
entropy

Article

Automatic Detection and Counting of Blood Cells in Smear
Images Using RetinaNet

Grzegorz Drałus † , Damian Mazur † and Anna Czmil *

����������
�������

Citation: Drałus, G.; Mazur, D.;

Czmil, A. Automatic Detection and

Counting of Blood Cells in Smear

Images Using RetinaNet. Entropy

2021, 23, 1522. https://doi.org/

10.3390/e23111522

Academic Editor: Anton Civit

Received: 10 September 2021

Accepted: 11 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering Fundamentals, Rzeszow University of Technology,
35-959 Rzeszow, Poland; gregor@prz.edu.pl (G.D.); mazur@prz.edu.pl (D.M.)
* Correspondence: czmilanna@gmail.com
† These authors contributed equally to this work.

Abstract: A complete blood count is one of the significant clinical tests that evaluates overall
human health and provides relevant information for disease diagnosis. The conventional strategies
of blood cell counting include manual counting as well as counting using the hemocytometer
and are tedious and time-consuming tasks. This research-based paper proposes an automatic
software-based alternative method to count blood cells accurately using the RetinaNet deep learning
network, which is used to recognize and classify objects in microscopic images. After training,
the network automatically recognizes and counts red blood cells, white blood cells, and platelets.
We tested a model trained on smear images and found that the trained model has generalized
capabilities. We assessed the quality of detection and cell counting using performance measures,
such as accuracy, sensitivity, precision, and F1-score. Moreover, we studied the dependence of the
confidence thresholds and the number of learning epochs on the obtained results of recognition and
counting. We compared the performance of the proposed approach with those obtained by other
authors who dealt with the subject of cell counting and show that object detection and labeling can
be an additional advantage in the task of counting objects.

Keywords: confidence threshold; convolution neural networks; platelet; RBC; WBC

1. Introduction

A complete blood count (CBC) is a typical clinical test that provides relevant infor-
mation for disease diagnosis. The main three types of blood cells are: Red Blood Cells
(RBCs), also called erythrocytes, White Blood Cells (WBCs), also called leukocytes, and
platelets, also called thrombocytes. CBC provides information about the production of
all blood cells, identifies the patient’s ability to carry oxygen by evaluating RBC counts,
and allows for immune system evaluation by assessing WBC counts with differential. This
test helps diagnose anemia, certain cancers, infections, and many many others, as well as
monitor the side effects of certain medications [1]. For this reason, medical laboratories
are flooded with a large number of blood and tissue samples that need to be analyzed as
accurately as possible and in the shortest possible time. The ability to accurately quantitate
specific populations of cells is important for precision diagnostics in laboratory medicine.
Thus, medical staff work under heavy loads and time pressure. Medical workers often
have to work overtime to analyze all samples on time, causing even greater fatigue of the
staff, which may result in mistakes and lower work efficiency [2]. These errors may lead to
severe and even fatal consequences in the treatment of patients.

An alternative to traditional manual counting of various cells by specialists are semi-
automatic and automatic methods. Automatic detection and counting of cells in images is
a difficult and complex task, especially in reality the resolution of input medical images
could be very high, at the same time the target cells could easily be extremely dense.
Moreover, there are a large number of them in the image, the cells are often overlapped and
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there are problems with distinguishing cells. This is the principal motivation of automatic
cell counting.

There are generally two main approaches in the automated counting of blood cells.
We can distinguish traditional methods, which involve several steps such as preprocessing,
segmentation, feature extraction, and classification, while other methods are based on deep
neural networks (DNN). The selected traditional automatic RBCs counting methods are
presented in [3,4]. Various methods of automatic WBC counting are presented in [5–10].
Despite the numerous advantages of the automated methods, they also have disadvantages,
such as the accuracy of counting and the preparation of cell images. Reliable and accurate
cell detection is usually a difficult problem due to a great variability of cells and the
complexity of data. Detection can determine the presence of a specific cell in a microscopic
image, e.g., lymphocytes. Moreover, detection can be also combined with their counting
and quantitative analysis of cells [11]. Automatic cell counting involves obtaining the
number of cells in a medical image [12].

In recent years, due to the rapid development of deep learning networks, they have
become a key component of many computer vision applications such as object detection,
classification or segmentation. The efficiency and efficacy of deep learning in the medical
imaging field is unquestionable, as evidenced by a large number of independent studies
in different modalities and applications, including those suggested for automatic cell
counting [13]. For example, deep learning models that classify various types of erythrocytes
were proposed in [14,15]. Vogado et al. [16] proposed LeukNet, which is based on a
convolutional neural network (CNN). Acevedo et al. proposed recognition of peripheral
blood cell images using CNNs [17]. Automatic white blood cell classification using deep
learning models was also presented in [18–23]. Automatic identification and counting of
all three types of blood cells simultaneously using DNN was proposed in [24].

A literature review indicates that there are only a few articles on the detection and
counting of RBCs, WBCs, and platelets simultaneously using deep learning methods [24].
However, it is not clear how to determine the optimal number of epochs and the optimal
threshold to achieve the highest performance. We also noted that the obtained results
are usually compared only based on accuracy, which in no doubt is an important metric
to consider, but it does not always give the full picture. Obtained results should also be
discussed in the light of important quality metrics in medical testing: recall, precision,
and F1-score. Many works concern recognizing cells in small images that contain just a
few cells in the image, while microscopic images can include hundreds of crowded and
overlapped cells. Motivated by the lack of a thorough examination of the above issues, we
decided to propose our own solution.

This paper aims at developing a precise and automatic method for counting various
types of cells in one image using the developed deep learning methods. It will allow
for a significant acceleration of cell counting work in laboratories and a reduction of the
burden on staff. Doing this work by using a computer will also reduce human error and
increase the accuracy and reduce the likelihood of mistakes. To achieve this goal, our work
was related to the development of methods that can automatically count blood cells. We
proposed an approach that employs RetinaNet based on CNN architecture to detect all
three types of blood cells, i.e., RBCs, WBCs, and platelets simultaneously.

The main contribution of this work includes several points. We prepared our own
training dataset and manually marked RBCs, WBCs and platelets in the images. Then, we
adapted and trained RetinaNet to recognize three types of cells simultaneously by present-
ing a wide collection of microscopic medical images. Next, we prepared an application
that counted cells recognized by the RetinaNet network. Then, we evaluated the impact of
learning epochs and confidence thresholds on the performance and effectiveness of cell
detection and counting for each class on several images by comparing the number of cells
counted by the application with the manually counted number of correctly classified cells,
incorrectly classified cells, and unclassified cells. Based on those preliminary results, we
selected and tested two of the trained models to evaluate how accurately they mark RBCs,
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WBCs, and platelets with a bigger test set for subsequent confidence thresholds. Finally, we
calculated the accuracy, precision, recall, and F1-score of automatic counting for each type
of cells, determined the optimal confidence thresholds for each type of cells, and compared
them with the state-of-the-art.

2. Materials and Methods
2.1. General Concept of CNN Construction

Deep learning is a method that simulates the human brain structure. This method
consists of a series of algorithms for finding a hierarchical representation of the input data
based on the way that the human brain senses an important part of a sensory data set.
It is a part of machine learning, which revolves around the algorithms responsible for
modeling high-level abstraction, using many layers composed of nonlinear transforma-
tions. Due to their high efficiency, DNNs are nowadays the most popular group of deep
learning algorithms.

In recent years, the unrestrainable increase of the data amount has raised new chal-
lenges in machine learning in the area of scalability. It was particularly evident in the
subject of object recognition and image processing. During the analysis of a small black
and white image, each neuron of the hidden layer would still have to have thousands of
weights. This fact causes problems of both computational and purely practical nature. Such
problems are dealt with by the architecture of CNNs [25].

A CNN is a class of DNNs, most commonly applied to analyzing images and ob-
ject recognition. Figure 1 shows the sequence of transformations involved in a typical
convolutional network [26] that has been adopted in our research to recognize blood cells.

Figure 1. The sequence of transformations involved in the convolutional network for recognizing blood cells.

At first, the input image is scanned for feature selection. The checked rectangle is the
filter that passes over the image. Activation maps are stacked atop another one for each
of the employed filters. Secondly, the next rectangle is downsampled and the activation
maps are downsampled. Next, a new set of activation maps is created by passing filters
over the first downsampled stack. Then, the second set of activation maps is condensed by
the second downsampling. Finally, the fully connected layer classifies the output with one
label per node.

It is a solution taken from the human system of vision. Neurons are activated only
when something is in the human field of vision, utilizing the fact that the features that
represent only this small part of an image can relate to the entire surface of the image.
Based on this knowledge, groups of neurons are created with common weights but located
in different parts of the image. Several types of layers make CNN:

• Convolutional layers—they create feature maps based on systematically learned filters
on input images and summarize the presence of these functions in the input. A map
of the activity of a particular feature across the entire image area can be interpreted as
a set of output signals from neurons of the same weight shall. The filter is a feature
represented by one shared set of weights. The convolutional layer is operating in
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three dimensions, where instead of multiplying vectors, as in the classical approach,
the convolution operation is applied and it gives better results when detecting a
pattern [25,26];

• Pooling layers—they are used to streamline the computation. Combining the outputs
of neuron clusters at one layer into a single neuron in the next layer by pooling
layers reduces the dimensions of the data. Local pooling combines small clusters, and
global pooling acts on all neurons of the convolutional layer. Pooling may calculate a
maximum or an average. Max pooling uses the maximum value, and average pooling
uses the average value from each of a cluster of neurons at the prior layer [25,26].

• Fully connected layer—uses the convolution results to classify the image into a label.
The convolution output is flattened into a single vector of values representing the
probability of belonging of a feature to that label. Each neuron receives weights that
assign priority to the most appropriate label. Finally, neurons vote for each label, and
the winner of this vote is the classification decision [26].

2.2. RetinaNet

RetinaNet is a one-stage detector that uses focal loss, whereby the lower loss is con-
tributed by negative samples. The loss is concentrated in problematic samples, which
improves the accuracy of prediction. With ResNet and Feature Pyramid Network (FPN) as
the backbone for extraction of features and two task-specific subnetworks used for classifi-
cation and bounding box regression, the formed RetinaNet achieves excellent performance
and outperforms Faster R-CNN—the well-known two stage detector [27,28].

The architecture of RetinaNet shown in Figure 2 can be divided into three main
groups [29]:

• a backbone FPN is used on the top of the ResNet model for constructing a rich
multiscale feature pyramid from a single input image;

• a subnet used for classifying objects based on FPN outputs;
• a subnet that makes regression of the bounding box using the output data of the

backbone network.

Figure 2. The architecture of RetinaNet Detector.

Feature pyramids are a basic component in recognition systems used for detecting
objects at multiple scales. RetinaNet is based on the FPN presented in [30]. In a network
containing residual blocks (ResNet), each layer feeds directly into the next layer and
two to three jumped layers. In comparison, in traditional neural networks each layer
feeds into the next layer. The training of a few layers can be skipped by using shortcut
connections. It has been proven that training this type of network is easier than training in
simple DNNs, and it particularly deals with the problem of accuracy degradation.

The fully convolutional nature of the network enables downloading an image of any
scale and output proportional feature maps on multiple levels in the feature pyramid [31].

FPN consists of a bottom-up and top-down pathway. The bottom-up pathway is a
convolutional network used for feature extraction, and the top-down pathway restores
resolution to semantic information.
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The classification and regression subnets are attached to each feature map obtained
using FPN. The classification subnet predicts the object presence probability for each
of the A anchors and K object classes at each spatial position. It applies four 3 × 3
convolutional layers, each with 256 filters and each followed by the Rectified Linear Unit
(ReLU) activation, followed by a 3× 3 convolutional layer with K×A filters. The regression
subnet is identical to the classification subnet, except that 4A linear outputs are terminated
per spatial location.

We used Keras implementation of RetinaNet object detection [32]. RetinaNet makes
use of a ResNet-based backbone, from which a FPN is constructed. We used ResNet50
as the backbone. We took advantage of the possibility of using transfer learning. We set
the weight option to the pretrained model when training and used the freeze backbone
argument to freeze the backbone layers. We set the input batch size at 5 due to limitations
in GPU memory. We trained the RetinaNet model with 36,382,957 parameters, which is
equal to the number of trainable and non-trainable parameters.

2.3. Focal Loss

The imbalance between the background not containing objects and the foreground that
holds interesting objects is the main issue for object detection model training. Focal loss is
designed to assign greater weights to difficult, easily misclassified objects and downweight
trivial ones. The goal is to minimize the expected value of the loss from the model and in
the case of the cross-entropy loss, the expected loss is approximated as:

CE(pi, y) = − log(pi) ≈
1
n

n

∑
i=1
− log pi =

1
n

n

∑
i=1

Li (1)

where Li is the loss for one training example and the total loss L is approximated as the
mean overall examples, pi ∈ [0, 1] is the model’s estimated probability for the class y = 1,
and y ∈ {±1} specifies the ground-truth class [30].

The loss is calculated depending on the loss function definition. One of the most
common loss functions is cross-entropy loss. This loss function is beneficial for image
classification tasks, but different tasks need different loss functions. For example, in the
detection problem in which bounding boxes are estimated around objects, a regression loss
function can be used to get a measure of how well the bounding box is placed in the image.

The cross-entropy loss is used when the model contains the Softmax classifier. The
Softmax classifier gives a probability score for each object class. The loss function is
calculated as:

Li = − log

(
e fyi

∑j e f j

)
(2)

where Li are all the training examples together, f j is the j-th element of the vector of class
scores f , yi is the output for the correct class.

The Mean Square Error (MSE) is the most commonly used regression loss function.
It can be computed as the squared norm of the difference between the true value and the
predicted value:

Li = ‖g− yi‖2
2 (3)

where g are the predicted values and yi are the true ones. This loss function can be used when
the goal is to find the coordinates of a bounding box when performing object detection.

2.4. Metrics

To quantitatively evaluate the results of cell counting, the following measures are defined.
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The accuracy is defined by the following formula:

Accuracy =
Nexpert ∩ Ncount

max
{

Nexpert , Ncount
} · 100% (4)

where: Nexpert—number of cells counted by an expert, Ncount—cells counted by the application.
The classifier efficiency is evaluated based on its ability to correctly identify the number

of cells belonging to one of the three classes. For each class, the quantitative measurement
is performed based on True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN) parameters.

Precision is the fraction of correctly identified samples of a given class to all correctly
recognized samples. This value is given by the formula:

Precision =
TP

TP + FP
· 100% (5)

Recall (sensitivity) is the number of correctly identified samples belonging to a given
class to all samples belonging to that class. It is expressed by the formula:

Recall =
TP

TP + FN
· 100% (6)

F1-score is the harmonic average of recall and precision, which can be expressed by
the formula:

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
· 100% (7)

3. Implementation of Cell Counting Algorithm

Our goal is to use an object detection and classification algorithm to detect and count
three types of blood cells directly from a smear image. For this purpose, we have needed
to train the RetinaNet network with selected settings and configurations based on training
images with blood cell annotation. In this way, we created an application for recognizing
and counting blood cells.

3.1. Datasets

For the learning and validation application, we used our own dataset consisting of
900 images containing WBCs, RBCs, and platelets. In the case of the validation dataset, we
randomly selected 15 training images with annotations.

For application tests, we used images from the LISC dataset [33]. The dataset includes
251 images of resolution 720 × 576 acquired by a light microscope (Axioskope 40) with
a magnification of 100×, recorded by a digital camera (Sony Model No. SSCDC50AP).
From the test dataset, we randomly selected 131 images for counting WBCs, 64 images
for counting platelets, and 15 images for counting RBCs. The different number of images
selected for testing is due to the different number of individual cells in one image. Therefore,
a small number of images for testing RBCs was selected, because of the large number of
RBCs in individual images (average 121 RBCs per image). The situation is similar for the
platelet count.

3.2. Image Labelling

Before starting the network training process, we marked manually three types of
cells in microscopic images using the LabelImg application, which is a graphical image
annotation tool [34]. This process is shown in Figure 3. The objects in the images are
divided into three categories: WBCs, RBCs, and platelets are marked accordingly. In this
way, the annotations of blood cells were acquired for DNN training.
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Figure 3. The process of marking the training dataset.

3.3. Training the RetinaNet of Object Recognition

We used the RetinaNet network with ResNet50 as the backbone with the input batch
size set at 5, and the number of epochs set at 40 epochs, each for 500 steps for training. We
used 900 images to train the network. The training process outputs a JSON file containing
the network trained on these images, based on the set parameters.

As a result of the training of each of the models, we obtained 40 files for each epoch.
Then, we selected the results with 10, 15, 20, 25, 30, 35, and 40 epochs to investigate the
impact of decreasing loss function on the detection accuracy. The workflow of the network
learning process is presented in Figure 4.

Figure 5 shows the learning curve of the RetinaNet algorithm to detect blood cells
relative to the regression and classification loss function, as well as according to the sum
of losses.

3.4. Selection of the Optimal Model

The criteria for selecting the best model variant were based on observation of the loss
function, which decreased during learning from epoch to epoch. Additionally, we manually
validated the results obtained after 10, 15, 20, 25, 30, 35, and 40 learning epochs using a
validation set consisting of 15 images not used for training. We assessed the efficiency of
blood cell counting by calculating the mean F1-score for each of the considered thresholds
for each epoch. The results of the preliminary analysis are presented in Tables 1–3.
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Figure 4. The cell counting workflow.

Figure 5. Learning curve of the RetinaNet blood cells identification (500 steps per epoch).

The additional aim of this validation was to compare the quality of cell counting after
passing a certain number of epochs and to find the optimal model for further testing. The
learning process was quite long. For a detailed analysis, we selected models trained with 10
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and 30 epochs. The model trained with 10 epochs achieved very high F1-score results, and
the loss function was stabilized for it. The model obtained after learning with 30 epochs
achieved the highest F1-score values. We conducted research on a larger testing dataset
for these two selected models and calculated metrics, such as F1-score, accuracy, precision
and recall, allowing for an in-depth and comprehensive assessment of the quality of the
RetinaNet model.

Table 1. Preliminary F1-scores for the recognition of RBCs, obtained from the analysis of 15 images,
used to select the optimal model.

Threshold
RBCs F1-Score [%]

RN10 RN15 RN20 RN25 RN30 RN35 RN40

0.20 87.11 87.36 86.81 87.47 85.65 87.97 87.99
0.25 87.51 87.59 87.97 88.18 87.05 87.68 88.40
0.30 87.57 87.85 87.97 88.39 88.51 87.56 87.99
0.35 87.94 86.99 88.12 88.47 87.22 87.09 86.29
0.40 86.47 84.61 86.85 87.32 86.35 85.91 84.22
0.45 84.04 82.74 84.96 85.37 84.82 83.92 82.86
0.50 81.14 80.64 83.25 83.39 82.49 82.08 81.26
0.55 78.00 78.26 80.69 80.95 80.36 80.00 78.51
0.60 73.95 73.83 78.64 78.92 78.13 77.80 75.97
0.65 69.39 70.16 75.28 76.09 76.10 75.55 73.91
0.70 64.20 66.31 72.14 73.52 72.71 72.45 71.11
0.75 56.67 61.09 68.52 69.73 69.46 68.82 67.76
0.80 48.42 52.19 62.34 65.03 64.92 65.03 64.57
0.85 36.80 43.32 55.41 58.65 60.44 60.83 59.70

Table 2. Preliminary F1-score values for the recognition of WBCs, obtained from the analysis of
15 images, used to select the optimal model.

Threshold
WBCs F1-Score [%]

RN10 RN15 RN20 RN25 RN30 RN35 RN40

0.20 21.18 28.57 26.28 24.32 19.46 19.88 14.46
0.25 36.73 43.90 39.13 33.96 26.67 27.20 18.28
0.30 51.43 55.74 48.57 42.50 34.29 32.69 23.45
0.35 61.54 64.00 65.38 57.63 44.44 44.16 29.06
0.40 73.17 75.00 65.31 62.50 53.12 58.62 35.79
0.45 85.71 83.33 75.00 69.77 61.54 64.00 43.59
0.50 88.24 88.24 78.95 71.43 63.83 68.18 47.06
0.55 90.91 88.24 85.71 75.00 68.18 71.43 51.72
0.60 90.91 90.91 90.91 83.33 73.17 78.95 57.69
0.65 87.50 90.91 90.91 90.91 83.33 85.71 73.17
0.70 83.87 87.50 90.91 90.91 88.24 88.24 76.92
0.75 80.00 87.50 87.50 87.50 90.91 90.91 85.71
0.80 61.54 75.86 87.50 87.50 87.50 87.50 84.85
0.85 56.00 66.67 80.00 80.00 80.00 83.87 87.50

Analyzing the results of the F1-score presented in Tables 1–3, obtained on the basis of
counting 3 types of cells in 15 images for each model and each threshold, it turned out that
the best results of RBCs, WBCs, and platelet counting was achieved by RetinaNet trained
during 30 epochs. That model returns the highest values of recognized RBCs, platelets, as
well as WBCs. The same maximum values of F1-score values for WBCs also occur in other
models, except the RN40. However, taking into account the maximum values of F1-score
counting of all three types of cells from Tables 1–3, it can be indicated that the best is the
RN30 model.
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Table 3. Preliminary F1-score values for the recognition of platelets, obtained from the analysis of
15 images, used to select the optimal model.

Threshold
Platelets F1-Score [%]

RN10 RN15 RN20 RN25 RN30 RN35 RN40

0.20 73.95 71.07 75.62 75.23 73.17 73.49 66.95
0.25 80.65 81.72 82.58 81.82 81.23 80.75 73.35
0.30 83.99 85.46 83.03 83.57 86.53 80.94 76.88
0.35 82.05 85.36 83.91 85.45 85.11 82.39 80.60
0.40 80.13 81.70 82.39 83.60 83.97 81.97 80.51
0.45 77.82 80.00 80.41 80.95 81.19 80.41 79.21
0.50 73.84 78.08 77.03 78.32 78.50 77.35 77.51
0.55 68.42 73.76 75.27 74.82 75.00 73.45 74.47
0.60 58.30 68.66 64.59 68.18 70.85 67.18 68.66
0.65 47.83 58.06 57.61 60.80 64.59 60.24 63.53
0.70 41.28 52.14 52.77 52.77 55.00 53.16 53.78
0.75 35.24 42.73 38.32 44.84 49.57 47.58 49.35
0.80 27.86 34.45 30.39 35.24 41.28 39.07 39.81
0.85 13.98 24.37 24.37 24.37 27.86 26.13 26.13

4. Experiments and Results

After the network training, we performed tests using a specially developed application,
which allows for the import of trained models, cell detection, and presentation of results in
a graphical and numerical form.

The tests of the developed models were performed for 15 images with RBCs, 151 images
with WBCs, and 64 images with platelets. The output of the deep learning model is an
image with an appropriate marking of the recognized samples. To verify the correctness
of the obtained results, we counted all marked cells applied to their type in the dedicated
application. Thus, our application counts different cells in the selected testing dataset
with a different confidence threshold for selected models (RetinaNet model trained with
10 epochs (RN10) and the RetinaNet trained with 30 epochs (RN30)). We compared the
results obtained for both types of models in order to check the impact of loss function values
on the performance of object recognition.

It should be noted that the confidence threshold plays an instrumental role. Accuracy
of identification and counting significantly depends on the appropriate confidence thresh-
old setting. The values of different measures to estimate the accuracy of the recognition
and counting of blood cells for testing data were presented in Tables 4–10.

To visualize the operation of the proposed labeling and blood cell counting method, we
presented one of the images from the validation set. Figure 6 shows an original blood smear
image, and Figure 7 shows the same image with automatically drawn bounding boxes,
labels, and probabilities of each marked blood cell. It was returned by our application using
the RN30 model with the confidence threshold of 0.35. Recognized cells were automatically
marked on the bounding boxes according to their type. Orange bounding boxes mark
RBCs, light blue mark WBCs, and dark blue mark platelets. It is seen in Figure 7 that WBCs
and platelets are detected without error. Almost all RBCs are correctly labeled. However,
three erroneous orange frames are also noticed, which includes a part of two neighboring
RBC cells.
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Figure 6. An example of blood smear image from the validation dataset.

Figure 7. An example of blood smear image with recognized RBCs, WBC and platelets by the RN30 model.

4.1. Results for the RN10

Table 4 contains the determined values of accepted quality measures for the RetinaNet
model after 10 learning epochs (RN10) for 15 test images. Table 5 includes an assessment of
WBCs counting quality in 131 images, and Table 6 contains the results of counting platelets
in 64 images. Table 7 contains the ground truth of cells and cell numbers counted by our
application for the confidence thresholds considered.
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Table 4. The accuracy, precision, recall, and F1-score of automatic counting of RBCs using RetinaNet
model for 10 epochs (15 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 86.68 81.30 93.80 87.10
0.25 96.91 87.23 90.01 88.60
0.30 93.47 90.66 84.74 87.60
0.35 85.24 93.69 79.86 86.22
0.40 78.05 95.64 74.64 83.85
0.45 71.68 97.17 69.65 81.14
0.50 64.76 98.39 63.72 77.35
0.55 59.22 99.35 58.84 73.91
0.60 53.51 99.79 53.40 69.57
0.65 47.64 99.88 45.94 62.93
0.70 41.60 100.0 41.60 58.76
0.75 34.80 100.0 34.80 51.63
0.80 28.38 100.0 28.38 44.21
0.85 19.92 100.0 19.92 33.23

Table 5. The accuracy, precision, recall, and F1-score of automatic counting of WBCs using RetinaNet
model for 10 epochs (131 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 18.51 18.25 98.61 30.80
0.25 31.17 30.74 98.61 46.86
0.30 45.71 45.08 98.61 61.87
0.35 66.67 64.81 97.22 77.78
0.40 79.56 77.35 97.22 86.15
0.45 92.90 89.68 97.20 93.29
0.50 97.30 93.24 96.50 94.85
0.55 97.22 96.43 93.75 95.07
0.60 94.44 98.53 93.06 95.71
0.65 90.28 98.46 90.14 94.12
0.70 81.25 99.15 81.69 89.58
0.75 70.83 99.02 72.14 83.47
0.80 52.78 97.37 52.86 68.52
0.85 36.11 100.0 37.14 54.17

Table 6. The accuracy, precision, recall, and F1-score of automatic counting of platelets using
RetinaNet model for 10 epochs (64 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 69.18 68.56 98.97 81.01
0.25 86.36 82.93 95.90 88.94
0.30 98.72 91.68 90.85 91.26
0.35 88.45 96.08 86.09 90.81
0.40 81.39 97.48 79.84 87.78
0.45 72.79 99.47 73.06 84.24
0.50 63.80 99.80 64.50 78.36
0.55 53.79 100.0 54.49 70.54
0.60 45.96 100.0 46.86 63.81
0.65 38.25 100.0 39.11 56.23
0.70 30.94 100.0 31.54 47.96
0.75 22.21 100.0 22.21 36.34
0.80 14.25 100.0 14.25 24.94
0.85 8.09 100.0 8.09 14.96
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Table 7. Ground truth and the estimated number of blood cells at different confidence thresholds for
the RN10.

Threshold
RBC WBC Platelets

Ground truth Estimated Ground Truth Estimated Ground Truth Estimated

0.20 1822 2102 144 778 779 1126
0.25 1822 1880 144 462 779 902
0.30 1822 1703 144 315 779 769
0.35 1822 1553 144 216 779 689
0.40 1822 1422 144 181 779 634
0.45 1822 1306 144 155 779 567
0.50 1822 1180 144 148 779 497
0.55 1822 1079 144 140 779 419
0.60 1822 975 144 136 779 358
0.65 1822 868 144 130 779 298
0.70 1822 758 144 117 779 241
0.75 1822 634 144 102 779 173
0.80 1822 517 144 76 779 111
0.85 1822 363 144 52 779 63

4.2. Results for the RN30

Table 8 contains the calculated values of the adopted quality measures for the Reti-
naNet model after 30 learning epochs (RN30) for 15 test images. Table 9 includes an
assessment of the WBCs counting quality in 131 images, and Table 10 contains the results
of counting platelets in 64 images. Total estimated numbers of cells of different types for
different confidence threshold values are presented in Table 11.

Table 8. The accuracy, precision, recall, and F1-score of automatic counting of RBCs using RetinaNet
model for 30 epochs (15 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 91.24 81.18 88.41 84.64
0.25 99.67 86.44 86.54 86.49
0.30 91.99 90.51 83.35 86.78
0.35 86.39 93.20 80.60 86.45
0.40 80.90 94.91 76.87 84.94
0.45 75.30 96.43 72.69 82.89
0.50 70.25 97.11 68.30 80.19
0.55 65.81 97.75 64.40 77.64
0.60 62.18 98.23 61.15 75.38
0.65 58.29 98.59 57.53 72.66
0.70 53.35 99.18 52.97 69.05
0.75 48.35 99.66 48.08 64.86
0.80 43.14 99.87 43.02 60.14
0.85 37.87 100.0 37.91 54.98
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Table 9. The accuracy, precision, recall, and F1-score of automatic counting of WBCs using RetinaNet
model for 30 epochs (131 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 13.51 13.52 100.0 23.82
0.25 21.02 21.02 100.0 34.74
0.30 30.38 30.38 100.0 46.60
0.35 41.38 41.38 100.0 58.54
0.40 53.33 53.33 100.0 69.57
0.45 65.75 64.84 98.61 78.24
0.50 75.39 73.82 97.92 84.18
0.55 86.75 84.34 97.22 90.32
0.60 96.00 92.67 96.53 94.56
0.65 98.61 97.89 96.53 97.20
0.70 97.22 99.29 96.53 97.89
0.75 95.14 100.0 95.14 97.51
0.80 90.97 100.0 90.97 95.27
0.85 79.86 100.0 79.86 88.80

Table 10. The accuracy, precision, recall, and F1-score of automatic counting of platelets using
RetinaNet model for 30 epochs (64 images).

Threshold Accuracy [%] Precision [%] Recall [%] F1-Score [%]

0.20 67.33 66.55 98.97 79.59
0.25 82.43 80.00 97.05 87.70
0.30 93.29 87.90 94.22 90.95
0.35 97.82 92.78 90.76 91.76
0.40 89.73 95.71 85.88 90.53
0.45 83.95 97.40 81.77 88.90
0.50 77.79 98.84 76.89 86.50
0.55 69.96 99.27 69.45 81.72
0.60 62.77 99.59 62.52 76.81
0.65 55.84 100.0 55.84 71.66
0.70 47.37 100.0 47.37 64.29
0.75 40.56 100.0 40.56 57.72
0.80 30.94 100.0 30.94 47.25
0.85 21.44 100.0 21.44 35.31

Table 11. Ground truth and the estimated number of blood cells at different confidence thresholds
for the RN30.

Threshold
RBC WBC Platelets

Ground Truth Estimated Ground Truth Estimated Ground Truth Estimated

0.20 1822 1997 144 1066 779 1157
0.25 1822 1828 144 685 779 945
0.30 1822 1676 144 474 779 835
0.35 1822 1574 144 348 779 762
0.40 1822 1474 144 270 779 699
0.45 1822 1372 144 219 779 654
0.50 1822 1280 144 191 779 606
0.55 1822 1199 144 166 779 545
0.60 1822 1133 144 150 779 489
0.65 1822 1062 144 142 779 435
0.70 1822 972 144 140 779 369
0.75 1822 881 144 137 779 316
0.80 1822 786 144 131 779 241
0.85 1822 690 144 115 779 167

As it is apparent from Table 8, in order to count RBCs, it is best to use the optimal
threshold of 0.25. However, to count WBCs and platelets, the threshold is much higher
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(0.65 and 0.35 sequentially for Tables 9 and 10). Thus, appropriate thresholds for each type
of cells are selected as follows:

• RBCs—Confidence Threshold: 0.25,
• WBCs—Confidence Threshold: 0.65,
• Platelets—Confidence Threshold: 0.35.

For the RN10 model, the optimal confidence thresholds determined based on Tables 4–6
are as follows: 0.25 for RBCS, 0.60 for WBCs, and 0.30 for platelets. Thus, the thresholds in
the counting of WBCs and platelets in the RN30 model are higher and increased as a result
of learning the RN10 for another 20 epochs. Higher confidence thresholds give greater
certainty of correct recognition of individual blood cells.

The growth of the confidence threshold, which occurs in the RetinaNet model due
to the network learning process, can be seen by analyzing and comparing Tables 4–11, as
well as analyzing Figures 8–10, which shows the impact of the value of the confidence
threshold on the number of counted cells concerning ground truths. From this figure, you
can also effortlessly determine the optimal confidence thresholds for the three blood cell
classes considered.

Figure 8. Number of detected RBCs vs. threshold value.

Figure 9. An example of blood smear image with recognized RBCs, WBC and platelets by the
RN30 model.
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Figure 10. An example of blood smear image with recognized RBCs, WBC and platelets by the
RN30 model.

Figure 11 and shows the original image from the testing dataset. It was processed by
our application, which automatically drew the bounding boxes, labels, and probabilities of
each marked blood cell. An image processed using the RN30 model with the established
confidence threshold of 0.45 is in Figure 12. Labels have determined colors, relevant names,
and a probability value for each blood cell. At an established confidence threshold of
0.45, the WBC was correctly recognized and all platelets have been correctly recognized,
labeled, and counted. The vast majority of RBCs are recognized and labeled correctly. At
this confidence threshold, the RN30 model counts RBCs with an accuracy of about 75 %. It
is seen in Figure 12 that there are only a few unchecked RBCs (typical for this threshold
value), especially the RBCs that are overlapped or trimmed near the edge of the image.
The application correctly recognized and counted one WBC. It also correctly recognized
and counted 9 platelets and 123 RBCs when the ground truth is 135. The application
also returns the probability values of each marked cell and the average probability of all
recognized cells depending on their type. In this case, the average probability for WBCs
was 0.905, for RBCs it was 0.875, and for platelets it was 0.784.

Figure 11. An example of blood smear image from the testing dataset.
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Figure 12. An example of blood smear image with recognized RBCs, WBC, and platelets by the
RN30 model.

4.3. Comparison with the State-of-the-Art

To evaluate the performance of the proposed approach, we used the accuracy, preci-
sion, recall, and F1-score metrics, which are used most often for counting purposes. We
compared the performance of the proposed approach with those obtained by other authors
who dealt with the subject of cell counting for RBC, WBC, or platelet counting. It must be
noted that only a few methods aimed to count both RBCs, WBCs, and platelets at the same
time [24]. The selected methods work on the basis of deep learning as well as traditional
image processing. Alam et al. [24] proposed an approach that employs YOLO to detect
all three types of blood cells simultaneously. Their method does not require any greyscale
conversion or binary segmentation and the whole process is fully automated. It is very
similar to our approach because it uses deep neural networks to detect and count three
types of cells. Dvanesh et al. [35] presented a method to digitally analyze the image of
blood cells and find the RBC and WBC count values from the blood smear microscopic
images using Digital Image Processing. Acevedo et al. [17] proposed a system for the auto-
matic classification of peripheral blood cells (WBCs and platelets) by means of a transfer
learning approach using convolutional neural networks. Di Ruberto et al. [36] proposed a
system for detecting and quantifying red and white blood cells, which is based on the Edge
Boxes method. That method is an approach for generating object bounding box proposals
directly from edges.

A comparison of the RBC, WBC and platelet counting results with the results obtained
by the other authors are reported in Tables 12–14. As can be observed, the proposed
approach improves the counting performances; in particular, it significantly enhances
accuracy. To highlight the performances obtained with the proposed method, in Table 12,
we also report the number of images or ground truths used by the authors to test their
approaches. The method proposed by [36] performed a higher precision, recall, and
F1-score than our method.
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Table 12. RBCs counting performance compared with the state-of-the-art.

Alam [24] Dvanesh [35] Acevedo [17] Ruberto [36] Our Approach

Model Tiny YOLO ABCCS - Region proposal approach RetinaNet50
No. images 60 63 - 108 15

Ground truths 792 - - - 1822
Accuracy 96.09 91.0 - 95.6 99.67
Precision - - - 98.4 86.44

Recall - - - 95.0 86.54
F1-score - - - 96.6 86.49

The WBC counting results are reported in Table 13, which again have been directly
compared with the results obtained by the other authors. The numerical results shown
in Table 13 confirm the good performance of our approach, as it is able to detect WBCs
with higher accuracy and precision than other methods. Only one method [36] performed
higher recall and F1-score while losing accuracy and precision.

Table 13. WBC counting performance compared with the state-of-the-art.

Alam [24] Dvanesh [35] Acevedo [17] Ruberto [36] Our Approach

Model Tiny YOLO ABCCS Vgg-16 Region proposal approach RetinaNet50
No. images 60 63 1919 108 131

Ground truths 61 - - - 144
Accuracy 86.89 85.0 96.20 97.0 98.61
Precision - - - 97.6 97.89

Recall - - - 98.7 96.53
F1-score - - - 98.0 97.20

The platelet counting results are reported in Table 14, which have been compared with the
results obtained by the same authors. The proposed approach obtained better accuracy than
presented by Alam et al. [24] a and is slightly worse than presented by Acevedo et al. [17].

Table 14. Platelet counting performance compared with the state-of-the-art.

Alam [24] Dvanesh [35] Acevedo [17] Ruberto [36] Our Approach

Model Tiny YOLO - Vgg-16 - RetinaNet50
No. images 60 - 1919 - 64

Ground truths 55 - - - 144
Accuracy 96.36 - 99.61 - 97.82
Precision - - - - 92.78

Recall - - - - 90.76
F1-score - - - - 91.76

The obtained results are very satisfactory if we take into account that we are dealing
with the recognition and counting of three types of cells simultaneously. However, it should
be noted that similar to our approach was present only in one of the selected works [24]
and in comparison to it, we obtained better performance in recognizing all three types of
cells. Other works concerned the simultaneous recognition of two types of cells–WBCs and
RBCs [35,36] or WBCs and platelets [17]. However, it should be noted that the compared
results were obtained when tested on different datasets. For an accurate comparison of
the results obtained, the approaches should be tested under the same conditions using
the same datasets. Furthermore, the images used to test our approach contained average
resolution images with a large number of cells (typically 100–150 cells per image) and the
cells often overlapped each other, which impeded their correct recognition and counting.
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5. Discussion

The results listed in Tables 4–11 indicate that each cell type has its optimal confidence
threshold. For optimal thresholds, the highest accuracy of recognizing and counting in-
dividual cells was obtained. Using one common confidence threshold generally cannot
provide accurate results, because when choosing an indirect common threshold, for exam-
ple, 0.55, all counting indicators will be worse and the application will not count exactly
individual cells, as in the case of optimal confidence thresholds. Thus, each type of cells
should be counted separately with the individually selected confidence threshold to obtain
the most accurate results.

For the Retina model, after 30 epochs (RN30), at the confidence threshold of 0.25,
the accuracy of RBCs counting by application is 99.7%, precision is 86.4%, and recall is
86.5%. Accuracy of WBCs counting by application at a confidence threshold of 0.65 is
98.6%, the counting precision is 97.9%, and recall is 96.5%. In the case of counting platelets,
for the optimal threshold of 0.35, the accuracy is 97.8, precision is 92.8%, and recall is 90.8%.
Almost all quality indicators for the RN10 model are slightly lower than for the RN30. Only
in an assured range of confidence thresholds, the accuracy and precision of counting cells
in the RN10 model is better than in the RN30. However, comparing F1-score values, the
maximum value of this metric was obtained for the RN30 model.

In the light of the results presented above, general conclusions can be made. The
model RN10 after the relatively short learning process (10 epochs) may quite accurately
count the blood cells. Furthermore, learning up to 30 epochs improves almost all counting
performance metrics, and it also grows the confidence threshold for the best results. The
model trained by 40 epochs shows signs of overtraining visible on preliminary results for
validation data. The presented results, however, partially present the complexity of the
problem of counting blood cells. Regarding the selection of the optimal model for blood cell
counting applications, we came to the conclusion that it is a difficult, complex, and time-
consuming process because the accuracy of counting depends on the confidence threshold,
the time of learning, the number of epochs, selection of performance evaluation metrics and
perhaps many other factors which we did not include in this work. With such a wide study,
the optimal confidence thresholds have been established, for which the application counted
cells very accurately with high precision. We can dispose of redundant and incorrect
estimates of the number of cells by selecting an appropriate confidence threshold for each
cell type instead of a general threshold for all blood cells. The results obtained are very
satisfactory for the recognition and counting of three cell types simultaneously compared to
other works on cell counting, and we achieved better quality measure values for assessing
the effectiveness of our approach for most of them.

Finally, we have to mention that a very big advantage of the application, in addition
to the precise counting, is the appropriate marking of all recognized cells with labels and
probabilities. It allows for easy verification of the obtained results. Marking recognized
cells so far is still a rare functionality used in counting methods. Our method works in
images of high resolution and dimensions. Different methods must divide a large image
into a smaller one with a few number of cells in the individual image, which gives our
method an additional advantage.

6. Conclusions

This article presents a machine learning approach to automatic identification and
counting of blood cells from a smear image based on CNN RetinaNet. The proposed
method is evaluated on the basis of publicly available datasets. The developed methods
have been tested on different types of cells with different cell density in the images and
they show promising results. The developed application returns the results in numerical
and graphical form, which enables their simple verification. Additionally, the graphical
results, i.e., labeled cells, ensure the probability of correct recognition of the right cell. We
observed that in the case of the testing dataset, our method accurately recognizes and
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counts RBCs, WBCs, and platelets. However, the counting accuracy depends on the proper
selection of the confidence threshold for individual cell classes.

An essential advantage is that the medical images do not require preliminary prepa-
ration, and all results are obtained after a single presentation of an image. All calculated
metrics allow for in-depth and comprehensive evaluation of the quality of RetinaNet
models. Due to the accuracy and performance of the detection, the proposed method has
the potential to replace the manual identification of blood cells and the counting process.
The developed application would allow for speeding up cell counting and increasing
its accuracy.
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