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Abstract Predictive coding theories argue that recent experience establishes expectations in

the brain that generate prediction errors when violated. Prediction errors provide a possible

explanation for repetition suppression, where evoked neural activity is attenuated across repeated

presentations of the same stimulus. The predictive coding account argues repetition suppression

arises because repeated stimuli are expected, whereas non-repeated stimuli are unexpected and

thus elicit larger neural responses. Here, we employed electroencephalography in humans to test

the predictive coding account of repetition suppression by presenting sequences of visual gratings

with orientations that were expected either to repeat or change in separate blocks of trials. We

applied multivariate forward modelling to determine how orientation selectivity was affected by

repetition and prediction. Unexpected stimuli were associated with significantly enhanced

orientation selectivity, whereas selectivity was unaffected for repeated stimuli. Our results suggest

that repetition suppression and expectation have separable effects on neural representations of

visual feature information.

DOI: https://doi.org/10.7554/eLife.33123.001

Introduction
At any moment in time, the brain receives more sensory information than can be responded to, cre-

ating the need for selection and efficient processing of incoming signals. One mechanism by which

the brain might reduce its information processing load is to encode successive presentations of the

same stimulus in a more efficient form, a process known as neural adaptation (Fairhall et al., 2001;

Kvale and Schreiner, 2004; Smirnakis et al., 1997). Such adaptation has been observed across dif-

ferent sensory modalities and species, and has been suggested as a potential mechanism for

enhancing the coding efficiency of individual neurons and neuronal populations (Adibi et al., 2013;

Benucci et al., 2013; Maravall et al., 2007). A particular form of neuronal adaptation, known as rep-

etition suppression, is characterised by attenuated neural responses to repeated presentations of

the same stimulus (Diederen et al., 2016; Gross et al., 1967; Keller et al., 2017; Movshon and

Lennie, 1979; Rasmussen et al., 2017). Here, we asked whether predictive coding theory, which

assumes that sensory processing is influenced by prior exposure, can account for changes in neural

representations observed with repetition suppression.
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The phenomenon of repetition suppression has been widely exploited to investigate neural repre-

sentations of sensory information. Repeated exposures allow for more efficient representation of

subsequent stimuli, as manifested in improved behavioural performance despite a significant reduc-

tion in neural activity (Henson and Rugg, 2003; Schacter and Buckner, 1998). Repetition suppres-

sion paradigms have been used extensively in human neuroimaging because they are commonly

considered to be analogous to the single-cell adaptation effects observed in animal models (see

Barron et al., 2016 for review). The exact relationship between the effects seen in human neuroim-

aging studies and animal neurophysiology has, however, yet to be fully established.

The view that repetition suppression observed in human neuroimaging studies reflects neuronal

adaptation has recently been challenged by hierarchical predictive coding theories

(Auksztulewicz and Friston, 2016; Summerfield et al., 2008). These theories argue that the brain

interprets incoming sensory events based on what would be expected from the recent history of

exposure to such stimuli (Friston, 2005; Rao and Ballard, 1999). According to these theories, pre-

dictions are generated within each cortical area and are bi-directionally propagated between higher

and lower areas, including to primary sensory regions, allowing for more efficient representation of

expected stimuli. When there is a precise expectation, incoming information can be efficiently repre-

sented by recruiting a small pool of relevant neurons (Friston, 2005). When there is a mismatch

between an expectation and the stimulus presented, that is, when there is a prediction error, the

stimulus is less efficiently represented and thus elicits a larger neural response.

The majority of evidence for predictive coding comes from human neuroimaging experiments in

which the presentation of an unexpected stimulus generates a larger response than the presentation

of an expected stimulus. In studies employing electroencephalography (EEG) and magnetoencepha-

lography (MEG), this effect is known as the mismatch negativity (Garrido et al., 2009;

Näätänen et al., 2007; Wacongne et al., 2011), where an unexpected stimulus evokes significantly

greater negativity than an expected stimulus. To date, however, no study has tested a key premise

of predictive coding, namely, that expected stimuli are more efficiently encoded in the brain relative

to unexpected stimuli, in terms of their elementary feature representations. Nor has any previous

investigation examined whether the mismatch negativity response is associated with a change in

neural tuning to stimulus features such as orientation.

To test the hypothesis that prediction error can account for repetition suppression effects,

Summerfield et al. (2008) introduced an experimental paradigm in which the identity of a face stim-

ulus was either repeated in 80% of trials (making the repetition expected) or was changed in 80% of

trials (making the repetition unexpected). There was greater attenuation of the BOLD response in

the fusiform face area when a face repetition was expected, relative to when it was unexpected, sug-

gesting that repetition suppression is reduced by unexpected stimuli. This attenuation of repetition

suppression by failures of expectation has also been replicated using fMRI (Larsson and Smith,

2012) and M/EEG, using high-level stimuli such as faces (Summerfield et al., 2011), and simple

stimuli such as auditory tones (Todorovic and de Lange, 2012; Todorovic et al., 2011).

A potential reconciliation of the relationship between expectation and repetition suppression

comes from work showing that while expectations decrease the overall amount of neural activity,

they can also yield sharper representations of sensory stimuli (Kok et al., 2012). This work goes

beyond conventional neuroimaging approaches, which typically only measure overall levels of neural

activity (Buckner et al., 1998; Kourtzi and Kanwisher, 2001; Tootell et al., 1995). Such amplitude

changes could in principle be produced by one or more different types of change in the underlying

neural representations. For instance, both sharpening, where the response to only unpredicted fea-

tures is suppressed, and gain reduction, where a multiplicative suppression occurs for all features,

could be associated with decreased population activity, even though the amount of information car-

ried by the representations will be markedly different. Recently introduced multivariate pattern ana-

lytic approaches to human neuroimaging – specifically forward encoding modelling – allow for the

quantification of stimulus-selective information contained within patterns of neural activity in human

observers (Brouwer and Heeger, 2009; Garcia et al., 2013; King et al., 2016; Kok et al., 2017;

Myers et al., 2015; Salti et al., 2015; Wolff et al., 2017). This approach goes beyond typical multi-

variate pattern analyses (which normally produce only accuracy scores) by quantifying neural repre-

sentations evoked by sensory stimuli to reveal both the accuracy and the tuning fidelity for the

specific feature-dimension of interest.
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Here, we used multivariate forward encoding methods to test whether repetition suppression

and expectation have different effects on the way the brain represents visual information, in this

case the orientation of grating stimuli. To anticipate the results, we found that soon after stimulus

onset, repetition suppression had no effect on visual orientation selectivity, but violated expectations

were associated with a significantly increased orientation-selective response through gain modula-

tion, with no corresponding change in response fidelity. This representation was transiently re-acti-

vated at around 200 ms post-stimulus onset, suggesting that feedback influences initial sensory

encoding of an unexpected stimulus, which in turn allows for updating of the sensory prior.

Results
We used a modified version of the paradigm introduced by Summerfield et al. (2008), replacing

the face stimuli used in that study with oriented Gabors. These low-level stimuli allowed us to quan-

tify the degree of orientation selectivity in EEG activity to determine how the representation of ori-

entation is affected by prediction error and repetition suppression. Each of 15 observers

participated in two EEG sessions. On each trial, two Gabors were presented sequentially (100 ms

presentation, 600 ms stimulus onset asynchrony), and these stimulus pairs either repeated or alter-

nated in their orientation (Figure 1A, Video 1). The predictability of the repeated and alternating

pairs was varied in a block-wise manner to manipulate expectation. In a repeating block, the orienta-

tions of the two Gabors in a pair repeated in 80% of trials, and alternated in the remaining 20%.

These contingencies were reversed in the alternating block (Figure 1B). The orientations of succes-

sive stimuli across a block were randomised to limit any accumulated effects of adaptation and pre-

diction. As repetition suppression and expectation form orthogonal dimensions of the task, the

design allowed us to isolate their respective contributions to neural responses. Participants com-

pleted an unrelated task of discriminating (red vs green) rare coloured Gabors (which occurred on

10% of trials).

Figure 1. Example stimulus displays and task design. (A) Schematic of the stimuli and timing used in the experiment. Participants viewed a rapid

stream of pairs of Gabors and monitored for an infrequent coloured target (10% of trials). The stimulus orientations were pseudorandomly varied across

trials between 0˚ and 160˚ (in 20˚ steps), allowing estimation of orientation-selective information contained within patterns of EEG activity. (B) The

orientation of the pairs of Gabors could either repeat or alternate. In one type of block, 80% of trials were orientation repeats and the remaining 20%

alternated (Repeating blocks); in the other type of block, these contingencies were reversed (Alternating blocks).

DOI: https://doi.org/10.7554/eLife.33123.002
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Repetition suppression and
prediction error affect the overall
level of neural activity
The Gabors elicited a large response over occipi-

tal-parietal areas (Figure 2A). Consistent with

previous work (Cui et al., 2016; Keller et al.,

2017; Rentzeperis et al., 2012;

Summerfield et al., 2011; Todorovic et al.,

2011; Todorovic and de Lange, 2012;

Tootell et al., 1998), there was a significant repe-

tition suppression effect (Repeat < Alternating),

such that the response to repeated stimuli was

significantly reduced compared with the response

to alternating stimuli (Figure 2A). The repetition

suppression effect was evident over a large clus-

ter of occipital-parietal electrodes at two time

intervals: an early effect from 79 to 230 ms, and a

later effect from 250 to 540 ms after the onset of

the second stimulus (cluster p < 0.025; Figure 2B

and caption). A large cluster of frontal electrodes

mirrored the repetition suppression effect with a

similar time course: the ERP over these frontal

sites had the same pattern, but was reversed in

sign, suggesting it originated from the same dipole as the occipital response.

Also consistent with previous results (Garrido et al., 2009; Summerfield et al., 2011;

Todorovic et al., 2011; Todorovic and de Lange, 2012), there was a significant expectation effect

(Expected < Unexpected). Specifically, there was a significantly greater negativity for unexpected

versus expected stimuli, and this effect was most prominent over a cluster of occipital-parietal elec-

trodes around 75–150 ms after stimulus presentation (Figure 2C). As with the repetition suppression

result described above, there was an expectation effect of opposite polarity over occipital-parietal

electrodes. This effect was significant at an early time point post-stimulus (79–130 ms), but not at

later time points (320–390 ms; Figure 2D). Finally, there was no interaction between repetition sup-

pression and expectation (i.e., no significant positive or negative clusters, all p > 0.05). Taken

together, these results reveal both repetition suppression and expectation effects in the neural data,

which were indexed separately as shown in Figure 2.

We conducted a further traditional peak analysis, to aid comparison with previously published

studies on the mismatch negativity (Garrido et al., 2013; Näätänen et al., 2007; Saarinen et al.,

1992). We bandpass filtered the ERPs (2–40 Hz) to recover the stereotypic waveform (Figure 2C)

and examined two classic early components – the N1 and P1 – averaged across a broad grouping of

occipital-parietal electrodes (O1, O2, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). As in previous

studies (Dehaene et al., 2001; Caharel et al., 2009), we defined the P1 as the largest positivity

between 80 and 110 ms after stimulus presentation, and the N1 as the largest negativity between 90

and 130 ms after stimulus presentation. A relatively wide temporal window was used to capture

inter-individual response variation. As expected, for the P1 component, the repeated stimulus

evoked a significantly smaller positivity (t(14) = 3.03, p = 0.009) than the alternating stimulus

(Figure 2D), reflecting a repetition suppression effect. There was no such effect of expectation on

the P1 (t(14) = 0.26, p = 0.80). By contrast, as predicted from previous work (Garrido et al., 2013;

Näätänen et al., 2007; Saarinen et al., 1992), analysis of the N1 component showed that the unex-

pected stimulus evoked a significantly greater negativity than the expected stimulus, (t(14) = 5.75,

p < 0.0001). The repetition suppression effect was also present in the N1 (t(14) = 2.39, p = 0.03),

but critically in the opposite direction to that of the expectation effect.

Video 1. Example of a stimulus sequence of Gabors in

a typical alternating block.

DOI: https://doi.org/10.7554/eLife.33123.003
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Figure 2. Univariate EEG results for the effect of repetition suppression and expectation on the second stimulus in

a pair. Panels A and B show the main effects of repetition suppression and expectation, respectively, over three

post-stimulus epochs (100–200 ms, 200–300 ms, 300–400 ms) and across all electrodes. The main effect of

repetition suppression is displayed as Repeating minus Alternating trials. The main effect of expectation is

displayed as Expected minus Unexpected trials. Circles indicate clusters of electrodes with significantly reduced

activity, and crosses indicate clusters of electrodes with significantly increased activity (alpha p < 0.05, cluster

p < 0.025, N permutations = 1500). (C) Bandpass filtered (2–40 Hz) event-related potentials (ERPs) for the two

conditions, averaged over occipital-parietal electrodes (O1, O2, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). A peak

analysis was conducted to aid comparison with previous studies. Orange shading indicates the P1 component;

green shading indicates the N1 component. (D) Peak analysis results for P1 and N1 components. Note that the

plotted values represent differences between conditions, as indicated, rather than condition-specific evoked

responses. Asterisks indicate p < 0.05. Error bars indicate ±1 standard error.

DOI: https://doi.org/10.7554/eLife.33123.004
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Expectations increase orientation-selective information contained
within patterns of EEG activity
We next examined the key question of whether repetition suppression and expectation differentially

affect neural representations of orientation information. To do this, we used a forward encoding

Figure 3. Results of the forward encoding modelling for orientation-selectivity. (A) Time-resolved orientation tuning curve across all participants and

conditions in response to the second Gabor in the pair. The forward encoding approach resulted in a tuning curve for each of the nine presented

orientations. These tuning curves were then centred at each presented orientation (here labelled as 0˚) to combine across all orientations. The

orientation-selective response is contained within the overall pattern of EEG; activity begins soon after stimulus onset and peaks at around 250 ms

before declining. (B) Population tuning curve of the stimulus reconstruction across participants, averaged between 50–100 ms and 150–250 ms after

stimulus presentation. Each line is a fitted Gaussian response with a variable offset used to quantify orientation selectivity. Error bars indicate ±1

standard error of the mean across participants. (C) Amplitude of the channel response over time, averaged across all conditions (black line). The thick

black line indicates significant encoding of stimulus orientation based on a cluster-permutation test across participants (cluster p < 0.05, N

permutations = 20,000). Encoding accuracy was reliable from 52 to 470 ms post-stimulus onset. The error shading (in grey) indicates bootstrapped 95%

confidence intervals of the mean. (D) Topographic plots of the weights (averaged across the nine orientation channels across all participants) derived

from forward encoding at the corresponding time points shown in panel B. (a.u. = arbitrary units).

DOI: https://doi.org/10.7554/eLife.33123.005
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approach to reconstruct orientation-selective information contained within the multivariate pattern

of EEG activity distributed across the scalp (Figure 3; see Materials and methods for details). Briefly,

this technique transforms EEG sensor-level responses into tuned ‘feature’ channels (Brouwer and

Heeger, 2009; Garcia et al., 2013; Kay et al., 2008; Myers et al., 2015), in this case, orientation-

selective features. For each trial, the presented orientation was convolved with a canonical, orienta-

tion-selective tuning function and regressed against the pattern of EEG activity across all sensors at

each time point. This created a spatial filter of the multivariate EEG activity that differentiated orien-

tations (Figure 3D). These weights were then inverted to reconstruct the model and multiplied

against an independent set of test trials to produce responses in the modelled orientation channels.

These sets of responses were then used to evaluate the degree of orientation selectivity in those tri-

als. The procedure was repeated for all time points in the trial, and a cross-validated approach was

used until all trials had been used for both training and testing.

As shown in Figure 3, the forward encoding revealed a strong, orientation-selective response

derived from the multivariate pattern of EEG activity. This orientation-tuned response was evident

from ~50 to ~470 ms after stimulus onset, and peaked between ~120 and 250 ms (Figure 3C). Exam-

ination of the regression weights revealed that this response was largely driven by activity centred

over occipital-parietal areas (Figure 3D).

To examine our central question of whether repetition suppression and expectation have differen-

tial effects on neural representations of orientation, we split and averaged the results of the forward

encoding by trial type, and fitted these with Gaussians (see Materials and methods) to quantify ori-

entation selectivity (Figure 4). Repetition suppression did not affect the amount of orientation selec-

tivity contained within the EEG data, with similar selectivity for repeated and alternating trials. This

was the case even though the repeated trials had a markedly smaller EEG response over occipital

and parietal electrodes (see Figure 2A), where the forward encoding model was maximally sensitive.

This result is consistent with the ‘efficient representation’ hypothesis of repetition suppression

(Gotts et al., 2012), which argues that the overall neural response is smaller with repetition suppres-

sion due to more efficient coding of stimulus information.

Examining the effect of expectation revealed a markedly different pattern of results. As shown in

Figure 4A, at 79–185 ms after the onset of the second stimulus in the pair, orientation-selectivity

increased significantly (p < 0.0001) when the stimulus was unexpected relative to when it was

expected, and this effect arose at the earliest stages of the brain’s response to that stimulus. More-

over, the expectation signal contained enhanced information about the specific features of the stim-

ulus that violated the expectation, in this case the orientation of the second grating. We conducted

the same statistical tests on the three other parameters defining the Gaussian function (namely, the

width, centre orientation and baseline) to determine how repetition suppression and expectation

might affect other properties of the neural representation. There was no reliable influence of repeti-

tion suppression on any of these Gaussian parameters (all ps > 0.32). For expectation, there was a

significant decrease in baseline activity over the same time period as observed for the increase in

amplitude (79–185 ms, p = 0.001), but there were no significant effects for the other parameters (all

ps > 0.30).

We followed up this initial analysis to ensure we did not miss any small effects of repetition sup-

pression or expectation on any aspects of stimulus representation. We increased the signal-to-noise

by averaging the stimulus reconstruction over this early time period (79–185 ms after stimulus pre-

sentation), and fitted Gaussians to each participant’s data individually (Figure 4B). This again

showed that the amplitude of the response was significantly (t(14) = 3.34, p = 0.005) higher for unex-

pected (M = 0.67, SE = 0.06) than for expected (M = 0.41, SE = 0.03) stimuli. By contrast, the width

of the representations was similar for unexpected (M = 29.62˚, SE = 4.72˚) and expected

(M = 26.72˚, SE = 2.74˚) stimuli, (t(14) = 0.78, p = 0.45). There was also a small but non-significant (t

(14) = 1.94, p = 0.06) trend for a smaller baseline response (i.e., non-orientation tuned activity) in the

unexpected (M = �0.01, SE = 0.07) than in the expected (M = 0.13, SE = 0.02) condition. For com-

parison, we also averaged the same time period for the repetition suppression conditions, and found

similar curves for the repeated and alternating trials (all ps > 0.18). This analysis confirms the previ-

ous result, which employed more conservative nonparametric cluster-based testing.

It might be argued that the particular baseline period we chose for the encoding analyses -

namely from �100 to 0 ms before the onset of the second Gabor in each pair – biased the results by

incorporating a purely top-down expectation template triggered by the orientation of the first
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Gabor (Kok et al., 2017). To rule out this possibility, we performed a further forward encoding anal-

ysis where we baselined the raw EEG data to the mean activity from �100 to 0 ms before the first

Gabor in each pair. Critically, this control analysis involved a baseline period over which it was not

possible to form a top-down expectation of the orientation of the second Gabor based on the orien-

tation of the first. This analysis yielded the same pattern of results as the original analysis (Figure 4—

figure supplement 1), such that the unexpected stimulus evoked significantly greater orientation

selectivity than the expected stimulus (p = 0.02). Also in line with the original analyses, the width of

the representation was not affected by expectation (p = 0.44), and there was no effect of repetition

suppression on orientation selectivity (p = 0.64). We can thus be confident that the effect of expecta-

tion on orientation selectivity that we report here, based on our forward encoding analyses, is not an

artefact of the baselining procedure.

Figure 4. The effect of repetition suppression and expectation on orientation selectivity measured using forward encoding modelling. (A) Amount of

orientation-selective information (given by the amplitude of the fitted Gaussian) from the EEG signal in response to the second Gabor in a pair, shown

separately for repetition suppression (upper panel) and expectation (lower panel). The thick black line indicates significant differences between the

conditions (two-tailed cluster-permutation, alpha p < 0.05, cluster alpha p < 0.05, N permutations = 20,000). (B) Population tuning curves averaged over

the significant time period (79–185 ms) depicted in panel A. The curves, shown as fitted Gaussians, illustrate how overall stimulus representations are

affected by repetition and expectation. While there was no difference in orientation tuning for repeated versus alternate stimuli (upper panel), the

amplitude of the orientation response increased significantly, and the baseline decreased, for unexpected relative to expected stimuli. Error bars

indicate ±1 standard error.

DOI: https://doi.org/10.7554/eLife.33123.006

The following figure supplement is available for figure 4:

Figure supplement 1. The effect of a different baseline period (�100 to 0 ms before onset of the first Gabor) on orientation selectivity for the two main

conditions.

DOI: https://doi.org/10.7554/eLife.33123.007
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We also used a number of approaches to determine whether repetition suppression and expecta-

tion interacted to affect orientation selectivity. First, we took the difference scores between the com-

bination of factors (e.g., expected repetition minus unexpected repetition, and expected alternation

minus unexpected alternation) and compared these using the same cluster-based permutation test-

ing outlined above. This analysis revealed no significant interactions between the factors for any

parameter (all ps > 0.10). Second, we found the largest orientation-selectivity, defined by the ampli-

tude of the fitted Gaussian, across the 600 ms following stimulus presentation. For each participant,

this resulted in a single value for the four conditions. Each of these values was subjected to a two-

way repeated-measures ANOVA, which again revealed no significant interaction between the factors

(all ps > 0.30)

To further examine whether orientation-selectivity contained within the overall pattern of EEG

activity differed for unexpected and expected stimuli, we used multivariate discriminant analysis to

perform traditional backward decoding (Grootswagers et al., 2017; Kamitani and Tong, 2005;

King and Dehaene, 2014; Marti et al., 2015). This approach (Figure 5) yielded the same pattern of

results as that revealed by the forward encoding approach described above. The same cross-valida-

tion procedure was used as in the forward encoding analysis, but accuracy was now defined as the

proportion of trials labelled with the correct orientation. To facilitate comparison with the results of

Kok et al. (2012), we took the peak classification accuracy within a 600 ms window after presenta-

tion of the second grating within each pair. This analysis confirmed the results of the forward encod-

ing: orientations shown in unexpected trials were classified better than orientations shown in

expected trials (F(1,14) 76.42, p < 0.00001). Again, there was no effect of repetition on classification

accuracy (F(1,14) = 0.027, p = 0.87); nor was there a significant interaction (F(1,14) = 2.52, p = 0.13).

This suggests the finding is not specific to the analysis method but rather reflects how expectation

affects the representation of sensory information in general.

Expectation affects the temporal stability of stimulus representations
Next, we examined whether repetition suppression and expectation affected dynamic, ongoing stim-

ulus representations by using cross-temporal generalisation (King and Dehaene, 2014; King et al.,

2014; Myers et al., 2015; Spaak et al., 2017; Stokes et al., 2013). To do this, we used the same

forward encoding approach as in the previous analysis, but now the weights were derived from one

time point on one set of trials, and then applied at every time point in the test trials. Again, a cross-

Figure 5. Peak (naive Bayes) classification accuracy of the presented grating orientation for expected and

unexpected conditions. The dotted line indicates chance performance (1/9 orientations). The error bars indicate ±1

standard error of the mean.

DOI: https://doi.org/10.7554/eLife.33123.008
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validation approach was used, with all trials serving as both training and test. This analysis examined

whether the same spatial pattern of EEG activity that allowed for orientation selectivity generalised

to other time points, thus revealing whether the pattern of orientation-selective activity was stable

or changed over time.

As shown in Figure 6, optimal orientation selectivity was on-axis (training time equals test time)

between 100 ms and 300 ms after stimulus presentation, suggesting that the stimulus representation

changed dynamically over time (King and Dehaene, 2014). There was also significant off-axis orien-

tation-selectivity from 100 to 500 ms after stimulus presentation, suggesting that some aspects of

the neural representation of orientation were stable over time.

There was no effect of repetition suppression on temporal generalisation of orientation informa-

tion (upper panels of Figure 6), suggesting that repetition suppression did not affect the temporal

stability of neural representations of orientation. Examining the effect of expectation on cross-tem-

poral generalisation confirmed that there was significantly more on-axis orientation selectivity when

the stimulus was unexpected than when it was expected (cluster p = 0.02). This increased on-axis ori-

entation selectivity generalised off-axis at around 300–400 ms after stimulus onset (cluster p = 0.01),

suggesting that the same representation that is activated to process the expectation is reactivated

later as the stimulus continues to be processed. Such a signal could constitute the prior of the pre-

diction, as this should be updated on the basis of incoming sensory evidence, which in turn would

likely require reactivation of the unexpected stimulus.

Discussion
Our findings demonstrate that repetition suppression and expectation have distinct effects on neural

representations of simple visual stimuli. Repetition suppression had no effect on orientation selectiv-

ity, even though the neural response to repeated stimuli was significantly reduced over occipito-pari-

etal areas. Unexpected stimuli, on the other hand, showed significantly increased orientation-

selectivity relative to expected stimuli. This same early representation of the unexpected stimulus

appeared to be reactivated at 200–300 ms after the initial neural response, supporting the idea that

sensory expectations may be updated through comparison with incoming sensory evidence. These

results suggest that repetition suppression and expectation are separable and independent neural

computations.

Our work provides a significant advance in understanding how predictions allow the brain to pro-

cess incoming sensory information by comparing what is expected with what actually occurs. How

expectations affect neural responses has been extensively investigated using mismatch negativity

paradigms in which an unexpected stimulus causes a larger neural response than an expected stimu-

lus (Bekinschtein et al., 2009; Garrido et al., 2009; Näätänen et al., 2007). Such mismatch

responses to an unexpected stimulus have often been attributed to the generation of a prediction

error that updates expectation based on a conflict between sensory evidence and the prior

(Garrido et al., 2009). To date, however, most studies have focused exclusively on the overall mag-

nitude of neural responses to unexpected events, rather than assessing the quality of stimulus-spe-

cific information potentially contained within such responses. As noted above, enhanced neural

activity to unexpected visual events could reflect a differential response to one of a number of possi-

ble stimulus features, or simply an increase in baseline activity associated with a non-selective

response. By examining how expectation affects the representation of an elementary feature dimen-

sion – in this case, orientation – our results imply the operation of at least two distinct neural pro-

cesses at separate times following stimulus onset. Incoming sensory information is first evaluated

against the prior (which occurs early after stimulus presentation). When an unexpected stimulus is

detected and generates a prediction error, the representation is amplified through gain enhance-

ment. Later, around 300 ms after stimulus presentation, this same representation is reactivated to

update the expectation against the initially predicted representation.

According to predictive coding theory, expected stimuli should be more efficiently represented

than unexpected stimuli largely because the reduced neural response still encodes stimuli with the

same fidelity (Friston, 2005). A more efficient response could be due to sharpening of neuronal tun-

ing to stimulus features, or to a reduction in the gain of evoked neural responses. Our results sup-

port the latter interpretation. Specifically, there was no evidence that a fulfilled expectation leads to

a sharper representation of orientation information. Our findings might imply that the brain needs to
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have more information about an unexpected stimulus so that a correct response can be made. Our

findings thus provide a novel insight into how predictive coding might change neural representations

of sensory information.

The lack of evidence for sharpening of neural tuning in the current results is in contrast to the

findings of a previous study (Kok et al., 2012), in which a high-level prediction error led to ‘sharper’

multivariate decoding for expected versus unexpected visual stimuli. In their study,

Kok et al. (2012) used an auditory tone to cue the orientation of a subsequent visual stimulus, and

found significantly reduced off-label classification accuracy for predicted than for unpredicted stim-

uli. They concluded that predictions cause sharpening of stimulus representations. More recently,

using the same task combined with a forward encoding approach, Kok et al. (2017) showed that

response gain is increased for a predicted stimulus.

It is natural to ask why the results of the current study differ from those of Kok and colleagues

outlined above. One possible explanation lies in the different approaches used to generate expecta-

tions across the studies. Specifically, whereas Kok et al. manipulated expectations by pairing an audi-

tory cue with a visual stimulus, we exploited the properties of the visual stimuli themselves (i.e. their

Figure 6. Cross-temporal generalisation of the forward encoding model based on grating orientations for the main effects of repetition suppression

(upper panels) and expectation (lower panels). The maps have been thresholded (indicated by opacity) to show clusters (black outlines) of significant

orientation selectivity (permutation testing, cluster threshold p < 0.05, corrected cluster statistic p < 0.05, 5000 permutations). The difference between

the conditions is shown in the right-hand column (permutation testing, cluster threshold p < 0.05, corrected cluster statistic p < 0.05). Opacity and

outlines indicate significant differences.

DOI: https://doi.org/10.7554/eLife.33123.009
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orientation) to generate expectations within blocks of trials. An intriguing possibility is that predic-

tions requiring integration of sensory events from two or more modalities lead to increased sharpen-

ing, whereas predictions made within a single sensory modality lead to decreased gain. This might

in turn relate to the noted differences between simple ‘local’ and higher-order ‘global’ type predic-

tions (Bekinschtein et al., 2009; King et al., 2014), which lead to distinct patterns of stimulus-selec-

tive decoding. A similar discrepancy relating to the effects of attention on sensory representations

has been widely discussed, with some studies finding sharpening of stimulus representations with

attention, and others showing gain enhancement (Liu et al., 2007; Maunsell, 2015; Maunsell and

Treue, 2006; Treue and Martı́nez Trujillo, 1999). The differences between these results may poten-

tially have arisen because the tasks relied upon different types of attention (e.g., spatial versus fea-

ture-based). Future studies could determine whether this same divergence occurs for prediction

effects.

The current work applied multivariate model-based approaches to EEG data to determine how

prediction and repetition suppression affect neural representations of perceptual information. We

chose to use EEG so we could recover the temporal dynamics of these effects – something that

would not be possible with the BOLD signal used in fMRI – and because EEG is the most

widely used tool for measuring expectation effects in human participants (see Garrido et al.,

2009 and Paavilainen, 2013 for review), thus facilitating comparison of our findings with those of

other studies. We estimated orientation selectivity using all EEG electrodes distributed across the

scalp for two principal reasons. First, we wanted to limit experimenter degrees of freedom

(Simmons et al., 2011) potentially introduced through the post-hoc selection of subsets of electro-

des. Second, given the broad spatial resolution of EEG, we reasoned that activity recorded from

electrodes at any given scalp location could potentially carry important feature-selective information

from a number of neural sources. The results revealed that orientation-selective information appears

largely driven by electrodes over occipital-parietal regions (Figure 3D), consistent with a number of

previous studies that employed visual decoding of M/EEG data (Cichy et al., 2014; Cichy et al.,

2015; Stokes et al., 2015). As noted above, however, it is entirely possible that the effects we

observed here arose from sources well beyond the occipital and parietal regions, or even potentially

outside the visual cortical hierarchy. Limitations in the temporal and spatial resolution of current

human imaging methods make it impossible to pinpoint the timing and location of interactions

between visual areas that might reflect the cascade of predictions and prediction errors involved in

sensory encoding. By combining the current paradigm and multivariate modelling with invasive

recordings in animal models – for example, using calcium imaging or extracellular electrode record-

ings – it should be possible to test some of the key claims of predictive coding theory that we have

examined here, but at the level of individual neurons.

Surprisingly, few studies have used invasive recording methods to test how predictive coding

affects stimulus representations at the neuronal level. One study in macaques (Kaliukhovich and

Vogels, 2011) used a design similar to that of Summerfield and colleagues, but with high-level

objects (fractals and real-world objects) as stimuli. That study found that expectation did not attenu-

ate repetition suppression in either spiking activity or local field potentials within the inferior tempo-

ral cortex. A later fMRI study in humans (Kovács et al., 2013) used a similar stimulus set, and also

found no attenuation of repetition suppression by expectation in the same cortical region. A follow-

up study provided a potential explanation for these findings by showing that the attenuation of neu-

ral responses associated with repetition suppression is found with familiar stimuli, but not with unfa-

miliar stimuli (Grotheer and Kovács, 2014). Viewed in this light, the stimulus sets used by

(Kaliukhovich and Vogels, 2011) might not have been sufficiently familiar to yield effects of expec-

tation in their non-human primate observers.

Other work has shown that context plays an important role in determining the magnitude of neu-

ronal responses to sensory events. Thus, for example Ulanovsky et al. (2003) found that rare audi-

tory stimuli generate significantly larger responses in primary auditory cortical neurons than more

commonly occurring stimuli. This result has been interpreted as a single-neuron analogue of the mis-

match negativity, but the design used in the study did not control for adaptation effects, thus mak-

ing it difficult to draw an unambiguous comparison with the current work. In the visual domain,

oddball stimuli have also been found to modulate neuronal activity in rats, characterised by an

enhancement of responses in the higher-order latero-intermediate area (Vinken et al., 2017). More-

over, Fiser et al. (2016) found that neurons in mouse primary visual cortex show a greater response
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when task-irrelevant visual stimuli that had been presented during training were omitted, suggesting

that an established expectation had been violated. This result is consistent with the literature on the

mismatch negativity, in which the omission of an expected stimulus results in a large prediction error

(Garrido et al., 2009; Wacongne et al., 2011). In non-human primates, neurons in the inferior tem-

poral cortex show an enhanced response to unexpected relative to expected stimuli

(Kaposvari et al., 2018), and population decoding accuracy is higher for unexpected compared

with expected stimuli (Kumar et al., 2017). Critically, however, no study has simultaneously

recorded neuronal activity in multiple cortical regions to determine whether predictions generated

in one area refine responses in a second area, as postulated by predictive coding theory (Fris-

ton, 2005; Rao and Ballard, 1999). Such a direct demonstration is necessary to provide a strong

test of the central notion that cortical areas pass signals between themselves in order to generate

expectations.

Unlike the effects of expectation, there is a large body of electrophysiological work showing that

sensory adaptation influences neuronal activity (Adibi et al., 2013; Adibi et al., 2013; Felsen et al.,

2002; Kohn and Movshon, 2004; Patterson et al., 2013). For instance, there is a sharpening of

stimulus selectivity in MT neurons following 40 s of adaptation to a drifting grating (Kohn and Mov-

shon, 2004). As we have highlighted, however, prolonged adaptation is likely also associated with a

significant prediction that the next stimulus will be the same as the previous one. Perhaps more rele-

vant to the current results, Patterson et al. (2013) found that the width of orientation tuning in V1 is

only marginally sharpened following brief (400 ms) periods of adaptation. Again, however, their

study did not control for expectation, so it is impossible to determine the role of predictive coding

in their observations. Our finding that repetition suppression did not affect the bandwidth of orienta-

tion selectivity measured using EEG is also consistent with models of orientation adaptation based

on human psychophysical data, which suggest that adaptation does not affect the tuning width of

the adapted neural populations (Clifford, 2002; Clifford, 2014; Dickinson et al., 2010;

Dickinson et al., 2017; Tang et al., 2015).

In summary, we have shown that repetition suppression and expectation differentially affect the

neural representation of simple, but fundamental, sensory features. Our results further highlight how

the context in which a stimulus occurs, not just its features, affect the way it is represented by the

brain. Our findings suggest encoding priority through increased gain might be given to unexpected

events, which in turn could potentially speed behavioural responses. This prioritised representation

is then re-activated at a later time, supporting the idea that feedback from higher cortical areas reac-

tivates an initial sensory representation in early cortical areas.

Materials and methods

Participants
A group of 15 healthy adult volunteers (nine females, median age = 20.5 years, range = 18 to 37

years) participated in exchange for partial course credit or financial reimbursement (AUD$20/hr). We

based our sample size on work that investigated the interaction between repetition suppression and

prediction error (Summerfield et al., 2008), and that used forward encoding modelling to investi-

gate orientation selectivity using MEG with a comparable number of trials as the current study

(Myers et al., 2015). Each person provided written informed consent prior to participation, and had

normal or corrected-to-normal vision. The study was approved by The University of Queensland

Human Research Ethics Committee and was in accordance with the Declaration of Helsinki.

Experimental setup
The experiment was conducted inside a dimly-illuminated room with the participants seated in a

comfortable chair. The stimuli were displayed on a 22-inch LED monitor (resolution 1920 � 1080 pix-

els, refresh rate 120 Hz) using the PsychToolbox presentation software (Brainard, 1997; Pelli, 1997)

for MATLAB (v7.3). Viewing distance was maintained at 45 cm using a chinrest, meaning the screen

subtended 61.18˚ x 36.87˚ (each pixel 2.4’ x 2.4’).
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Visual task
The stimuli were Gabors (diameter: 5˚, spatial frequency: 2 c/˚, 100% contrast) presented centrally in

pairs for 100 ms, separated by 500 ms (600 ms stimulus onset asynchrony) with a variable (650 to

750 ms) inter-stimulus interval between trials. Across the trials, the orientations of the Gabors were

evenly spaced between 0˚ and 160˚ (in 20˚ steps) so we could reconstruct orientation selectivity con-

tained within the EEG response using forward encoding modelling. The relationship of the orienta-

tions of the pairs Gabors was also used to construct the different repetition suppression and

prediction conditions. The orientation presented in the second Gabor in the pair could either repeat

or alternate with respect to the orientation of the first Gabor. In the alternation trials, the orientation

of the first Gabor was drawn randomly, without replacement, from an even distribution of orienta-

tions that was different to the orientation of the second Gabor. To vary the degree of prediction, in

half of the blocks 80% of the trials had repeated orientations and 20% of the trials had alternating

orientations, whereas in the other half of the blocks these contingencies were reversed. This design

allowed us to separately examine the effects of repetition suppression and prediction because of the

orthogonal nature of the blocked design. The blocks of 135 trials (~3 mins) switched between the

expectation of a repeating or alternating pattern, with the starting condition counterbalanced across

participants.

The participants’ task was to monitor the visual streams for rare, faintly coloured (red or green)

Gabors and to discriminate the colour as quickly and accurately as possible. Any trial with a coloured

target was excluded from analysis. The orientation match between the pairs was made to be consis-

tent with the dominant contingency (i.e. repeated or alternating) within that block. Pilot testing was

used prior to the main experiment to set the task at approximately threshold, to ensure that partici-

pants focused exclusively on the colour-discrimination task rather than the orientation contingencies

associated with prediction and repetition. Only one participant reported being aware of the chang-

ing stimulus contingencies across the blocks when asked at the end of the experiment, and exclud-

ing this participant’s data had no effect on the key results reported here. Self-paced breaks were

provided between each of the 20 blocks within a session, at which time feedback was provided on

performance in the preceding block. Each participant completed two sessions of 2700 trials each

(5400 trials in total), with each session lasting around 70 min of experimental time and 45 min of

EEG setup.

EEG acquisition and pre-processing
Continuous EEG data were recorded using a BioSemi Active Two system (BioSemi, Amsterdam,

Netherlands). The signal was digitised at 1024 Hz sampling rate with a 24-bit A/D conversion. The

64 active scalp Ag/AgCl electrodes were arranged according to the international standard 10–20

system for electrode placement (Oostenveld and Praamstra, 2001) using a nylon head cap. As per

BioSemi system design, the common mode sense and driven right leg electrodes served as the

ground, and all scalp electrodes were referenced to the common mode sense during recording.

Offline EEG pre-processing was performed using EEGLAB in accordance with best practice pro-

cedures (Bigdely-Shamlo et al., 2015; Keil et al., 2014). The data were initially down-sampled to

256 Hz and subjected to a 0.5 Hz high-pass filter to remove slow baseline drifts. Electrical line noise

was removed using clean_line.m, and clean_rawdata.m in EEGLAB (Delorme and Makeig, 2004)

was used to remove bad channels (identified using Artifact Subspace Reconstruction), which were

then interpolated from the neighbouring electrodes. Data were then re-referenced to the common

average before being epoched into segments around each stimulus pair (�0.5 s to 1.25 s from the

first stimulus in the pair). Systematic artefacts from eye blinks, movements and muscle activity were

identified using semi-automated procedures in the SASICA toolbox (Chaumon et al., 2015) and

regressed out of the signal. After this stage, any trial with a peak voltage exceeding ±100 uV was

excluded from the analysis. The data were then baseline corrected to the mean EEG activity from

�100 to 0 ms before the presentation of the second Gabor in the pair. Critically, the orientations of

the first and second gratings were precisely balanced across the conditions to avoid any systematic

bias in orientation information being carried forward by the first grating within each pair. Specifically,

for every unexpected stimulus presented in the second grating there was an equal number of every

other orientation that was expected to be presented. As the analysis we employed used a
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regression-based approach, any carry over of orientation-selective information from the first to the

second grating therefore could not systematically bias the results.

Experimental design
We used a modified version of a factorial design that has previously been used to separately exam-

ine the effects of repetition suppression and prediction error (Kaliukhovich and Vogels, 2011;

Kovács et al., 2013; Summerfield et al., 2008; Summerfield et al., 2011; Todorovic et al., 2011;

Todorovic and de Lange, 2012). By comparing the two repeat conditions with the two alternating

conditions, we could examine repetition suppression while controlling for different levels of expecta-

tion. Conversely, by comparing across the expected and unexpected trials, we could examine pre-

diction error while controlling for repetition suppressi.

The relationship between the pairs of orientations for the different expectation conditions was

based on the original study (Summerfield et al., 2008), and on other studies (Kaliukhovich and

Vogels, 2011; Kovács et al., 2013) that examined the interaction between repetition suppression

and expectation. In the repeating condition, the orientation of the second Gabor is expected to be

the same as the orientation of the first, whereas in the alternating condition the orientation of the

second Gabor is expected to be different from that of the first. This relationship between the

expected orientations of the stimuli in the alternating condition is slightly different to another modifi-

cation of the paradigm which employed a more limited range of stimuli (Todorovic et al., 2011;

Todorovic and de Lange, 2012). Specifically, the paradigm introduced by Todorovic and colleagues

used two or three auditory tones of different frequencies. In their alternating condition, the expecta-

tion was that one tone would follow another (i.e. 1000 Hz and then 1032 Hz); this was then violated

when a 1000 Hz tone was repeated. In this paradigm, an exact frequency was expected in the alter-

nating condition, a design feature that differs from the paradigm used in the current work where

there was no specific expectation of the orientation of the second Gabor based on the orientation

of the first in the alternating condition. Instead the expectation in the alternating condition was that

the orientation would change, and this could be violated by repeating the orientation. In this sense,

there was no specific expectation about the second orientation in the alternating condition. Instead,

the rule concerened the alternation or repetition of the first orientation. We did not implement the

Todorovic et al. paradigm because of the combinatorial explosion of stimulus conditions it would

Figure 7. A schematic of the forward-encoding approach applied to EEG activity. (A) Participants viewed individual gratings at fixation, each with a

specific orientation. (B) Neural activity evoked by each grating was measured over the entire scalp. (C) Evoked neural responses were convolved with

canonical orientation-selective functions (grey lines in C) to determine coefficients for the different orientations (coloured dots and lines, which match

the colours of the outlined gratings in A). These coefficients were then used to generate a regression matrix. (D) General linear modelling was used on

a subset of training trials to generate weights for each channel. These weights were inverted and simultaneously applied to an independent test set of

data to recover orientation selectivity in the EEG activity. As EEG activity has high temporal resolution, we can apply the procedure to many epochs

following stimulus presentation to determine the temporal dynamics of orientation processing (see Figure 3).

DOI: https://doi.org/10.7554/eLife.33123.010
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require to measure orientation selectivity (such that every orientation is predicted by another orien-

tation). Future work could investigate how this subtle change in paradigm design affects the encod-

ing of stimulus information.

Forward encoding modelling
We used a forward encoding approach to estimate the amount of orientation-selective information

contained in the EEG data at each time point of the trial. This approach differs from standard decod-

ing approaches by modelling each presented orientation as a continuous variable of a set of tuned

orientation-selective channels. The forward-encoding technique has been successfully used to recon-

struct colour (Brouwer and Heeger, 2009), spatial (Sprague and Serences, 2013) and orientation

(Ester et al., 2016) selectivity in fMRI data. More recently, the same approach has been applied to

EEG and MEG data, which have inherently better temporal resolution than fMRI (Garcia et al.,

2013; Kok et al., 2017; Myers et al., 2015; Wolff et al., 2017).

We applied forward encoding modelling to determine how repetition suppression and prediction

error affected orientation selectivity. To do this, the second orientation (Figure 7A) in the Gabor

pair in each trial was used to construct a regression matrix, with separate regressors for the nine ori-

entations used across the experiment. This regression matrix was convolved with a set of basis func-

tions (half cosines raised to the 8th power (Figure 7C), which allowed complete and unbiased

coverage of orientation space) to allow us to pool similar information patterns across nearby orienta-

tions (Brouwer and Heeger, 2009). We used this tuned regression matrix to estimate time-resolved

orientation selectivity contained within the EEG activity in a 16 ms sliding window, in 4 ms steps

(Figure 7B; Myers et al., 2015). To avoid overfitting, we used a leave-one-out cross-validation pro-

cedure where the regression weights were estimated for a training set and applied to an indepen-

dent test set (Figure 7D). All trial types (including target trials) were used in training and test sets.

This was done by solving the linear equation:

B1 ¼WC1 (1)

where B1 (64 sensors x N training trials) is the electrode data for the training set, C1 (nine chan-

nels x N training trials) is the tuned channel response across the training trials, and W is the weight

matrix for the sensors we want to estimate (64 sensors x nine channels). W can be estimated using

least square regression to solve equation (2):

W ¼ ðC1C1
TÞ�1

C1
TB1 (2)

The channel response in the test set C2 (nine channels x N test trials) was estimated using the

weights in (2) and applied to activity in B2 (64 sensors x N test trials).

C2 ¼ ðWWTÞWTB2 (3)

We repeated this process by holding one trial out as test, and training on the remaining trials until

all trials had been used in test and training. The procedure was repeated for each trial within the trial

epoch. We then shifted all trials to a common orientation, meaning that 0˚ corresponded to the ori-

entation presented on each trial.

The reconstructed channel activations were separated into the four conditions, and averaged

over trials. These responses were then smoothed with a Gaussian kernel with a 16 ms window, and

fitted with a Gaussian function (4) using non-linear least square regression to quantify the amount of

orientation selective activity.

G xð Þ ¼ A exp �
x�fð Þ2

2s2

 !

þC (4)

Where A is the amplitude representing the amount of orientation selective activity, f is the orien-

tation the function is centred on (in degrees), s is the width (degrees) and C is a constant used to

account for non-orientation selective baseline shifts.
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Multivariate pattern analysis
We conducted a multivariate pattern analysis to build upon the initial forward encoding results which

showed that unexpected stimuli elicit greater orientation selectivity than expected stimuli. This anal-

ysis used the same data as the forward encoding analysis. We used the classify function from Matlab

2017a with the ‘diaglinear’ option to implement a Naive Bayes classifier. For each time point, we

used the same cross-validation procedure as the forward encoding modelling with the same averag-

ing procedure to select train and test sets of data. The classifier was given the orientations of the

training data and predicted the orientation of the test data. A trial was labelled correct if the pre-

sented orientation was produced. To facilitate comparison of the results with those of Kok et al.

(2012), we found the peak classification accuracy for each participant in the 600 ms following stimu-

lus presentation. The same wide time window was used across conditions to accommodate large

inter-individual differences in peak classification without biasing the results toward one particular

condition.

Statistical testing
A non-parametric sign permutation test was used to determine the null distribution for testing

(Wolff et al., 2017). This method makes no assumptions about the underlying shape of the null dis-

tribution. This was done by randomly flipping the sign of the data for the participants with equal

probability. Fifty thousand (50,000) permutations were used for the time-series data, whereas only

5000 were used for the temporal generalisation plots because of the significantly greater computa-

tional demands.

Cluster-based non-parametric correction (50,000 permutations for timeseries and 5000 for tem-

poral generalisation) was used to account for multiple comparisons, and determined whether there

were statistical differences between the contrasting conditions. Paired-samples t-tests were used to

follow up the analysis in Figure 4 within a specified time window, and no correction was applied. A

two-way repeated measures ANOVA (implemented using GraphPad Prism 7.0 c, La Jolla, CA) was

used to analyse the multivariate pattern analysis results shown in Figure 5.
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