, some studies use gut microbiota as a 
biomarker of therapeutic response. Patients were 
classified into clusters based on the intrinsic gut 
microbiota composition at baseline by unsuper-
vised hierarchical clustering, these clusters had 
different response ratios to immunother-
apy.19,20,25,26,42 Peng et  al. further developed 
machine learning models from patients’ baseline 
characteristics of gut microbiota to predict ICI 
efficacy effectively. The area under the curve of 
the elastic net model without polynomial features 
reached 0.78,40 which suggested that gut micro-
biota may not be an excellent stand-alone bio-
marker and require integration with other known 
biomarkers to exert its predicted function to the 
utmost extent.

Modulating the efficacy of ICIs by  
regulating gut microbiota
There is growing evidence that the gut microbiota 
has a role in influencing the efficacy of ICIs in pre-
clinical models and cancer patients. In particular, 
antibiotic treatment prior to ICIs inhibits clinical 
efficacy, further suggesting that disruption of the 
balanced gut microbiota (i.e. switch from eubiosis 
to dysbiosis) and loss of specific bacteria may 
impede the success of anticancer therapy.23,51 A 
lack of immunostimulatory bacteria or a dysregu-
lated gut ecosystem containing excessive immuno-
suppressive bacteria can lead to therapeutic failure. 
Therefore, modulating gut microbiota composi-
tion may be an effective strategy to avert ICI 

resistance. The gut microbiota composition is 
determined by host genetics, colonization at birth, 
type of delivery, individual lifestyle, disease, and drug 
exposure.52–55 It remains relatively stable in adult-
hood56 but can be altered by external interventions or 
disturbances in the internal environment. Clinical 
studies preliminarily evaluated the effectiveness  
of improving immunotherapy outcomes through  
gut microbiota modulation (Table 1).24,29,57–63 
Additional clinical trials have been initiated, which 
may provide practical and accessible tools for 
future adjuvant cancer therapy (Table 2).

Fecal microbiota transplantation
FMT is the administration of fecal matter from a 
donor into the intestinal tract of a recipient to 
directly change the recipient’s microbial composi-
tion and confer a health benefit.64 It is effective in 
numerous diseases, such as irritable bowel syn-
drome (IBS), inflammatory bowel disease (IBD), 
metabolic disorders, autoimmune diseases, and 
cancer.65,66 FMT transplants the entire gut micro-
bial ecosystem from the donor containing benefi-
cial bacteria and overall diversity, which enables 
the introduced bacteria to be more stable and less 
subject to competitive rejection by the recipient 
microbiota.

Due to imperfect quality control assessment, 
pathogenic bacteria, especially multidrug-resist-
ant bacteria, and other pathogens may be 
unknowingly transferred in fecal material, result-
ing in severe infections and complications.67 In 
addition, complicated operating procedures make 
the products expensive and challenging to access.

Nevertheless, several studies have demonstrated 
that FMT effectively improved the efficacy and 
prognosis of ICIs in preclinical murine models 
(Supplemental Table 2).18–22,34,39,59,63,68–74 Trans-
plantation of fecal matter from  Jackson Laboratory 
(JAX) mice with better responses into Taconic 
Farms (TAC) mice significantly improved the 
efficacy of anti-PD-L1 treatment. It increased the 
abundance of Bifidobacteria in the gut, a highly 
regarded genus of gut microbiota, whose existence 
is associated with the accumulation of activated 
antigen-specific T cells in the TME.18 FMT from 
responders combined with ICIs successfully inhib-
ited tumor growth in mice and caused a similar 
increase in fecal Bifidobacteria abundance.74 
Vetizou et  al.19 demonstrated that FMT from 
cluster C patients carrying a higher abundance of 
Bacteroides fragilis combined with anti-CTLA-4 
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antibodies yielded the most dramatic tumor 
shrinkage in germ-free (GF) tumor-bearing mice 
compared to the control group. Dees et al. trans-
ferred fecal samples from five healthy human 
donors into mice to establish human-derived 
microbiome mice (HuM1–HuM5). When com-
bined with anti-PD-1 treatment, the survival of 
HuM2 and HuM3 was significantly prolonged.68 
The above preclinical studies suggest that modu-
lation of gut microbiota by FMT could influence 
the response to immunotherapy. The efficacy of 
FMT depends on the donors. Different donor-
specific gut microbiota characteristics can lead to 
different clinical outcomes. How to identify the 
ideal donor is currently the most challenging issue. 
Some studies chose patients who have responded 
to previous treatments as donors,20–22,39 some pre-
ferred healthy volunteers,68 and others selected 
populations carrying specific bacteria.19,71

The combined application of FMT from respond-
ers and anti-PD-1 treatment was well tolerated in 
patients with anti-PD-1 refractory melanoma, 
resulting in clinical benefit in 6 of 15 patients. 
FMT combination therapy induced microbiota 
fluctuations, with posttransplant responders 
exhibiting an increase in the abundance of taxa 
previously shown to be associated with anti-PD-1 
treatment response.58 In phase I clinical trial by 
Baruch et al., 3 of 10 patients with ICI-resistant 
metastatic melanoma responded successfully 
after FMT from the complete response popula-
tion, including two partial responders and one 
complete responder. All three patients had 
received fecal matter from donor 1. Unlike the 
donor 2 group, patients in the donor 1 group had 
a higher abundance of Bifidobacterium adolescentis 
after transplantation. Further exploration of the 
mucosal lamina propria and intratumoral immune 
cell infiltration associated with the posttransplant 
gut microbiota revealed a significant increase in 
lamina propria CD68+ antigen-presenting cells 
(APCs). By contrast, only a subset of patients 
exhibited increased intratumoral CD8+ T cells, 
although they did not all produce responses 
after therapy.57 These differences across patients 
suggest that beneficial gut microbiota is not the 
only determinant affecting immunotherapeutic 
response. Achieving the clinical translation of 
bacteria-related studies may consider the broader 
immune setting.

The results of the above clinical trials support the 
fact that FMT from responders could overcome 
resistance to ICIs in melanoma. Recently, a phase 

I clinical trial of FMT in combination with immu-
notherapy (NCT03772899) enrolled 20 ICI-naïve 
patients with advanced melanoma who underwent 
FMT via oral capsules derived from healthy 
donors and were treated with anti-PD-1 therapy 
1 week later. Objective remission was achieved in 
13 of 20 patients (65%), including 4 complete 
responders and 9 partial responders. Compared 
with NRs, Rs enriched in Rumin ococcaceae 
SGB15234 and SGB14909, Alistipes communis, 
and Blautia SGB4831 1 month after FMT, with 
trends of higher T-cell infiltration and significant 
contact enrichment of antigen-experienced T cells 
to melanoma cells. The safety profile was favorable 
with 0 and 5 patients suffering grade 3 adverse 
events after FMT and combination ICIs,  
respectively.63 The clinical efficacy data show 
superior outcomes to anti-PD-1 monotherapy.75–79 
Meanwhile, combination therapy did not increase 
the incidence of immune-related adverse events 
(irAEs) compared with PD-1 inhibitors 
alone.6,75,80,81 It demonstrated for the first time 
that FMT from healthy donors combined with 
PD-1 inhibitors could safely improve patients’ 
responses in advanced melanoma.

FMT was delivered mainly by two modalities, 
endoscopy or (and) oral capsules.57,58,63 Due to 
insufficient clinical experience, comparing the 
effects of different delivery modalities in immu-
notherapy is difficult. Each modality can improve 
the composition of the gut microbiota effectively 
and has been widely used in digestive diseases 
other than cancer.82,83 Endoscopic transplanta-
tion is the most direct way to accurately trans-
plant larger amounts of intestinal bacteria into the 
implicated bowel segment with potentially greater 
clinical efficacy, especially in recurrent Clostridium 
difficile infection (CDI),84,85 IBS,85 and IBD.86,87 
However, endoscopic operations are more inva-
sive and intolerable. Oral capsules have the 
advantage of being convenient and minimally 
invasive, with greater patient preference and com-
pliance, but the efficacy in diseases other than 
CDI remains to be proven.88

More clinical trials are currently underway (Table 2). 
Most trials use fecal matter from responders (e.g. 
NCT03341143), and a few use healthy individu-
als with specific favorable strains or with the same 
microbiota profile as responders as donors (e.g. 
NCT04163289). Identifying and functionalizing 
critical bacterial species that drive favorable clini-
cal outcomes in ICIs are crucial and can help 
select suitable donors. Meanwhile, the optimal 
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route for FMT has yet to be determined. Factors 
such as patient compliance and cost-effectiveness 
are important in selecting the appropriate trans-
plantation modality. Whether there is heteroge-
neity in the favorable strains associated with the 
efficacy of ICIs in different cancers and whether 
the modulation of gut microbiota by FMT to 
improve the efficacy of ICIs is always sensitive 
and feasible are questions that need further 
exploration.

Bacterial consortia and probiotics
An alternative approach to modulating the gut 
microbiota is the oral administration of bacterial 
consortia or beneficial bacteria (i.e. probiotics). 
Concentrating on identified bacteria prevents the 
transfer of other pathogens and may provide sta-
ble therapeutic products that can be obtained and 
applied easily. However, there are substantial 
problems and discrepancies in bioavailability and 
standardization quality control. In addition, 
administration may cause a reduction in the over-
all diversity of gut microbiota.89

As early as 2015, Sivan et  al.18 further reduced 
tumor volume by combining a mixture of B. breve 
and B. longum strains with anti-PD-L1. 
Subsequently, Bifidobacteria species were con-
firmed to have the potential to promote antitu-
mor T-cell responses.21,38,90 A strain called B. 
animalis lactis (EDP1503) has been exploited in a 
clinical trial (NCT03775850) for adjuvant ICI 
therapy, demonstrating the ability of an orally 
delivered noncolonizing monoclonal microbe to 
enhance antitumor immunity. Various bacterial 
consortia have been shown to enhance the effi-
cacy of ICIs in murine models (Supplemental  
Table 3).18,19,22,39,71,90–92 Specific B. bifidum 
strains (B. bif_K57, B. bif_K18, and B. bif_
M31), A. muciniphila (Akk), Enterococcus hirae, 
A. indistinctus, or a mix of four Clostridiales strains 
(CC4) worked synergistically with anti-PD-1 to 
reduce tumor growth.22,90,92 Ampicillin + colistin 
+ streptomycin (ACS)-treated mice orally fed B. 
thetaiotaomicron, B. fragilis, B. cepacia, or the combi-
nation of B. fragilis and B. cepacia recovered the 
anticancer response to anti-CTLA-4 antibodies.19 
Oral administration of immunostimulatory A. 
muciniphila or B. salyersiae before each cycle of ICIs 
compensated for the unsuccessful induction of sen-
sitivity to treatment with NR-FMT.39 Derosa 
et al.71 found that resistance to anti-PD-1 treatment 
in mice was associated with the absence of detect-
able A. muciniphila in the FMT donor, and 

supplementation with exogenous Akkp2261 could 
shift the microbiome toward the favorable Akk-
associated collateral ecosystem and reverse the 
resistance. In brief, bacterial consortia showed 
great potential in inducing effective anticancer 
responses in combination with ICIs, reversing drug 
tolerance caused by antibiotics, and compensating 
for insensitivity after ineffective FMT treatment.

Apart from conventional bacteria, Griffin et  al. 
revealed that active enterococci express and 
secrete NlpC/p60 peptidoglycan hydrolase 
secreted antigen A (SagA) or its orthologs, which 
catabolize peptidoglycan to generate immune-
active muropeptides and induce immunothera-
peutic modulation. Oral administration of the 
engineered, SagA-expressing strain E. faecalis–
SagA or intraperitoneal injection with active 
muramyl dipeptide (MDP)-L, D isomer success-
fully enhanced immunotherapeutic efficacy.91 
This indicates that the effectiveness of exogenous 
bacterial products can be altered by genetic engi-
neering and provides a new direction for develop-
ing next-generation adjuvants.

Probiotics are one part of the bacterial consortia. 
They are living bacteria that provide health ben-
efits to the host and show varying degrees of clini-
cal efficacy in many gastrointestinal disorders.93–95 
The efficacy of combination therapy with ICIs 
and probiotics varies (Table 1).24,59–62 Two retro-
spective studies in NSCLC patients showed that 
probiotic use improved immunotherapy efficacy 
and was associated with favorable prognostic out-
comes. These probiotics included the C. butyri-
cum MIYAIRI 588 strain, Bifidobacterium 
(BIOFERMIN and LAC-B), C. butyricum 
(MIYA-BM), and antibiotic-resistant lactic acid 
bacteria.60,61 Two other studies in melanoma 
patients did not observe a beneficial effect of pro-
biotic intake history.24,59 Spencer et  al.59 even 
concluded that nonspecific probiotic intake, espe-
cially self-purchased over-the-counter probiotic 
supplements, is detrimental to the effectiveness of 
immunotherapy. However, they did not explicitly 
restrict the effective composition of probiotics, 
leading to unavoidable within-group differences. 
Given the potential drawbacks of retrospective 
studies, including selection bias and recall bias, 
the veracity and validity of these arguments need 
to be further considered.

Preclinical studies are warranted based on prom-
ising early data.18,47,60 Oral probiotics combined 
with antitumor immunotherapy demonstrated 
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superior efficacy in murine models. The commer-
cial cocktail of Bifidobacterium, including B. 
breve and B. longum, was already shown to reduce 
tumor growth significantly when combined with 
anti-PD-L1 in 2015. Five subsequent studies 
using Lactobacillus-based probiotics similarly 
yielded preferable results compared to immuno-
therapy alone, assessed by tumor size and sur-
vival.73,96–99 Together, these studies support the 
need for more careful investigations of current 
commercially available probiotic formulations 
(Supplemental Table 3).59,73,96–99 Nonetheless, 
the self-administration of probiotics during 
immunotherapy is discouraged because our 
understanding of how these microorganisms 
affect the immune system and therapeutic 
response is limited. These supplements are gener-
ally unregulated in the European Union and the 
United States. There may be significant differ-
ences in quality,100 which affect the efficacy and 
safety of these products.

Only one interventional clinical trial has pre-
sented preliminary results. The open-label, sin-
gle-center, randomized, controlled study showed 
that 19 treatment-naïve patients with metastatic 
renal cell carcinoma receiving nivolumab–ipili-
mumab plus probiotics (CBM588) achieved 
higher objective response rates (58% versus 20%, 
p = 0.06) and prolonged median progression-free 
survival (PFS; 12.7 months versus 2.5 months, 
p = 0.001) compared with 10 patients receiving 
nivolumab–ipilimumab alone.62 CBM588 con-
tains a butyrate-producing anaerobic spore-form-
ing bacterium, C. butyricum. A retrospective study 
of NSCLC patients receiving ICIs showed that 
CBM588 significantly affected both PFS and 
overall survival.60 Preclinical studies have also 
demonstrated that C. butyricum can suppress the 
development of gastrointestinal tumors by inhib-
iting the Wnt/β-catenin and NF-κB signaling 
pathways, modulating the intestinal microbiota 
and tumor development.101–103 In patients receiv-
ing CBM588 and responding to treatment, an 
increase in Bifidobacterium species was observed, 
but not all patients taking CMB588 produced an 
effective elevation of Bifidobacterium species.62 
How probiotics can effectively improve the gut 
microbiota and the efficacy of immunotherapy 
needs to be further addressed.

Although the clinical trial presented favorable 
results, the instability of probiotics or other bacte-
rial products in the intestine caused by the resist-
ance of the original bacteria prevented follow-up 

research and the clinical application of this tech-
nology. Previous studies have primarily used anti-
biotic pretreatment to prepare the gut ecosystem. 
Han et  al.104 found that smectite promoted the 
formation of Lactobacillus and Bifidobacterium 
biofilms on its surface, which could prime DCs 
through toll-like receptor (TLR) 2 signaling, acti-
vate CD8+ T-cells and release interferon-γ (IFN-
γ) and interleukin-12 (IL-12), and finally enhance 
the efficacy of immunotherapy in mice. Using 
smectite to establish colonization sites specifically 
for probiotics is safer and more effective in retain-
ing specific strains and is potentially translatable.

Clinical trials of probiotics in combination with 
immunotherapy are being conducted gradually 
(Table 2). Several hospitals in China have 
expanded the research direction to other cancers, 
such as NCT05220124 and NCT05032014, 
focusing on bladder and liver cancer, respectively. 
Indeed, further research is needed to determine 
how effectively probiotics can improve immuno-
therapy efficacy. We should take a very cautious 
position until the safety of commercially available 
probiotics is thoroughly evaluated in preclinical 
and clinical studies.

Diet and prebiotics
Dietary intake can contribute to different 
microbiome compositions, changes in dietary 
regimen significantly alter the gut microbiota 
within 5 days.105 Although responders to ICIs 
have different bacterial compositions, these 
taxa have something in common regarding their 
upstream dietary substrates.106,107 For example, 
Faecalibacterium prausnitzii and Ruminococcus spe-
cies consume dietary fiber, A. muciniphila and 
Bifidobacterium species use polyphenols of food 
origin as substrates. Therefore, there is a solid 
case to evaluate the effect of dietary interventions 
on ICI efficacy in the context of gut microbiota.

With excellent safety, accessibility, and low cost, 
dietary interventions are simple ways to regulate 
the gut microbiota in patients using ICIs. 
However, behavioral changes, particularly dietary 
patterns, are notoriously tricky, resulting in a 
paucity of prospective interventional studies and 
evidence-based dietary guidelines for patients to 
follow. As a widely known healthy diet, a high-
fiber diet can be helpful for immunotherapy.59,69 
It could enhance the response to ICIs in preclini-
cal mouse models, which is closely related to 
increased fiber-fermenting bacteria.
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Dietary fiber is the main subject of current diet-
related research. Indeed, consuming specific die-
tary components, such as dietary fiber and 
prebiotics, is a common way to regulate the 
microbiota. Intervention clinical trials have shown 
that dietary fiber intake increases gut bacterial 
diversity.108 Dietary fiber intake may affect clini-
cal outcomes in patients treated with ICIs. A ret-
rospective cohort study showed that patients 
treated with ICIs taking sufficient dietary fiber 
intake had significantly longer PFS than those 
taking insufficient dietary fiber intake (median 
PFS not reached versus 13 months), with the 
longest PFS observed in patients reporting suffi-
cient dietary fiber intake and no probiotic use, in 
which microbial alpha diversity, Ruminococcaceae 
family, and Faecalibacterium genus abundances 
were numerically higher, although the results did 
not reach statistical significance.59

Bindels et al.109 defined prebiotics as ‘a nondigest-
ible compound that, through its metabolization 
by microorganisms in the gut, modulates compo-
sition and activity of the gut microbiota, thus con-
ferring a beneficial physiological effect on the 
host’. As the definition says, prebiotics are rich in 
variety, and most of them belong to dietary fiber. 
Different prebiotics have different effects on the 
regulation of gut microbiota. For example, the 
plant polysaccharide inulin can stimulate the 
growth of fiber-fermenting Faecalibacterium and 
Bifidobacterium species.110,111 Supplementation 
with inulin and fructo-oligosaccharide may select 
beneficial bacteria such as Lactobacillus and 
Bifidobacterium.111 These taxa are associated 
with enhanced responses to ICIs.20,21 Inulin, a 
heterogeneous mixture of fructose polymers, 
has been recognized as the most widely known 
prebiotic with nutritional and therapeutic effects 
to improve health. Han et  al.112 enhanced the 
antitumor activity of anti-PD-1 antibodies by 
combining inulin gel in CT26 murine models, 
which increased the relative abundance of cru-
cial commensal microbiota such as Akkermansia, 
Lactobacillus, Roseburia, and their short-chain 
fatty acid (SCFA) metabolites, and induced sys-
temic memory T-cell responses.

In addition, Simpson et  al.29 found that omega-3 
intake was significantly higher in patients who 
responded to immunotherapy. A variety of other 
prebiotics, specific diets, nutrients, or bioactive com-
pounds from them may also suppress tumors and 
enhance ICI efficacy.74,113–115 These interventions 

have value for further exploration (Supplemental 
Table 4).35,59,69,70,74,91,104,112,115,116

Modulation of gut microbiota affects  
irAEs of immune checkpoint inhibitors
Research has demonstrated that irAE occurrence 
is connected to better ICI response and long-term 
benefits,117,118 making early and appropriate man-
agement a critical task. Nevertheless, the relation-
ship between specific genera and irAEs has 
yielded controversial results. Certain bacteria 
have been identified to facilitate ICI responses 
and reduce ICI toxicities, including Akkermansia, 
Bifidobacterium, etc.119 Chaput et  al.25 showed 
that patients treated with ipilimumab with 
increased representation of Faecalibacterium and 
Firmicutes had increased efficacy of ICIs, as well 
as increased risk of developing colitis or other 
ICI-induced toxicities, which is known as the effi-
cacy-toxicity coupling effect.

While improving the efficacy of immunotherapy 
through modulating gut bacteria, the diversity 
and abundance of microbes might also influence 
ICI therapy’s immunotoxicity. In a currently 
published clinical trial, the efficacy of ICIs can be 
safely modulated by FMT.63 However, it is diffi-
cult to draw a definite conclusion regarding highly 
diverse and multifaceted microbial-immune sys-
tem interactions. We still need to monitor the 
possible induction or attenuation of irAEs in 
immunotherapy and find the balance between 
ICI response and irAEs step by step.

Gut microbiota modulates the function of 
immune checkpoint inhibitors by several 
potential mechanisms
Although studies suggest that the gut microbiota 
may be an important factor in the therapeutic 
response to ICIs, the mode of action remains to 
be elucidated. We summarize the potential mech-
anisms as follows (Figure 1).

Regulate the expression and distribution  
of immune checkpoint molecules
The TME consists of many different cell types 
that play an essential role in tumor tolerance and 
evasion of immune surveillance120 and largely 
influence the efficacy of ICIs,121,122 including T 
cells, fibroblasts, natural killer (NK) cells, and 
DCs.123–125
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Chaput et  al. found that the commensal bacte-
rium F. prausnitzii was associated with a decrease 
in circulating α4+β7+ T cells and CD4+ Tregs. In 
Crohn’s disease-based studies, F. prausnitzii cor-
related with the induction of regulatory T cells in 
the gut.126 Therefore, it was speculated that F. 
prausnitzii might be related to the sequestration of 
a4+b7+ T cells and Tregs in the intestine and 
tumor bed.25 Tregs express high levels of CTLA-4 
and are susceptible to ipilimumab.127 In the pres-
ence of F. prausnitzii, ipilimumab induces the 
inactivation of a more extensive range of CTLA-
4+ Treg cells, reactivating effector T cells,128,129 
and ultimately improving the efficacy of the treat-
ment. In addition, Gopalakrishnan et al. showed 
that transplantation of favorable gut microbiota 
upregulated PD-L1 expression in the TME in 
murine models. It induced a ‘hot’ TME and 
caused more pronounced tumor shrinkage.20 The 
gut microbiota creates a relatively ‘hot’ microen-
vironment for ICIs by inducing aggregation or 
elevated expression of immune checkpoint mole-
cules, which improves efficacy.

Programmed death ligand 2 (PD-L2) is a mem-
ber of the same B7 family proteins as PD-L1 and 
exerts immunomodulatory effects by binding to 
PD-1 and repulsive guidance molecule b (RGMb) 
as a ligand.130 In 2017, Yearley et al.131 revealed 
that the expression level of PD-L2 was closely 
associated with the clinical efficacy of pembroli-
zumab for head and neck squamous cell carci-
noma, and the efficacy prediction effect was 
independent of PD-L1 expression.131 Besides, 
PD-L2 expressed on DCs can bind to RGMb on 
CD8+ T cells, inhibiting CD8+ T-cell responses. 
Specific gut microbiota, especially Coprobacillus  
cateniformis, inhibits PD-L2 expression on DCs, 
activates antitumor immunity, and improves the 
efficacy of ICIs.132 Therefore, downregulation of 
the PD-L2-RGMb pathway may serve as a mech-
anism by which gut microbiota modulates the 
response to ICIs.

Activate antitumor immunity
One pathway is that microbial proteins cause 
T-cell cross-reactivity by mimicking tumor anti-
gens. The theory of ‘molecular mimicry’ suggests 
that specific CD4+ or CD8+ T lymphocytes 
induced by major histocompatibility complex class 
I and class II binding epitopes encoded by bacte-
rial or viral genomes may unexpectedly recognize 
autoantigens and attack tumor tissues.133,134

Microbial-specific T lymphocytes can activate an 
effective antitumor immune response. Deficits in 
the efficacy of ICIs were overcome by the adop-
tive transfer of B. fragilis-specific T-cells.19 
Memory responses of IFN-γ-secreting CD4+ and 
CD8+ T cells specifically targeting E. hirae,  
B. fragilis, and A. muciniphila are associated  
with good clinical outcomes in cancer  
patients.18,19,135,136 A retrospective analysis of 
long-term pancreatic cancer survivors showed 
sequence homology of high-quality neoantigens 
with microbial epitopes,133 suggesting the basis 
for T-cell cross-reactivity.

Until 2020, Bessell et al.137 found that T cells tar-
geting an epitope expressed in the commensal 
bacterium B. breve SVYRYYGL cross-reacted 
with the model neoantigen SIYRYYGL expressed 
in B16.SIY tumor.137 Ragone et  al.138 further 
showed a high homology in the linear sequence as 
well as in structure and conformation between 
tumor-associated antigens and peptides derived 
from the microbiota of the Firmicutes and the 
Bacteroidetes phyla, possessing the basis for cross-
reactive T-cell responses.138 TCC88, a specific 
tumor-infiltrating lymphocyte (TIL)-derived 
CD4+ T-cell clone, recognizes multiple glioblas-
toma-derived peptides and responds strongly to a 
broad spectrum of gut microbiota-derived targets, 
especially peptides from B. fragilis, Ruminococcus 
bromii, Alistipes, and Eubacterium genus, which 
elicit cross-reactive T-cell responses in bulk TILs 
and peripheral blood memory T cells.139 These 
observations suggest T-cell cross-reactivity as a 
possible mechanism of effective immunotherapies 
due to certain gut microbiota composition.

The other pathway is that gut microbes or micro-
bial products activate pattern recognition recep-
tors (PRRs), leading to the activation of immune 
responses. Several PRR agonists have been 
proven to overcome resistance to ICI ther-
apy.140–142 PRR stimulation can promote tumor 
cell death by directly inducing or indirectly acti-
vating adaptive immune cells via cytokines 
released from surrounding cells or recruitment 
and activation of APCs to prime effector T 
cells,143 which shape a ‘hot’ TME and further 
enhance therapeutic efficacy. For example, gut 
microbiota triggered type I IFN production in 
DCs via stimulator of interferon genes (STING), 
a PRR in the form of endoplasmic reticulum 
transmembrane proteins, which enhanced cross-
stimulation of antitumor CD8+ T cells and 
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improved the efficacy of ICIs.69 Active entero-
cocci express and secrete orthologs of the  
NlpC/p60 peptidoglycan hydrolase SagA, which 
can generate nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2)-active 
muropeptides and regulate the efficacy of check-
point blockade immunotherapy in vivo by acti-
vating NOD2, increasing intratumor T-cell 
distribution.91 Moreover, TLRs were proven to 
regulate anticancer immune activity through 
intestinal bacteria,104 suggesting that gut micro-
biota regulation of the PRR pathway to influence 
therapeutic efficacy is widely available and medi-
ated by multiple receptors. Microbiota species 
that activate specific PRRs may be leveraged as 
next-generation adjuvants.

Release metabolites
Metabolites of the gut microbiota suppress 
inflammation by maintaining the epithelial bar-
rier and intestinal integrity and interact with 
host cells to influence the immune response.144,145 
SCFAs are the most crucial metabolites, includ-
ing acetate, propionate, and butyrate, which can 
modulate effector T-cell function by regulating 
G protein-coupled receptor signaling through a 
receptor-dependent mechanism.146,147 A cohort 
study of 52 patients with solid tumors revealed 
that high fecal acetate, propionate, butyrate, 
and valerate concentrations were significantly 
associated with prolonged PFS and higher 
response rates to anti-PD-1 therapy.20,148 
NSCLC patients receiving anti-PD-1 therapy 
showed similar gut metabolomics, in which fecal 
SCFAs, particularly propionate, were associ-
ated with a better long-term response to ICIs.31 
The supplement of a probiotic strain, 
Lactobacillus rhamnosus Probio-M9 (Probio-M9), 
modulates the intestinal microbiome of tumor-
bearing mice by increasing beneficial bacteria, 
promoting the accumulation of acetate, propi-
onate, and butyrate in the intestine. SCFAs pro-
duced by these bacteria further increased 
specific metabolites in the blood circulation of 
mice, particularly α-ketoglutaric acid, N-acetyl-
l-glutamic acid, and pyridoxine, promoting the 
infiltration and activation of cytotoxic T lym-
phocytes and inhibiting the function of Tregs, 
thereby enhancing the ICI response.149  
These results suggest the immunomodulatory 
capacity of SCFAs and their potential to pro-
mote immunotherapy efficacy in tumor–microbe 
communication.

Other metabolites also contribute to modulating 
immunotherapy. Trimethylamine N-oxide poten-
tiated type-I IFN pathway and conferred antitu-
mor effects in a type-I IFN-dependent manner, 
driving immune activation and boosting responses 
to ICIs in a mouse model of pancreatic ductal 
adenocarcinoma (PDAC).150 Inosine produced 
by the commensal bacterium B. pseudolongum sig-
nificantly promoted TH1 cell differentiation by 
exerting adenosine A2A receptors on T cells in 
the presence of exogenous IFN-γ and enhanced 
the therapeutic response to ICIs.151

By specifying the connection between gut microbi-
ota metabolites and immunotherapy, we may pio-
neer a new approach to adjuvant cancer treatment.

Affect intratumoral microbiome
The intratumoral microbiome constitutes a sig-
nificant part of TME, influencing tumorigenesis, 
progression, metastasis, and antitumor immu-
nity,152 especially the extent of immune infiltra-
tion and the degree of activation of CD8+  
T cells,153–156 which are important factors affecting 
ICI efficacy. Intratumor microbiota can promote 
CD8+ T-cell activation and TH1 differentiation 
of CD4+ T cells by increasing differentiation of 
classical activated macrophages (M1) and 
decreasing myeloid-derived suppressor cells, 
ultimately increasing PD-1 expression and 
responsiveness to immunotherapy.156 Nejman 
et  al.157 found a higher abundance of intratu-
moral Clostridium and a lower abundance of intra-
tumoral Gardnerella vaginalis in melanoma 
patients responding to ICIs.157

By comparing the microbiomes of stool samples, 
tumor specimens, and non-tumor adjacent nor-
mal tissues from PDAC patients, approximately 
25% of the intratumoral microbiome was derived 
from the gut microbiome. When fecal microbiota 
from patients with advanced PDAC was trans-
ferred to the murine intestine, the bacterial com-
position of the intratumoral microbiome was 
significantly altered, and a small proportion of 
fecal bacteria from human donors could be 
detected.153 In the Lewis lung cancer mouse 
model, exogenous Akk increases the abundance 
of Akk in the circulation or tumor tissue, affecting 
the commensal microbiome and reprogramming 
the tumor metabolic network.158 These results 
demonstrate that the intestinal microbiome could 
modulate the intratumoral microbiome.
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Targeting the gut microbiome may reverse the 
intratumoral immune tolerance environment. 
Mackenzie et  al. found that in preclinical mela-
noma, probiotic L. reuteri translocates to, colo-
nizes, and persists within tumors where it locally 
promotes antitumor T-cytotoxic 1 immunity via 
its released aryl hydrocarbon receptor (AhR) ago-
nist and dietary tryptophan catabolite, indole-
3-aldehyde, which acts through CD8+ 
T-cell-specific AhR signaling to promote IFN-γ 
production in a cAMP response element-binding 
protein-dependent manner and enhance ICIs.159

T-cell cross-reactivity has been mentioned above 
as a possible mechanism of ICI enhancement by 
gut microbiota. Whereas a study in melanoma 
showed that intratumoral bacteria can enter mel-
anoma cells, and that their peptides can be pre-
sented by the human leukocyte antigen class I 
and class II molecules of melanoma tumor cells 
and elicit immune reactivity, again providing the 
basis for T-cell cross-reactivity.160

With the above studies, the authors demonstrated 
a new way for gut microbiota to modulate immu-
notherapy through bacteria translocation to gut-
distal tumors, providing a rational basis for 
designing new combination therapeutic strategies.

Regulate inflammatory pathways
The cyclic GMP-AMP synthase (cGAS)/STING 
signaling pathway has become a key mediator of 
inflammation, with the capacity to sense and regu-
late cellular responses to microbes. Gut microbiota 
associated with a high-fiber diet improves ICI effi-
cacy via a STING-type I IFN-dependent mecha-
nism.69 Treatment with live L. rhamnosus GG also 
triggered type I IFN production in DCs through 
cGAS/STING/TRAF Family Member Associated 
NF-κB Activator (TANK)  binding kinase 1/IFN 
regulatory factor 7 axis, enhancing the cross-prim-
ing of antitumor CD8+ T cells.97 IL-12 is a heter-
odimeric pro-inflammatory cytokine that induces 
IFN-γ production, facilitates TH1 cell differentia-
tion, and coordinates innate resistance and adap-
tive immunity. Oral supplementation with A. 
muciniphila restored the efficacy of PD-1 blockade 
in an IL-12-dependent manner by increasing the 
recruitment of CCR9+CXCR3+CD4+ T lympho-
cytes into mouse tumor beds.22

The inflammatory pathway is an important link 
in the activation of antitumor immunity. Except 
for the above, it can be widely detected among 

the pathways by which the gut microbiota modu-
lates immunotherapy, especially the T-cell recep-
tor signaling pathway. There are far more 
inflammatory pathways involved, pending fur-
ther exploration.

Others
MYC, a pivotal signal molecule regulating colorec-
tal cancer proliferation, migration, stemness, and 
growth, induces PD-L1 expression in tumors,161 
leading to immunosurveillance escape and nonre-
sponse or resistance to ICIs. C. butyricum destabi-
lizes V-Myc Myelocytomatosis Viral Oncogene 
Homolog (MYC) through enhanced ubiquitina-
tion and increases CD8+ T-cell infiltration, sug-
gesting that the intestinal microbiota may promote 
ICI efficacy by modulating MYC regulatory 
pathways.162

Intestinal E. rectale enhances anti-PD-1 efficacy 
by altering the metabolic environment, which 
depletes environmental l-serine and activates NK 
cells via the FBJ murine osteosarcoma viral onco-
gene homolog (FOS)/FOS-like antigen 2 (FOSL2) 
signaling pathway.163

Some components of intestinal bacteria or their 
metabolites can drive tumorigenesis,15,164,165 
induce an immunosuppressive microenviron-
ment,156 and cause therapeutic tolerance,20 
known as ‘unfavorable gut microbiota’, such as 
B. fragili, Fusobacterium nucleatum, and 
Ruminococcus gnavus. F. nucleatum-derived suc-
cinic acid suppressed the cGAS-IFN-β path-
way, thereby inhibiting the antitumor response 
by restricting the trafficking of CD8+ T cells to 
the TME in vivo. Treatment with the antibiotic 
metronidazole reduced the abundance of F. 
nucleatum, decreasing serum succinate levels, 
and resensitizing the tumor to immunother-
apy.166 By altering the microbiota composition, 
the proportion of unfavorable bacteria can be 
reduced to some extent, indirectly impacting 
anticancer therapy.

Future perspectives
The evidence above highlights the potential effect 
of the gut microbiota on the immunotherapeutic 
response and supports future efforts to improve 
treatment efficacy through its modulation.

However, each of these strategies has important 
variables to be considered. For FMT, it 
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is essential to find expedient preparation and 
effective delivery methods, and strict policies 
must guide donor selection. Standardizing com-
mercially available commodities is the most 
urgent requirement for probiotic or bacterial con-
sortium application, and self-administration of 
off-the-shelf probiotics for cancer treatment is not 
recommended. We also have to decide on the 
type, dose, and formulation based on bacterial 
colonization to achieve optimal outcomes while 
avoiding potentially reduced microbiome diver-
sity. Maintaining patients’ dietary patterns over 
time is the main challenge for dietary interven-
tions. Whether the diet is sufficient to modulate 
therapeutic efficacy needs to be further 
demonstrated.

Limitations of this review include the following 
points. Gut microbiota modulates immunother-
apy through multiple mechanisms. We mainly 
focus on the relevant mechanisms with well-
defined evidence and only briefly describe the 
possible mechanisms that have yet to be rigor-
ously confirmed. Besides, the regulation of gut 
microbiota is a new approach to enhancing ICIs. 
Although many clinical studies are underway, the 
published data are scarce and of limited value for 
clinical guidance. Research on the biological 
characteristics, pharmacokinetics, and optimal 
delivery of the potential interventions could fur-
ther guide clinical medication. In conclusion, 
future challenges and directions are as follows:

➢  We need to further explore the relationship 
between gut microbiota and tumorigene-
sis, immune function, and antitumor 
immune response and uncover the biologi-
cal effects and modes of action of commen-
sal bacteria to lay the foundation for clinical 
research.

➢  The discovery of reliable microbiome-
related biomarkers for predicting outcomes 
and stratifying patients accordingly could 
help guide the application of coregulatory 
interventions for the gut microbiota. The 
characterization of favorable and unfavora-
ble gut microbiota is crucial, and the iden-
tification of microbial characteristics 
associated with different tumors or differ-
ent drugs can contribute to the evolution of 
precision medicine.

➢  We need to determine the optimal modali-
ties to effectively induce and maintain the 
favorable gut microbiota that is beneficial 
for immunotherapy over time, as well as 

factors that disrupt the beneficial bacterial 
component, and implement appropriate 
preventive measures.

➢  The evaluation of bacterial metabolites 
that enhance antitumor immunity can help 
facilitate the invention of novel products 
and target new molecular pathways.

➢  Other microbiomes in the gut, such as fungi 
and viruses, together with bacteria, form  
an integral part of the microecosystem. 
However, their roles have been underesti-
mated in current studies. We need to refine 
relevant studies to confirm their value.

By addressing the above, we expect to establish a 
convenient and cost-effective approach to clarify 
the distribution of the gut microbiota and create a 
reproducible pathway to manipulate the gut eco-
system in combination with immunotherapy to 
improve patient survival.
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