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Abstract: Neurofibromatosis type 1 (NF1), which is the most common phacomatoses, is an autosomal
dominant disorder characterized by clinical presentations in various tissues and organs, such as the
skin, eyes and nervous and skeletal systems. The musculoskeletal implications of NF1 include a
variety of deformities, including scoliosis, kyphoscoliosis, spondylolistheses, congenital bony bowing,
pseudarthrosis and bone dysplasia. Scoliosis is the most common skeletal problem, affecting 10–30%
of NF1 patients. Although the pathophysiology of spinal deformities has not been elucidated yet,
defects in bone metabolism have been implicated in the progression of scoliotic curves. Measurements
of Bone Mineral Density (BMD) in the lumbar spine by using dual energy absorptiometry (DXA) and
quantitative computer tomography (QCT) have demonstrated a marked reduction in Z-score and
osteoporosis. Additionally, serum bone metabolic markers, such as vitamin D, calcium, phosphorus,
osteocalcin and alkaline phosphatase, have been found to be abnormal. Intraoperative and histologi-
cal vertebral analysis confirmed that alterations of the trabecular microarchitecture are associated
with inadequate bone turnover, indicating generalized bone metabolic defects. At the molecular level,
loss of function of neurofibromin dysregulates Ras and Transforming Growth factor-β1 (TGF-β1)
signaling and leads to altered osteoclastic proliferation, osteoblastic activity and collagen production.
Correlation between clinical characteristics and molecular pathways may provide targets for novel
therapeutic approaches in NF1.

Keywords: neurofibromatosis type 1; scoliosis; bone metabolism defects; bone mineral density

1. Introduction

Neurofibromatosis type 1 (NF1), also termed von Recklinghausen disease, is referred
to by the National Organization for Rare Disorders (NORD) as a rare autosomal dominant
genetic disorder that affects 1 per 3000–6000 individuals worldwide [1–3]. NF1 is caused
by loss-of-function mutations in the NF1 gene, which is located on the long arm of chromo-
some 17q11.2 and is composed by 60 exons spanning more than 350 kb of genomic DNA
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and encodes an intracellular protein called neurofibromin (Nf), which is responsible for the
disease [4]. Nf is a cytoplasmic protein consisting of 2818 amino acids and expressed in
many types of cells, including osteoblasts, osteoclasts, chondrocytes and neurons of the cen-
tral and peripheral nervous system [5]. It is involved in the negative regulation of cellular
proliferation, growth and differentiation through the inactivation of the Ras-GTPase pro-
tein and accumulation of cyclic adenosine monophosphate (cAMP) [6], being a significant
tumor suppressor [7,8]. The regulatory activities of Nf in cellular functions are achieved
via its implication in two major signaling pathways: (a) the Ras downstream signaling of
Raf-MEK-ERK (Rapidly accelerated fibrosarcoma, Mitogen-activated protein Kinase and
Extracellular signal Regulated Kinases, respectively) and (b) PI-3-K (phosphatidylinositol-3-
phosphate kinase) pathways [6].

NF1 is an autosomal dominant disorder with 100% penetrance with a great variance
in clinical presentation and relatively minor contribution of the nature of the NF1 mutation
to disease expression. The diagnostic algorithm is based on the criteria of the USA National
Institute of Health (NIH) [9] and/or the mutation analysis of the NF1 gene. Clinically, it is
characterized by café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas,
optic pathway gliomas, distinctive bony lesions, malignant peripheral nerve sheath tumors,
neurocognitive defects, epilepsy and cardiovascular abnormalities [10].

Individuals with NF1 are prone to developing a wide range of osseous and skeletal
manifestations, such as macrocephaly, short stature, sphenoid wing dysplasia, scoliosis,
congenital pseudarthrosis of the long bones [11,12], increased fracture risk [13], reduced
bone mineral density (BMD) or osteoporosis [14–16]. Osteoporosis is found in 20–50% of
NF1 patients, and it is associated with reduced serum 25-hydroxyvitamin D and increased
serum concentrations of parathyroid hormone (PTH) and biochemical markers indicating
bone turnover, such as osteocalcin or alkaline phosphatase (ALP) [17]. Bone specimens
from NF1 patients demonstrate reduced trabecular volume, increased osteoid mass and
elevated undifferentiated osteoblastic/osteoclastic cell count [18,19]. However, the patho-
physiological mechanism that leads to bone mass reduction has not been elucidated yet. Nf
gene deletion results in a pathological increase in intracellular Ras activity, induction of
osteoclastic activity and inhibition of osteoblastic differentiation [18–20]. In vivo studies
have suggested that dysregulation of transforming growth factor-β1 (TGF-β1) signaling
correlates with progressive skeletal defects in Nf knockout mice, implicating TGF-β1 in the
NF1 skeletal phenotypes [20].

Scoliosis is the most common musculoskeletal disorder of NF1 patients and might
be accompanied by spinal dysplastic defects [21]. Many research studies have focused on
BMD, as well as on biochemical and molecular indices, which were remarkably reduced in
scoliotic patients revealing a link between spinal deformities and generalized metabolic
osseous disease in NF1 [22]. Furthermore, novel bone anabolic therapies have been shown
to promote osteogenic differentiation and to improve skeletal defects in NF1 [23]. Due to
the limited number of literature reports on the association between scoliotic progression
and bone metabolic impairment in NF1, the focus of our review study is to provide data on
the following: (a) clinical presentation and associated demographic data, (b) characteristic
biochemical bone metabolic alterations and (c) possible cellular and molecular signaling
pathways that accompany scoliosis in NF1 patients.

2. Epidemiological Data and Clinical Characteristics

Despite the fact that spinal deformities in patients with NF1 were first reported by
Gould in 1918 [24], very few epidemiological studies have examined the prevalence of
scoliosis in this population. We must note that in the included studies, the diagnosis of NF1
and scoliosis was based on NIH and Scoliosis Research Society (SRS) criteria, respectively.
However, the exact prevalence of scoliotic malformations in NF1 patients has not been
clarified yet. In a cohort study of 438 children with NF1, Toro et al. [21] reported that the
prevalence of scoliosis was 9.8%. Similar findings were reported by Alkbarnia et al. [25],
while Lykissas [26] and Durrani et al. [24], who focused on the surgical restoration of the
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vertebral deformities, reported an incidence of 19% and 20%, respectively [26]. In a large
epidemiological study of 3505 NF1 patients that were registered at the Japanese Ministry of
Health between 2001 and 2014, which investigated the accompanied major complications
requiring medical intervention, scoliotic manifestations were present in 10% of the affected
population [27]. Interestingly, 55% of the patients with spinal deformities were prone to
conservative or surgical forms of interventions [27].

Additionally, a retrospective analysis of 537 individuals using whole-body magnetic
resonance imaging (MRI) with volumetric analysis detected an increased prevalence of
spinal abnormalities in patients with NF1, as the incidence of scoliosis and neuroforaminal
tumors were 46.9% and 39.6%, respectively [28]. In the same study scoliotic deformities in
NF1 were linked to scalloping, meningoceles, neuroforaminal tumors and dural ectasia,
demonstrating the importance of whole-body MRI in the evaluation of phenotype of
spinal abnormalities in NF1 patients [28] as it provides a significant imaging biomarker
not only for the assessment of tumor progression, but also for the study of treatment
response. Indeed, it was reported that MRI was also used to examine bone marrow changes
associated with osteoporosis in the axial and appendicular skeleton after the administration
of imatinib in children and young adults with NF1 [29].

Predicated on the location of the apical vertebrae, scoliosis in NF1 can be classified
in two main categories: non-dystrophic and dystrophic. The non-dystrophic scoliotic
curves show radiological signs similar to adolescent idiopathic scoliosis (Figure 1) and
can aggressively progress to the dystrophic phenotype [30]. Contrariwise, dystrophic
malformations develop earlier than non-dystrophic, having a characteristic radiological
appearance of sharp and angular curves with severe apical rotation that affect four to
six vertebras [30]. The definition criteria of dystrophic scoliosis are presented in detail in
Table 1.
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Figure 1. An anteroposterior view of total spine in standing position of a 30-year-old female patient
with NF1 demonstrates a right thoracic curve of 12 degrees between 5th and 10th thoracic vertebras
without signs of dystrophic malformations. (R: Right).

In the study by Toro et al. [21], the prevalence of dystrophic scoliosis in the NF1
population was 39%, while in the study of Lykissas et al. [26] it was 63%. The above
differences may be explained by the different diagnostic approaches and imaging modalities
that were followed in each survey. Although the possibility of dystrophic deformities
was equal between sexes [24,26], it was reported that in patients that were surgically
treated, the male to female ratio was 4:1 [24]. Further analysis of the disclosed radiological
dystrophic signs revealed that the most common characteristics were: (a) paravertebral
neurofibromas in 22% of NF1 patients, (b) vertebral scalloping in 16% of the cases, and
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(c) short, segmented curve and anomalies of the dural sac, such as ectasia, syringomyelia
and Chiari malformation [21,26]. Since a short segmental curve was also detected at an
increased rate (~57%) in non-dystrophic scoliosis, it has been suggested that it is not a key
dystrophic feature [21,26].

Table 1. Criteria for the definition of dystrophic scoliosis modified by Duranni [24] and
Lykissas et al. [26]. Dystrophic scoliosis is diagnosed when three or more of the following criteria
are fulfilled.

Scoliotic Vertebral Dystrophic Alterations

• Vertebral scalloping (depth of scalloping more than 3 mm or 4 mm in the thoracic and
lumbar spine, respectively)

• Rib penciling (rib width lower than the narrowest portion of the second rib)
• Spindling of the transverse processes (loss of 50% from the height of the transverse process)
• Vertebral rotation of grade 3 or more (according to Moe-Nash method)
• Focal, short-segmented curve (in 6 or less vertebrae)
• Dural ectasia
• Paraspinal tumors and/or plexiform neurofibromas close to scoliotic curves
• Vertebral wedging (in sagittal or coronal plane)
• Intervertebral foraminal widening
• Widened interpediculate distances
• Dysplastic pedicles

3. Bone Metabolism in NF1

As already mentioned, NF1 is associated with a remarkable reduction in BMD and
increased osteopenia, osteoporosis and severe scoliosis [22,31–33]. In specific, Petramela
et al. [31] reported an increased prevalence of osteopenia (44%) and osteoporosis (18%)
in NF subjects compared to a normal control group. Similarly, Illes et al. [33], using dual-
energy X-ray absorptiometry (DEXA), observed reduced Bone Mineral Density (BMD) in the
lumbar spine of NF1 patients. Additionally, an inverse correlation was observed between
the degree of scoliotic curves and BMD values, as in patients with an increased magnitude
of spinal deformities, poor lumbar BMD was noted [33]. These results were in line with
the data of Brunetti-Pierri et al. [22], which described the generalized reduction of spinal,
femoral and trochanteric BMD, as well as whole-body bone mineral content (BMC) in NF1.
Notably, the lumbar spine seems to be most severely affected [22]. Histological analysis
of bone vertebral specimens that were received intraoperatively from NF1 patients with
scoliotic deformities, revealed a marked reduction in bone trabeculae thickness and in viable
osteocytes compared to healthy controls. Moreover, osteoblasts and bone lining cells were
not well differentiated and were accompanied by a low number of active osteoblasts [22].
Cellular histomorphometry analyses also detected altered osteoblastic and osteoclastic
populations in bone biopsies, indicating an increased turnover in NF1 patients that lead
to heterogenic mineral and osteoid distribution and low calcium content [17,34]. These
findings are confirmed in a more recent study that showed that trabecular bone score, bone
mineralization and BMD are decreased in NF1 patients and are associated with severe
spinal osteopenia and osteoporosis [35]. Similar results have been reported by several
pediatric cohort studies [36–39]. Specifically, in NF1 children, non-dystrophic mild scoliotic
curves have been correlated with low total body and lumbar Z-scores (≤−2) and low
BMD. Interestingly, children with low Z-scores have a four-times greater risk of developing
skeletal deformities when compared to children without spinal malformations [36]. These
findings are consistent with the notion that low lumbar spinal trabecular BMD and Z-scores
are predictors of scoliosis severity in NF1 children aged 6 to 9 years old [40]. The cohort
study by Stevenson et al. [41], which investigated the contribution of low BMD and BMC of
skeletal dysplasias in 84 children with NF1 compared to 293 healthy individuals, suggested
that generalized osteopenia and/or osteoporosis are important predisposing factors of
localized osseous defects. Contrariwise, Duman et al. found low femoral and lumbar



J. Clin. Med. 2022, 11, 444 5 of 13

BMD in pubertal children with NF1, but without being statistically correlated with skeletal
abnormalities [39].

Regarding the status of bone metabolic biochemical and molecular markers, it has been
reported that they are significantly affected in NF1 patients. Severe hypovitaminosis D,
which is defined by serum levels lower than 20 ng/mL, is observed in more than 60% of pa-
tients with NF1 with scoliotic deformities [31]. Similarly, an increased incidence of osteoma-
lacia associated with low serum concentrations of Vitamin D and increased bone turnover
markers were also detected in NF1 individuals with scoliotic deformities [17,42]. Vitamin
D insufficiency was detected in 75% of patients with NF1 in the study of Brunetti et al. [22].
Interestingly, children with NF1 showed higher levels of Vitamin D compared to adults [43],
whereas in female pediatric patients, a negative correlation between serum levels of 25-OH
vitamin D and lumbar Z-scores compared to males was noted [44]. Although oral admin-
istration of vitamin D resulted in normalization of 25OH-vitamin D serum levels [22,31],
it was not associated with the restoration of lumbar BMD or whole-body BMC [22]. A
possible explanation for this observation could be that NF1 neurofibromas were linked
to the reduced expression of Vitamin D Receptor (VDR) [45]. VDR is a nuclear receptor
which acts as transcriptional factor activated by 1,25(OH)2-D binding [46]. As VDR was
immunohistochemically undetected in NF1-related tumors [45], we can hypothesize that
the recovery of BMD and/or BMC in NF1 may be achieved, not only by the normalization
of Vitamin D blood levels, but also by increasing the interaction between vitamin D and
VDR [22,45]. Other factors that have been shown to affect bone homeostasis in NF1 are
the elevated renal excretion of calcium, reduced levels of total and ionized plasma calcium
and magnesium levels, and increased circulating levels of parathormone (PTH) that were
associated with secondary hyperparathyroidism [17,31,39,44,47]. However, serum levels of
inorganic phosphorus are not altered [17,39,47].

Assessment of bone turnover markers displayed increased levels of alkaline phos-
phatase (ALP) and osteocalcin [17,31,39,44,47]. Increased bone tartrate-resistant acid phos-
phatase (bone TRAP5b) serum and urine deoxypyridinoline cross-links were also observed
and were associated with increased osteoclastic activity [48]. These findings were also
confirmed by the study of Stevenson et al., which evaluated the urinary excretion of pyri-
dinium crosslinks, such as pyridinoline (Pyd) and deoxypyridinoline (Dpd) in NF1 children
with localized skeletal dysplasias including scoliosis [49], suggesting that the elevated ratio
of Dpd/Pyd indicated a preferential increase in bone resorption rather than a generalized
collagen breakdown [49]. Despite the fact that the referred biochemical bone markers have
been correlated with an increased bone turnover and remodeling process [31], several
studies did not reveal a significant statistical correlation between other bone markers, such
as β c-terminal telopeptide, and densitometric results [35,44,47], suggesting the absence of
accurate and predictive markers for NF1 and localized skeletal defects.

A rare entity, which is characterized by significant low levels of serum and increased
concentrations of urine phosphate and leads to abnormal bone mineralization, is hypophos-
phataemic osteomalacia (HO) secondary to NF1. HO is a paraneoplastic syndrome that is
accompanied by hypophosphataemia, hyperphosphaturia secondary to reduced proximal
renal tubular phosphate reabsorption, and low or inappropriate normal levels of serum
vitamin D. Moreover, serum concentrations of calcium and parathormone (PTH) were in
normal levels, while calcium levels in urine were low [50]. NF1 patients with HO had
low BMD, suffering from diffuse osteopenia [42,51] or osteoporosis [52–54] and bone dem-
ineralization [54,55] associated with several skeletal defects, such as scoliosis, kyphosis,
bowing of long bones, pseudofractures, fractures and triradiate pelvis. The involvement
of fibroblast growth factor 23 (FGF23) in the pathophysiology of NF1 bone defects with
HO has also been proposed. FGF23, which is a phosphotropic hormone produced by
bones [56], is mainly expressed in bony tissues, especially in osteoblasts/osteocytes, and
exerts its action, after proteolytic activation, by binding to the FGF receptor-Klotho complex.
Increased secretion of FGF23 from Nf-deficient osteocytes results in mineral defects and an
osteomalacia-like bone phenotype [53] and has been associated with abnormal calcium-
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phosphorus metabolism and reduced bone formation and mineral apposition rate [57]. A
possible explanation could be that the increased serum concentration of FGF-23 inhibited
renal reabsorption of phosphorus and decreased the production of 1,25-dihydroxy- vitamin
D leading to increased phosphate wasting and lower levels of phosphorus in the serum [57].

4. Molecular Basis for Skeletal Deformities in NF1

Given the paucity of human clinical studies on skeletal development and bone re-
modeling, insights into the exact implication of Nf in osteoblastic and osteoclastic activity
come from in vitro and in vivo experimental studies. It has been well established that
Nf directly affects the Ras downstream signaling of Raf-MEK-ERK and PI-3-K pathways
(Figure 2), which interact with pathways of high importance for spinal development and
bone repair [58].
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Figure 2. Nf1 is a GAP-like protein located in cytoplasm and negatively regulates the activation of the
RAS signaling pathway by converting RAS-GTP to RAS-GDP. The RAS-GTP activates both PI-3-K and
classical MAPK pathways, resulting in the regulation of several cellular functions, such as angiogene-
sis, cell growth, proliferation and migration. Inhibition of Nf induces RAS activity and the signaling
cascade of the MEK/ERK and Akt/mTOR pathway. Nf is also a key regulator of bone development
and repair. Inhibition of Nf and the induction of RAS signaling pathway augments the expression of
osteoclastic cell lines (red arrows) and declines the osteogenic differentiation (green arrows), resulting
in skeletal defects. Akt, Protein kinase B; ERK, extracellular signal-regulated kinase; GDP, guanidine
diphosphate; GRB2, growth factor receptor-bound protein 2; GTP, guanidine triphosphate; MAPK,
mitogen-activated protein kinase; MEK, MAPK/extracellular-signal-regulated kinase; mTOR, Mecha-
nistic Target of Rapamycin Kinase; NF1, Neurofibromatosis type 1; Raf, serine/threonine-protein
kinase; SOS, son of sevenless.

Nf1 via regulation of RAS signaling modulates both anabolic and catabolic pathways
of bone homeostasis and affects spinal formation and remodeling process [58]. Activation
of RAS subsequently stimulates RAF protein which in turn activates MEK protein via phos-
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phorylation. The activated MEK then phosphorylates and activates MAPK and, ultimately,
this signaling cascade results in cellular growth, migration and proliferation. Another
pathway that is negatively regulated by Nf1 is the RAS-mTOR signaling pathway, which
also promotes cell growth and proliferation, and Nf-deficient cells experience continuous
activation of the RAS-MAPK and RAS-mTOR pathways. Upregulation of RAS-MAPK
signaling in osteoclastic cell lines triggers growth and survival, leading to bony tissue
and matrix degradation defects. Inactivation of Nf1 and the associated dysregulation of
Ras signaling also impairs osteoblastic differentiation from mesenchymal stem progenitor
cells (MSPC) (Figure 2). In vitro studies displayed that MSPC collected from heterozygous
knockout mice (Nf1+/−) have impaired osteoblast differentiation, as determined by ALP
staining and CFU-F replating assays. This impaired osteogenic differentiation is in line
with the decreased mRNA levels of osteocalcin and osteonectin, while there are no signs of
chondrocyte differentiation. Interestingly, expression of the NF1 GTPase activating-related
domain (NF1 GAP-related domain) increased osteoblast formation and differentiation in
Nf1+/− MSPC [19]. These findings were in line with the observations of Yu et al. [59] that
Nf1+/− osteoprogenitors exhibit premature apoptosis and reduced induction of osteoblastic
differentiation [59]. Analysis of Ras activity levels revealed that Nf1+/− osteoprogenitors
express increased basal and PDGF-stimulated Ras-GTP levels compared to Nf1+/+ osteo-
progenitors, suggesting that Nf regulation of Ras is required for the induction of osteoblast
differentiation [59]. A recent study of Ma et al. [60] noted an upregulation of inorganic
pyrophosphate (PPi) pathway-related genes in Nf1−/− osteoprogenitor cells and in NF1
human Schwann cells, such as Enpp1 (ectophosphatase generating PPi), Ank (channel
transporting PPi in the extracellular matrix) and osteopontin. Concurrent in vivo stud-
ies of Nf conditional knockout models showed that vertebral processes adjacent to large
paraspinal plexiform neurofibromas are completely unmineralized [60]. Similarly, altered
calcium-phosphorus metabolism is accompanied by a reduced number of osteoblasts and
disorganized osteocyte dendrites conducing a severe reduction in mineral apposition,
mineralized surface and bone formation rate in the trabecular bones of these mice [53].
The importance of the Ras-MAPK pathway is supported by the observation that admin-
istration of selumetinib, which is a selective MEK inhibitor, improved BMD in an NF1
patient, providing evidence that MEK inhibitors may be helpful in diseases caused by bone
mineralization deficiencies [60]. It should be noted, however, that although Nf1+/− mice
have a decreased periosteal and endocortical bone formation and significantly reduced
bone formation rate, the overall bone mass and geometry is not affected, indicating that
unknown compensatory pathways may control Ras signaling to maintain normal bone
mass and function in vivo, especially in the heterozygous forms of NF1 [59].

In NF1, the PI3K-AKT-mTOR pathway also seems to be involved in the deranged
osteogenic differentiation of BMSC [61,62]. The down-regulated expression of Nf in human
BMSC results in enhanced mTORC1 activity and a remarkable reduction in osteoblastic dif-
ferentiation markers, such as osterix, runx2 (RUNX Family Transcription Factor 2) ALP and
OCN, while overexpression of Nf1 had the opposite outcome [61]. Some studies suggest
that the osteogenic differentiation is strongly dependent on autophagy [62], with mTORC1
playing a regulatory role in this process [63,64]. Overexpression of Nf in BMSC inhibits
mTORC1 signaling and thus enhances autophagy and results in new bone formation [64].
In the same line, inhibition of Nf1 in BMSC enhances mTORC1 signaling and decreases the
expression of autophagy markers, such as Beclin-1 and LC3B-II, as well as bone differentia-
tion markers, such as osterix, runt-related transcription factor 2 and ALP [62]. Moreover,
in the Nf1-siRNA group the activity of the PI3K/AKT/mTOR pathway was significantly
upregulated, whereas administration of the autophagy activator RAPA reserved the knock-
down effects of Nf1-siRNA on the autophagy and osteogenic differentiation of BMSCs and
led to elevated ALP activity and calcium deposition [62].

Both laboratory and experimental results suggest that bone catabolic pathways are
activated in NF1. Osteoclasts isolated from Nf1+/− mice, cultured in the presence of
recombinant receptor activator of nuclear factor-κB ligand (RANKL) and macrophage
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colony-stimulating factor (M-CSF), display enhanced Akt phosphorylation, survival, pro-
liferation, migration and adhesion in vitro. These observations are in line with the severe
osseous defects in ovariectomized Nf1 knockout mice, as well as data from in vitro differ-
entiated osteoclasts collected from NF1 patients that have an activated Ras/PI3K pathway
and increased ostolytic activity [18]. Taking into consideration that the combination of
Ras-MAPK activity and RANKL production is critical for the regulation of osteoclastic
functions [65–68], they may trigger the bone catabolic processes in NF1 [69].

In vivo models of experimentally induced scoliosis noted an increased expression of
angiogenesis-regulating factors, such as metalloproteinase-1 (MMP1) and -12 (MMP12),
vascular endothelial growth factor A (VEGFA) and pleiotrophin, supporting the notion
of a close connection between defective angiogenesis and scoliosis progression [70–73].
The Nf1 gene regulates Ras-related signaling pathways that are involved in angiogenesis
regulation (Figure 2), while altered vascularization was observed in in vitro and in vivo
studies investigating NF1 pathophysiology [74,75]. Nf1 deficiency in mice is accompanied
by the enhanced expression of fibroblast growth factor 2 (FGF-2), platelet-derived growth
factor (PDGF) and midkine (MK) [74]. Furthermore, endothelial cells from Nf1+/− mice
demonstrate increased migration and proliferation in response to mitogens and to FGF2
in vitro and in vivo, respectively, resulting in increased neovascularization in both the retina
and cornea [75]. Immunohistochemical methods displayed increased generalized vascular
endothelial thickening around NF1-related congenital tibial pseudarthrotic tissue [76].
Impaired angiogenesis was also observed in abnormal periosteum in an NF1 patient,
suggesting a link with decreased osteogenic capabilities in NF1 [77]. Furthermore, an
immature and defective vascular network was associated with impaired porous formation
and non-union after a Masquelet reconstruction technique for bone defects [78]. Therefore,
flawed neovascularization may be correlated with delayed bone development and/or
repair, potentially contributing to skeletal and spinal deformities in NF1.

Oligonucleotide-based array analysis to examine the expression pattern of blood
cell genes has revealed that the expression of several genes implicated in calcified tissue
remodeling and bone development was down-regulated, while TGF-β1 was increased in
NF1 patients [79]. Similarly, in a mouse model of NF1, serum levels of total TGF-β1 in
Nf1 conditional knockout mice have been found to be significantly increased compared
to wild type mice and have been associated with multiple skeletal abnormalities, such
as osteoporosis and impaired fracture healing. Hypersecretion of TGF-β1 has led to
an increased activation of the canonical Smad pathway and to pathological osteoblastic
and osteoclastic differentiation, contributing to increased bone resorption. In the same
study, increased levels of active MMP2 and MMP9 in both the Nf1 haploinsufficient
myeloid cells and the serum of a human NF1 patient were also noted. These functions
were reserved by the re-expression of full-length Nf1 in primary Nf1-deficient osteoblast
progenitors that resulted in reduced Smad phosphorylation (Figure 3). Finally, treatment
with TGF-β receptor 1 (TβRI) kinase inhibitor rescued defects of BMD and enhanced
tibial fracture healing in Nf1 conditional knockout mice [20]. Taking into account the
data from several genetic and experimental studies that unveiled the pathophysiological
contribution of TGF-β1 signaling in syndromes, such as Camurati-Engelmann [80,81],
Loeys-Dietz [82,83], Shprintzen-Goldberg [82,84,85] or Marfan disease [86,87], and their
clinical presentations with severe skeletal malformations including altered remodeling,
osteoporosis and dystrophic scoliotic deformities, the link between scoliosis or other bone
defects in NF1 and induction of TGFβ1-Smad axis is an interesting hypothesis.
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hibiting osteoblastic differentiation (green arrow) via MMP-2/MMP-9 proteolytic activation of the 
latent TGF-β1 (prodomain structure of TGF-β1). The model has been proposed by Rhodes et al. [20] 
describing the NF1-associated skeletal deformities mediated by the pathological cycle of increased 
TGFβ1-Smad signaling. HSC, Hematopoietic stem cells; MMP-2, -9, Matrix metalloproteinases 2, 9; 
NF1, Neurofibromatosis type 1; TGF-β1, Transforming growth factor beta 1. 
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Figure 3. Nf is a negative regulator of TGF-β1 signaling pathway. Inhibition of Nf activity was
associated with p21-Ras-dependent hyperactivation of the canonical TGFβ1-Smad pathway that
resulted in increased expression of TGF-β1 potentiating osteoclastic activation (red arrows) and
inhibiting osteoblastic differentiation (green arrow) via MMP-2/MMP-9 proteolytic activation of the
latent TGF-β1 (prodomain structure of TGF-β1). The model has been proposed by Rhodes et al. [20]
describing the NF1-associated skeletal deformities mediated by the pathological cycle of increased
TGFβ1-Smad signaling. HSC, Hematopoietic stem cells; MMP-2, -9, Matrix metalloproteinases 2, 9;
NF1, Neurofibromatosis type 1; TGF-β1, Transforming growth factor beta 1.

5. Conclusions

Collectively, bone metabolic impairment, consistent with the impairment of osteoblas-
tic expression and osteoclastic activity and the associated progressive decrease in bone
mass, contribute to the severity of NF1 deformities in the anatomic locations where in-
creased mechanical forces are applied, such as the spine or tibia. Although genetic or
epigenetic factors may affect the severity of skeletal dysplasias [58], the correlation of
dystrophic scoliotic curves, dysplastic vertebral elements and pseudarthrosis with deficits
in metabolic phenotype and in bone repair process, could be contributors to the progression
of deformities, providing targets at a molecular level for novel therapeutic approaches
to improve the long-term outcome of surgical and/or conservative interventions for the
management of scoliotic malformations in NF1.
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