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Abstract: This paper examined the toxins naturally produced by marine dinoflagellates and their
effects on increases in β-amyloid plaques along with tau protein hyperphosphorylation, both major
drivers of Alzheimer’s disease (AD). This approach is in line with the demand for certain natural
compounds, namely those produced by marine invertebrates that have the potential to be used in
the treatment of AD. Current advances in AD treatment are discussed as well as the main factors
that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs),
gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce
β-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunc-
tion that ultimately causes the cell death associated with AD (or other neurodegenerative diseases).
Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase
activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA
to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in
treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have
been considered. Different lines of research are anticipated regarding the action of the two groups
of toxins.

Keywords: Alzheimer ’s disease; marine dinoflagellates; phycotoxins; β-amyloid plaques;
hyperphosphorylated tau protein

1. Introduction

Alzheimer’s disease (AD) is the most common irreversible neurodegenerative disease
and is manifested by a progressive lack of memory and the presence of cognitive disorders.
AD has become a big concern for society since more than 50 million cases have been
registered worldwide, and the prevalence is forecast to increase (up to 132 million by 2050)
with increased life stress [1]. AD affects mostly the elderly (over 65 years old) population
but can also develop with early-onset (up to 10%) as familial AD (fAD). The development
of fAD is linked to different genetic mutations and can have fatal outcomes [1–4]. The
population with early symptoms of AD develops dementia as a function of time while
waiting for adequate treatment [5]. As the recent pandemic globally expanded, it was
found that patients infected by SARS-CoV-2 had a fivefold increase in fatal outcomes due
to AD [6,7].

AD occurs via a complex pathophysiological mechanism and results in neuronal
death, the loss of synapses and cholinergic neurons, brain damage, and ultimately, cell
death [8,9]. This disease progresses with an increase in β-amyloid plaques, along with
the hyperphosphorylation of tau proteins that gives rise to neurofibrillary tangles that
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cause the progressive degeneration of neurons [10]. Despite the levels of proteins in cell
membranes and acetylcholine (ACh) in neurons [11], the key reason for AD development
is not well understood. A challenging task is therefore to discover an adequate therapy for
AD. Up to now, there are no available drugs capable of halting the disease’s progression,
but alternatively there are those that are capable of mitigating the symptoms [12]. Medica-
tions for AD aim to improve cognition and relieve behavioral symptoms, although many
approved drugs provide only modest benefits for the patient [13,14]. Presently, only several
drugs have been approved for AD treatment, five in the US and four in the EU. Memantine
(an antagonist of the N-methyl-D-aspartate receptor) and rivastigmine, galantamine, and
donepezil (inhibitors of acetylcholinesterase, AChE) were approved by the US Food and
Drug Administration (FDA) from 1996 to 2006 and are in use in both regions [15]. Other
therapeutic options containing a fixed-dose combination of memantine and donepezil
received approval in 2014 by the FDA [4]. In June 2021, aducanumab (Aduhelm™) was
approved by the FDA as a novel drug for AD treatment despite polemics uttered against
it by the scientific advisory committee [16]. This treatment was presented as the first
therapy that targets the fundamental pathophysiology of the disease since it is based on
the surrogate endpoint of the reduction in amyloid-beta plaque in the brain [16,17]. In 2019,
a drug in China, sodium oligofructose (GV-971), was approved for the treatment of AD in
patients with mild to moderate cognitive dysfunction [18].

The current pipeline of drugs in clinical trials for the treatment of AD is summarized
in Cummings et al. [19]. They pointed to 126 agents in assessing new therapies for AD, and
the large majority of drugs in clinical trials target the underlying biology of AD with the
intent of disease modification. To reduce the side effects of AD, a new wave of treatments
is based on natural products with neuroprotective properties and that have fewer side
effects compared with synthetic drugs as they are extracted from flora and fauna [4,20–22].
Additionally, musicotherapy is becoming popular because behavioral studies have shown
that music can improve some cognitive functions in AD patients [23]. El Haj et al. [24] sug-
gest that music can be used as a cue to evoke involuntary autobiographical memories and
emotional responses. Studies have provided evidence that neurodegenerative trajectories
may be modifiable through late-life physical exercise [25], which can be considered as an
alternative AD therapy.

Several studies have pointed to marine species such as bacteria, algae, sponges and
invertebrates as potential sources of products that contest or slow down AD [4,26–29].
These species can synthesize several classes of metabolites to immobilize and capture
prey and defend against predators [4,30]. Algae are among the most promising of these
organisms [9,31–34]. A few microalgal species and bacteria naturally produce chemical com-
pounds designated as marine toxins due to their toxic actions in some organisms [35–37].
In particular, through accumulation in the food chain, these toxins may be transferred
to humans. Following the consumption of marine products with high concentrations of
toxins, consumers may develop diarrhea, amnesia, paresthesia, or other neurological symp-
toms [38]. The risk of toxicity is higher in shellfish due to the high filtration rates of these
organisms [39]. In parallel with the toxicity to shellfish consumers, selected toxins have
been identified as promising pharmacological effectors of neurodegenerative diseases asso-
ciated with memory impairment. For example, okadaic acid (OA) may cause the inhibition
of protein phosphatases 1 and 2A (PP2A), which result in the hyperphosphorylation of tau
protein [40,41]. Yessotoxin (YTX), gymnodimine (GYM), 13-desmethyl spirolide-C (SPX 1),
and gambierol are associated with the attenuation of tau protein hyperphosphorylation and
β-amyloid plaques [42–45]. These observations encourage consideration of the hypothesis
that marine toxins may contribute to therapies for AD [46,47].

The present paper reviews the available literature relating to AD and toxins produced
by marine dinoflagellates and examines the different impacts on the mechanisms triggering
the attenuation of β-amyloid plaques along with the hyperphosphorylation of tau proteins
or those that induce changes resulting in the development of similar conditions to those in
AD pathology.
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2. Alzheimer’s Disease Worldwide and a Discussion of Major Influencing Factors

Based on worldwide statistical data [48], a rank of countries with fatal outcomes due
to AD in developed and developing countries can be observed (Table 1). For example, a
few countries in Europe (Finland, the United Kingdom, and the Netherlands), most of the
countries in North and West Africa (e.g., the Maghreb region, Angola, and Namibia) and
in Asia (e.g., the Arabian Peninsula, China, and Indonesia) have a very high risk of fatal
outcomes, with fatality rates between 33 (Bahrain) and 58 (Turkey) per 100,000 inhabitants.
High fatality rates are present in the United States and both Central and Southern Africa.
These intervals contrast with the lower mortality rates registered in most countries in
Europe and South America, which have medium and low fatality rates (between 18 and 25,
and lower than 17, respectively, per 100,000 inhabitants,).

Table 1. Rank of countries with rate of fatal outcomes (per 100,000 inhabitants) due to the AD. Source:
www.wolrdlifeexpectancy.com [48].

Classification Country Rate

Very high

Turkey 58

Lebanon 56

Libya 53

Finland, Equatorial Guinea, Tunisia, Yemen, Jordan, Saudi Arabia, Morocco,
Nigeria, Qatar, Iran 51–42

Indonesia, Syria, Cambodia, Kiribati, Thailand, Laos, Timor-Leste, Mali, Myanmar,
United Kingdom, Algeria 41–38

Mauritania, Gabon, Malaysia, Gambia, Egypt, Arab Emirates, Maldives, Sri Lanka,
China, Burkina Faso, Sierra Leone 37–35

Afghanistan, Namibia, Sudan, Comoros, Togo, Angola, Netherlands, Bahrain 34–33

High

United States, Micronesia, Djibouti, DR Congo, Brunei, Oman, Senegal, Congo,
Seychelles, Guinea, Cote d’Ivoire, Paraguay, Iraq 32–31

South Africa, Ghana, Niger, Malawi, El Salvador, Iceland, Nicaragua, Zimbabwe,
Belize, Rwanda, Tonga 30–29

Botswana, Samoa, Sweden, Cameroon, Liberia, Mozambique, Vietnam, Chad,
Benin, Cape Verde, Central Africa, Ireland, Uganda, Tanzania 28–27

Georgia, Solomon Islands, North Korea, Peru, Vanuatu 26

Medium
Nepal, Eritrea, Switzerland, Suriname, Denmark, Ethiopia, Albania,

Guinea-Bissau, Norway, Swaziland, Canada, Bosnia and
Herzegovina, Montenegro

25–24

Burundi, Australia, Zambia, South Sudan, Honduras, Kazakhstan, Slovakia,
Somalia, Belgium, Tajikistan, Lesotho, Spain 23–22

Armenia, Turkmenistan, Pakistan, Sao Tome, New Zealand, Cuba, Kenya, Haiti,
New Guinea, Mongolia, Bolivia, Azerbaijan, France, Dominican Republic, Belarus,

Madagascar, Ukraine, Jamaica
20–18

Low

Barbados, Bhutan, Russia, India, Luxembourg, Bahamas, Uruguay, Portugal,
Germany, Cyprus, Hungary, Israel, South Korea, Italy, Malta, Bangladesh 17–14

Chile, Czech Republic, Brazil, Serbia, Costa Rica, Austria, Croatia,
Trinidad/Tobago 12–8

Panama, Greece, Japan, Latvia, Antigua and Barbuda, Argentina, Grenada,
Lithuania, Estonia, Romania, Ecuador, Saint Vincent, Guatemala, Guyana,

Colombia, Moldova
6–4

Mexico, Poland, Slovenia, Venezuela, Mauritius, Saint Lucia, Uzbekistan,
Philippines, North Macedonia, Kyrgyzstan, Bulgaria 3–1

Kuwait, Fiji, Singapore <1

www.wolrdlifeexpectancy.com
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Possible Factors Influencing the Geographic Variability of Alzheimer’s Disease

The high variability of fatal outcomes among neighboring countries (e.g., the Scandi-
navian countries and Finland) indicates the co-existence of several factors influencing the
risk of developing AD. It is generally accepted that one of the most important factors in AD
is the total size of the elderly population per country. To assess the relevance of this factor,
the sizes of the elderly populations in the affected regions were compared. According to
the database of the Population Reference Bureau (PRB) [49], China, India, the United States,
Japan, and Russia are the top five countries on the list with the largest elderly populations
(21.4–166.4 million). Of these five countries, only China shows a very high rate of fatal AD
outcomes, while the other four countries generally have low rates. In Europe, Germany,
Italy, and France have the highest populations of elderly people (13.2–17.8 million) and
have low fatal AD outcomes. Two countries in Europe with very high fatality rates, the
United Kingdom and the Netherlands, have elderly populations of 12.2 and 3.3 million,
respectively [49]. The case of Finland is particularly interesting, as this country has the
highest rate of fatal outcomes due to AD in Europe but is not listed in the top 50 countries
in terms of elderly population size. This simple example shows the lack of a positive linear
trend for AD fatal outcomes according to elderly population size.

Most likely, other than socio-demographic factors and genetics, some other factors
can influence this distribution. Among them, ecological and climate conditions can be of
particular importance because they can result in housing structures harboring molds and the
development of several species of fungi (e.g., Aspergillus, Penicillium, and/or Stachybotrys
spp.) capable of producing neurotoxic mycotoxins [50]. Exposure to mycotoxins may
also occur through food consumption (e.g., plant-food supplements) that may contain
ochratoxin, produced by some Aspergillus species [51]. In line with the specificity of certain
regions that may contribute to the geographical variability of AD are the cyanobacteria
found in the mollusks and fish in the Baltic Sea and blooms in the gulfs and lakes of Finland,
Canada, and the United States; such bacteria produce the neurotoxin beta-N-methylamino-
L-alanine (BMAA), known to cause dementia and related disorders [52,53].

Environmental contamination by elements such as Cd, Hg, and As, which can con-
tribute to neurotoxicity, may be another risk factor in AD development [50]. Moreover,
although the relation between Al and AD has long been studied, there is no consensus
on the role of the neurotoxicity caused by this element in the development of AD [54–56].
Recent epidemiological studies conducted in Canada found a positive linear trend between
Al concentrations in drinking water and the risk of AD in the cohort but no overall asso-
ciation [57]. Epidemiological evidence on exposure to these elements and the risk of AD
remains conflicting and a possible or plausible link is still a controversial issue.

3. Applications of Marine Natural Products in Alzheimer’s Disease

Natural products (NPs) extracted from marine flora and fauna offer a huge pipeline
of molecules, including potential drugs and nutraceuticals with promising applications
as neuroprotectors e.g., [4,30]. Several recent papers described NPs and their isolated
compounds, such as alkaloids, lignins, polyphenols, and polyunsaturated fatty acids
(PUFA), as having potential functions in the treatment of AD e.g., [20–22,58]. More than
10,000 products of biotechnological interest have been isolated from the organisms in
marine trophic chains [59]. The mechanisms of action that have been identified in NP
applications in AD prevention and treatment are: (i) AChE inhibitors; (ii) antioxidant
properties; and (iii) anti-amyloidogenic agents [60].

For example, Table 2 lists some of those compounds, their chemical structures, and
their major mechanisms of action in AD treatment. Anabaseine (3,4,5,6-tetrahydro-2,3′-
bipyridine) is an alkaloid produced by nemertines, a phylum of carnivorous marine worms.
Anabaseine was found to stimulate a wide variety of animal nicotinic acetylcholine recep-
tors (nAChR). Cholinergic synaptic dysfunction indeed contributes to cognitive impairment
in AD, in particular as a result of increased concentrations of Aβ peptides and their interac-
tions with nAChR [4]. Betaine can be isolated from different seaweeds, seafood, or spinach
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and has an important role as an antioxidant which protects sulfur-amino-acid metabolism
against oxidative damage [61]. Bryostatin-1 is found in the marine invertebrate bryozoan
Bugula neritina. Bryostatins are hydrophilic structures that activate protein kinase enzymes
(PKC), which control the function of other proteins and induce self-phosphorylation. These
compounds are pharmacologically promising with high biological activity and have an
important role in preventing the loss of and increasing the maturation of synaptic mem-
branes [59,62]. Docosahexaenoic acid (DHA, 22:6n-3) is abundant in marine foods as the
main component of neuronal membranes. DHA derivatives, termed docosanoids, are
deemed as potential mediators of the biochemical processes in neuronal tissues that pre-
vent or delay the inflammatory process related to AD [22]. The research into the role of
neuroprotectin D1 indicated evidence of a neuroprotective effect [63]. Sterols are triter-
penoids with a cyclic structure that are biosynthesized by seaweeds via the mevalonic
acid pathway. Recent work pointed out that fucosterol (isolated from brown algae species
Sargassum horridum) attenuates Aβ1-42-induced neurotoxicity, preventing Aβ1–42 oligomer-
ization [64]. Another marine natural product is caulerpenyne, a sesquiterpene isolated
from algae (Caulerpa spp). Caulerpa promotes successful lipoxygenase (LOX) inhibition,
linked to the AD protection mechanism [65]. Zonarol is also a sesquiterpene (C15) isolated
from brown algae (e.g., Dictyopteris spp.) that protects neuronal cells from oxidative stress
damage [65], which is one of the main mechanisms of the phenolic compounds [66].

Table 2. Examples of marine natural products with potential functions in treatment of AD.

Source Compound Chemical Structure Anti-Alzheimer
Activity Mechanism Reference

Amphiporus spp.
3-(2,4-

Dimethoxybenzylidene)-
anabaseine
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Table 2. Cont.
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Other types of compounds with an important role in AD treatment are oligosaccha-
rides, such as the unsaturated mannuronate oligosaccharide (MOS) extracted from some
brown seaweeds (e.g., Ecklonia spp.), which inhibits Aβ aggregation and reduces Aβ levels
via inhibiting the production BACE1. These data shed light on a novel application prospect
for MOS as a promising functional food or a natural medication for the treatment of or
assistance in the treatment of AD [67].

Although the compounds isolated from marine NPs have great therapeutic potential,
they require more studies of their pharmacokinetic profiles. It should be noted that those
compounds exhibited a wide range of molecular weights, of different configurations and
symmetries varying from simple to polycyclic and polymeric structures, and of various
functional groups, such as hydroxyl, methyl, and carbonyl groups (Table 2).

4. Potentialities of Toxins Produced by Marine Dinoflagellates

Similar to NPs extracted from flora and fauna, there are bioactive compounds in
phytoplankton species such as dinoflagellates, with different chemical structures and func-
tions as a result of their wide range of functional groups and toxicological and biological
features. Macrolides, cyclic polyethers, cyclic imines, spirolides, and purine alkaloids are
examples of those categories [68]. Due to their dissimilar functional structures, toxins
produced by marine dinoflagellates may strongly affect a variety of biological receptors
and metabolic processes [69], thereby becoming relevant tools in human medicine. Exam-
ples of potential pharmacological activities are analgesic, antitumor, anticholesterolemic,
anti-inflammatory, cytotoxic, anti-infective, immunosuppressive, and as therapeutics in
neurological disease [70].

4.1. Yessotoxins

Yessotoxins (YTXs) are marine sulfated polyethers produced as secondary metabolites
by the dinoflagellates Protoceratium reticulatum [71], Lingulodinium polyedrum [72,73], and
Gonyaulax spinifera [74]. YTXs are composed of a distinctive ladder shape formed by several
ether rings of different sizes and a terminal acyclic, unsaturated side chain consisting of
nine carbons and two sulfate ethers (Table 3).
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Table 3. Examples of toxins naturally produced by phytoplankton species with potential functions in
treatment of AD.

Source Compound Chemical Structure Relation with
Anti-AD Activity Reference

Protoceratium reticulatum;
Lingulodinium polyedrum;

Gonyaulax spinifera
Yessotoxin
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More than 90 YTX analogs are known, but only a few dozen have been fully identified.
This group causes death in mice after intraperitoneal injection, although no human toxicity
caused by the consumption of YTX-contaminated shellfish has yet been reported [74].
Moreover, only ultrastructural cardiac damage without other alterations was reported after
oral, intraperitoneal, or intravenous administration to rats or mice [75,76].

Although the mechanism of action of YTXs has not been well characterized, the in-
volvement of adenosine 3′,5′-cyclic monophosphate (cAMP), calcium, phosphodiesterases
(PDEs), protein kinase (PKC), A-kinase anchor protein 149 (AKAP-149), and the mitochon-
dria has been pointed to. The role of each one and the final effect appear to depend on
the cellular model studied [77]. Several subtypes of PKC, a protein involved in multiple
biological events, were reported to affect some metabolic pathways activated by YTX in
the primary cortical neurons of mice and the mouse T-lymphocyte cell line EL-4 [45,78].
Alonso et al. [45] studied the in vitro effect of YTX against AD hallmarks and observed
that pretreatment of cortical 3xTg-AD neurons with a low nanomolar concentration of YTX
showed a decreased expression of hyperphosphorylated tau isoforms and intracellular
accumulation of amyloid-beta. The mechanism related to the decrease was the activation
and translocation to the plasma membrane of cytosolic PKC. In 2012 the patent “Use of YTX
and analogues and derivatives for treating and/or preventing neurodegenerative diseases
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linked to tau and β-amyloid” was filed by Botana et al. [10], which is very promising in
terms of the applicability of YTX in AD pathology.

4.2. Gymnodimine

Gymnodimine (GYM) is a cyclic imine toxin belonging to a family of lipophilic,
macrocyclic compounds with imine (carbon–nitrogen double bond) and spiro-linked ether
moieties, with shared structural features such as spirolides (SPX), pinnatoxins, pteriatoxins,
prorocentrolides, and portimine [79–81]. GYM (including Gymnodimine-A and its two
analogs GYM-B and -C) is produced by the dinoflagellate Karenia selliformis (formerly
named Gymnodinium selliforme) [82]. GYM-12 was isolated from Alexandrium ostenfeldii [83]
and GYM-D was more recently found as a new analog [84]. GYM molecules typically
present a six-membered cyclic imine, with no methyl substituents in the spiroimine ring
system, and with typical fragments such as a tetrahydrofuran ring and unsaturated lac-
tones [85] (Table 3). Studies have demonstrated that these compounds can target neuronal
and muscular nicotinic ACh receptors with high affinity [86]. However, evidence for neuro-
toxicity in humans following consumption of contaminated seafood is currently not proven.
Previous toxicological studies reported high acute toxicity in mice following intraperitoneal
injection [86,87].

Alonso et al. [43] evaluated the effect of the long-term exposure of cortical neurons to
GYM in the progress of AD pathology in vitro. Treatment of cortical neurons with 50 nM
GYM decreased the intracellular β-amyloid accumulation and the levels of the hyperphos-
phorylated isoforms of tau protein were recognized by AT8 and AT100 antibodies. These
results were suggested to be mediated by the increase in the inactive isoform of glycogen
synthase kinase-3 (phospho-GSK-3 (Ser 9)), the decrease in the levels of the active isoform
of the ERK1/2 kinase, and the increase in ACh synthesis elicited by the long-term exposure
of cortical neurons to the toxin. Moreover, GYM decreased glutamate-induced neurotoxic-
ity in vitro, which indicates that these compounds, by reducing the activity of excitatory
neurotransmitters, constitute a valuable tool for the development of drugs to treat neurode-
generative diseases such as AD. Similar to YTX, in 2012 the patent “Use of gymnodimine,
analogs, and derivatives for the treatment and/or prevention of neurodegenerative diseases
associated with tau and β-amyloid” was filed by Botana et al. [88].

4.3. Spirolides

Also, the toxin 13-desmethyl spirolide-C (SPX 1) (Table 3), a cyclic imine such as GYM,
was examined as a potential tool for the treatment of AD [42]. Spirolides (SPXs) are the
largest group of the cyclic imines, and their production was confirmed in dinoflagellate
species of the genus Alexandrium (A. ostenfelii/A. peruvianum) [89]. The toxicity of this group
of compounds was first detected in routine toxin monitoring of bivalve mollusks when
an unusually rapid mouse death after the intraperitoneal injection of lipophilic extracts of
scallops and mussels revealed a highly potent toxic response in mice [90]. Presently 14 SPX
analogs are known, of which 13-desmethyl SPX C is the most commonly found in shellfish.
Although SPXs were detected in many countries around the world, they were not linked to
human toxicity [86].

The mechanism of action of SPXs has not been fully elucidated yet, but cholinergic
(muscarinic and nicotinic) receptors have been proposed as the main targets of these
toxins [91]. Several studies evidenced that modulation of the cholinergic system influences
the progression of AD [92]. Alonso et al. [42] took advantage of the described action of
SPXs on cholinergic receptors to evaluate their potential use in AD treatment through
the effect of SPX 1 (at non-toxic concentrations) on β-amyloid accumulation and tau
hyperphosphorylation in a neuronal model from triple transgenic mice (3xTg). The obtained
results showed that long-term exposure of 3xTg cortical neurons to the toxin significantly
reduced the levels of the hyperphosphorylated isoforms of tau recognized by AT8 and
AT100 antibodies as well as reduced the intracellular levels of β-amyloid. These decreases
are in agreement with the modification of two of the main kinases involved in AD, t GSK-3
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and the ERK1/2 kinases, also produced by 13-desmethyl SPX-C. In addition, the toxin
showed a neuroprotective effect over the glutamate-induced toxicity joined to an increase
in intracellular ACh levels, showing no effect on the expression levels of the cholinergic
receptors studied [42].

4.4. Gambierol

Gambierol is a marine polycyclic ether toxin (Table 3) that was first isolated with
other bioactive compounds, such as maitotoxins and ciguatoxins, from cultured strains of
the dinoflagellate Gambierdiscus toxicus [93,94]. Ciguatoxins are responsible for ciguatera
seafood poisoning (CSP), the most prevalent phycotoxin-related seafood poisoning in
humans across the globe, affecting between 10,000 and 50,000 people annually through
the consumption of contaminated tropical and subtropical marine seafood [95]. Therefore,
it has been speculated that gambierol may contribute to the symptoms observed in CSP
outbreaks [96] since gambierol exhibits potent toxicity when administered intraperitoneally
to mice, and the symptoms resemble those produced by ciguatoxins [97,98]. Gambierol and
its tetracyclic and heptacyclic analogs exert a powerful modulatory action upon voltage-
gated K+ channels (Kv). They act as an intermembrane anchor by binding specifically to
Kv3.1 channels that, in turn, block Kv channels. As a consequence, the channels remain
closed, thus lowering K+ ion currents [99,100]. In the patent “Use of gambierol for treating
and/or preventing neurodegenerative diseases related to tau and beta-amyloid”, filed in
2012 by Botana et al. [89], it is mentioned that in AD, the potassium channels, specifically
the kV3.1 channels, are diminished, and in the examples provided in the patent, surpris-
ingly, gambierol produces the blockage thereof despite being useful for the reduction of
both the overexpression of β-amyloid and the hyperphosphorylation of tau proteins. In
addition, in a study by Alonso et al. [47], the effect of the tetracyclic analog of gambierol
was tested in vivo in 3xTg-AD mice (10 months old) after 1 month of weekly treatment
with 50 µg kg−1. The toxin used elicited a decrease in amyloid β1–42 levels and a dose-
dependent inhibition of β-secretase enzyme-1 activity. This compound also reduced the
phosphorylation of tau with an increase in the inactive isoform of the glycogen synthase
kinase-3β [41]. These authors claimed that the combined effect on amyloid β1–42 and tau
phosphorylation represented a multitarget therapeutic approach for AD, which might
be more effective for this multifactorial and complex neurodegenerative disease than the
current treatments.

4.5. Okadaic Acid and Its Derivatives

Okadaic acid (OA) and its derivatives, including dinophysistoxins (DTXs) DTX1,
DTX2, and DTX3, are polyether toxins (Table 3) produced by several marine dinoflagellates
of the species Dinophysis as well as selected species of the benthic Prorocentrum [101–103].
The syndrome diarrhetic shellfish poisoning, caused by these compounds, is a gastrointesti-
nal illness with nausea, vomiting, diarrhea, abdominal pain, headache, and fever, where all
symptoms generally pass within a few days [104].

Studies in vitro showed that OA and DTXs are potent inhibitors of the serine/threonine
protein phosphatases 1 and 2A, and their adverse effects are considered to be mediated
by this activity [105]. These enzymes have been implicated in a wide spectrum of reaction
cascades [106]. Blocking protein phosphatase activity results in hyperphosphorylation of
many cell proteins, leading to the use of OA and its analogs as useful tools for research on
cellular regulation processes, namely to study AD [107]. In the AD brain, the activity of
phosphatase 2A appears to be reduced [108,109], and the downregulation of this enzyme
promotes the process of tau hyperphosphorylation [110]. OA, when injected into the right
lateral dorsal hippocampus area of the adult rat brain, depicts an in vivo model of AD
tauopathy [40,41]. Memory impairment induced by intra-hippocampal injection of OA
has been reported, accompanied by remarkable neuropathological changes, including
hippocampal neurodegeneration, a paired helical filament-like phosphorylation of tau pro-
tein, and the formation of β-amyloid containing plaque-like structures [111,112]. OA also
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influences oxidative stress, mitochondrial dysfunction, cholinergic dysfunction, apoptotic
cell death, the activation of inflammatory cascades, and neurotoxicity [46]. All of these
altered functions induced by OA lead to the development of a condition similar to AD
pathology. Recently, an AD model in zebrafish was established by using OA to elucidate the
neuroprotective effect of lanthionine ketimine-5-ethyl ester (LKE) and the effects of GSK3β
inhibition by 4-benzyl-2-methyl-1, 2, 4-thiadiazolidine-3, 5-dione (TDZD-8) in the context
of an AD-like condition [113,114]. LKE and TDZD-8 treatments given simultaneously with
OA were able to protect zebrafish against OA-induced AD pathology. In particular, in vivo
studies showed that the administration of TDZD-8 restored cognitive functions, reduced
mortality, increased the expression and activity of PP2A, decreased the activity of GSK3β,
and reduced the expression of tau proteins.

5. Challenges to Alzheimer Disease Therapies from Toxins Produced by
Marine Dinoflagellates

Toxins such as YTXs, GYM, SPX1, Gambierol, and OA and its derivatives are produced
in the marine environment by a limited number of dinoflagellates. Various species of
Dinophysis and Prorocentrum are producers of OA. The blooming of the toxin producers
in seawater is triggered by a complex combination of favorable oceanographic conditions
and the succession of phytoplankton species that are still poorly understood [115,116]. The
potential use of these compounds as tools to search for new therapeutic approaches, or even
as drugs to treat neurodegenerative diseases such as AD, is compromised by the insufficient
quantities of dinoflagellate-generated material produced during blooms. Assuming that
150 g of a pure bioactive compound is necessary for typical preclinical studies and clinical
trials [117], harvesting toxins from natural blooms thus seems impractical. Moreover, only
scarce quantities of the toxins produced by dinoflagellates are commercially available and
prices can range from 1000 up to 500,000 EUR per mg−1 (dry weight), depending on the
source and purity [101].

The most plausible approaches for sustainable marine-toxin production for neurode-
generative and AD therapy seem to be (i) chemical synthesis and (ii) large-scale cultivation
of producer organisms [117].

5.1. Chemical Synthesis of Marine Toxins

Despite the structural complexity of most toxins (Table 3), chemical synthesis of some
toxins has been attempted [118–123]. Until now, most of the approaches were considered
unsuitable as the biosynthetic pathways are exceedingly complex, with lengthy processes
and low yields making them economically unfeasible [124,125]. For example, the synthesis
of palytoxins, another group of marine toxins, involved the assembly of 7 building blocks in
39 steps, requiring a process totaling more than 140 steps [126]. In addition, more efficient
synthetic routes were proposed for some compounds, and toxin-characteristic fragments
have been produced to overcome these constraints [127]. Thus, the investigation of the
synthesis of OA was pursued for its derivatives due to their potential broad range of
toxicological and biological activities [118,121,122]. Recently, OA appeared as a commercial
product produced by chemical synthesis and available worldwide [101,117].

5.2. Large-Scale Cultivation of Producer Organisms

Marine dinoflagellates are known to have complex circadian rhythms controlling their
cell cycles and behaviour in vivo as they establish a vertical migration pattern according to
daylight and nutrient levels in nature [127]. Cell division of dinoflagellates occurs during
the dark period, while both the cell growth and biosynthesis of many toxins occur during
the light phase that corresponds to G1 in the cell cycle [128]. Toxin production is considered
to be dependent on growth rate rather than due to environmental stress [129]. Therefore, a
compromise must be reached between high toxin production and maximum growth rate.
For this purpose, these marine organisms need to use optimum nutritional requirements.
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To obtain sufficient quantities of the metabolites of interest as toxins, researchers
have been investing in the development of bioreactor-controlled dinoflagellate cultures
and making efforts to understand the mechanisms responsible for low biomass and low
toxin productivity [130–132]. In comparison with eukaryotic cells, dinoflagellate cells
have singular metabolic requirements that can hardly be provided for with conventional
photobioreactor designs. In addition to nutritional requirements, parameters such as
illumination, patterns of agitation, optimal temperature, pH, oxygen tolerance, and ionic
strength are essential to optimizing toxin productivity [101].

It is well known that massive production of toxins from dinoflagellate cultures is
extremely difficult since dinoflagellates grow slower than other protists such as diatoms,
and they are quite shear-sensitive and relatively inefficient at nutrient uptake [133]. In
general, two-step culture strategies are used, with an initial phase based on biomass
accumulation under nutrient replete conditions, which is followed by toxin production
under deprivation conditions [69].

Wang et al. [132] developed an effective method for large-volume cultivation of Proro-
centrum lima using a vertical flat photobioreactor. The maximum P. lima cell concentrations
and OA and DTX1 contents were reached after 35 days of cultivation. Pan et al. [128] also
used carboy reactors (batch operation) to study the growth cycle and the cell cycle of the
dinoflagellate Prorocentrum lima, obtaining the following toxins: OA, OA C8-diol-ester
(OA-D8), DTX-1, and DTX-4. YTXs from a large-scale culture (226 L; carboy reactors in
batch operation) of a Protoceratium reticulatum strain were produced showing a convenient
isolation method that yielded large quantities (193 mg) of high-purity yessotoxin 1 with
high recovery (77%). In addition, the toxin obtained was suitable for toxicological and
immunochemical studies as well as the preparation of derivatives for structure-activity
studies [133].

Genetic manipulation methodologies using the overexpression of specific microalgal
genes involved in the toxin synthesis pathways could be an attractive approach to increase
toxin production. However, current knowledge about the biochemical processes occurring
within the cells is still limited, probably due to the long and complex genome sequences of
microalgae [134,135].

6. Summary and Future Works

The present study evidences the role of various toxins produced by marine dinoflagel-
lates, such as yessotoxin, gymnodimine, 13-desmethyl spirolide-C, and gambierol, in AD
pathology. The mechanisms of action of these toxins result in the decrease of β-amyloid
plaques and hyperphosphorylation of tau proteins, as illustrated schematically in Figure 1.
The ability of selected marine toxins to attenuate kinase observed in in vivo models en-
couraged researchers to consider the hypothesis that these toxins could be used in the
therapy of AD or other neurodegenerative diseases. To validate this hypothesis, it is
crucial to obtain sufficient quantities of toxins, either by chemical synthesis or by the
cultivation of the producer dinoflagellate at an adequate scale. Then, clinical trials and
detailed research are necessary with the select individuals suffering from various types of
neurodegenerative diseases.

Interestingly, OA, another toxin produced by the dinoflagellates Dinophysis spp. and
Prorocentrum spp., exhibits a different mechanism of action compared with other toxins
(Figure 1). By inhibiting the phosphatases, OA and its derivatives facilitate the hyper-
phosphorylation of tau proteins, which leads to neuronal and synaptic dysfunction and
cell death. The few studies showing these effects have used OA as a model to trigger AD
in vivo, thus providing the opportunity to test the effectiveness of new drugs in the treat-
ment or attenuation of AD. The production of OA and its derivatives, either by chemical
synthesis or cultivation of producer organisms, is at a more advanced stage than other
toxins. Those toxins may be considered pioneer compounds in the study of the treatment
of neurodegenerative diseases that are of great concern in the coming years.
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