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Introduction: Preterm infants are at increased risk of exposure to histologic
chorioamnionitis (HCA) when compared to term-born controls, and this is associated
with several neonatal morbidities involving brain, lungs and gut. Preterm infants could
benefit from immunomodulatory therapies in the perinatal period, but development of
rational treatment strategies requires improved characterization of the perinatal
response to HCA. We had two objectives: The first, to characterize the umbilical cord
blood immune profile in preterm infants compared to term-born controls; the second, to
investigate the postnatal immune response in preterm infants exposed to HCA versus
those who were not.

Population: For objective one 59 term infants [mean gestational age (GA) 39+4 (37+3 to
42+0)] and 55 preterm infants [mean GA29+0(23+3 to 32+0)] with umbilical cord samples
available were included; for objective two we studied 96 preterm infants [mean GA29+1

(23+2 to 32+0)] for whom placental histology and postnatal blood samples were available.

Methods: Placental histopathology was used to identify reaction patterns indicative of
HCA, and a customized immunoassay of 24 inflammatory markers and trophic proteins
selected to reflect the perinatal immune response was performed on umbilical cord blood
in term and preterm participants and postnatal day 5 blood in the preterm group.

Results: The umbilical cord blood immune profile classified gestational age category with
86% accuracy (95% CI 0.78-0.92), p-value=1.242x10-14. Pro-inflammatory proteins IL-6,
MCP-1 and CRP were elevated in the cord blood of preterm infants whilst BDNF, C3, C9,
IL-18, MMP-9 and RANTES were decreased, compared to infants born at term.
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In preterm infants, exposure to HCA was associated with elevations in 8 immune proteins
on postnatal day 5 (BDNF, C3, C5a, C9, IL-8, MCP-1, MIP-1b and MMP-9) when
compared to preterm infants who were not exposed.

Conclusion: Preterm birth is associated with a distinct immune profile in umbilical cord
blood and preterm infants exposed to HCA with evidence of a fetal inflammatory response
have specific alterations in immune function that are apparent on day 5 of postnatal life.
Keywords: complement, cytokine, fetal inflammatory response, inflammation, immunity, interleukin, preterm birth,
histologic chorioamnionitis
INTRODUCTION

Perinatal immune processes have a crucial role in neurodevelopment
and early life inflammatory exposures are associated with an
increased risk of neuropsychiatric disorders such as autism
spectrum disorder, schizophrenia, bipolar disorder and depression
(1, 2). Preterm infants may be exposed to multiple episodes of
perinatal infection/inflammation and are particularly vulnerable to
brain injury resulting from a dysregulated immune response during a
critical period of CNS development (3).

Preterm infants have a distinct immune profile in umbilical
cord blood and cerebrospinal fluid that includes higher levels of
pro-inflammatory cytokines and lower levels of growth factors
when compared to term-born controls, but there is uncertainty
about the extent to which this is influenced by antenatal factors,
environmental exposures and/or developmental regulation (4–
6). Histologic chorioamnionitis (HCA), defined as inflammation
of the chorioamniotic membranes, is strongly associated with
preterm birth (7, 8) and increases the risk of neonatal morbidities
including lung disease, intraventricular hemorrhage, sepsis and
necrotizing enterocolitis (9–14). HCA has also been implicated
in the development of white matter injury, cerebral palsy and
neurodevelopmental impairment (15–18) and we have
previously reported that this may be mediated by a distinct
cord blood immune profile in preterm infants (19). When HCA
involves a fetal inflammatory response (FIR), these risks appear
to be increased further, suggesting that organ injury is mediated
by a systemic fetal inflammatory response syndrome (FIRS).
FIRS was initially defined using threshold values of IL-6
concentration in umbilical cord blood (20, 21), although
subsequent studies have shown that histopathological FIR is
associated with elevated concentrations of cytokines (IL-1b, IL-
6 and TNF-a), chemokines (IL-8, MCP-1, MIP-1b, RANTES),
matrix metalloproteinases (MMP-1 and MMP-9) and CRP (19,
22–26). In some preterm infants, blood concentrations of
inflammatory mediators remain elevated for weeks after birth
(27, 28) and may be associated with higher circulating levels of
neurotrophic growth factors (29). However, neurotrophic
capability following exposure to intrauterine inflammation is
not well understood and previous study designs leave uncertainty
about the role of the complement system in perinatal
inflammation, which plays a critical role in the innate
immune response.
org 2
Preterm infants could benefit from immunomodulatory
therapies in the perinatal period, but development of rational
treatment strategies requires improved characterization of the
neonatal immune profile and the postnatal response to HCA. In
this study, an immunoassay of 24 analytes customized to reflect
the perinatal immune response was used to analyze profiles from
umbilical cord and postnatal blood with placental histopathology
to (1) characterize the intrauterine immune environment of
preterm infants compared to term-born controls, and (2) test
the hypothesis that exposure to histologic chorioamnionitis is
associated with an altered immune and neurotrophic profile in
the first week after very preterm birth.
MATERIALS AND METHODS

Study Population
Term (GA>37 weeks) and preterm (GA<33 weeks) infants were
recruited to a longitudinal cohort study designed to investigate
the effect of preterm birth on brain development, at the Royal
Infirmary of Edinburgh, UK (30). Ethical approval was obtained
from the UK National Research Ethics Service and parents
provided written informed consent (South East Scotland
Research Ethics Committee 16/SS/0154). For objective 1, we
included infants if umbilical cord blood samples were available
(59 preterm and 55 term), and for objective 2 we included
preterm infants with placental histopathology and postnatal
blood samples (n=96).

Dried Blood Spot Sample Analysis
Dried blood spot samples (DBSS) were taken from the umbilical
cord following delivery for both preterm cases and term-born
controls. For preterm infants, an additional sample was collected
on day 5 of life. A customized multiple sandwich immunoassay
based on Meso-Scale technology was used to measure blood spot
levels of Interleukin(IL)1-b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-
12p70, IL-17, IL-18, Monocyte chemotactic protein-1 (MCP-1),
Macrophage inflammatory protein-1a (MIP-1a), Macrophage
inflammatory protein-1b (MIP-1b), Tumor necrosis factor-a
(TNF-a), Tumor necrosis factor-b (TNF-b), Brain-derived
neurotropic factor (BDNF), Granulocyte-macrophage colony-
stimulating factor (GM-CSF), Interferon-g (IFN-g), C-reactive
protein (CRP), matrix-metalloproteinase 9 (MMP-9), Regulated
August 2021 | Volume 12 | Article 722489
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upon activation, normal T cell expressed and secreted (RANTES)
and Complement components C3, C5a and C9.

Two 3.2 mm disks from the DBSS were punched into each
well of Nunc 96-well polystyrene microwell plates (#277143,
Thermo Fisher Scientific). 130 µl extraction buffer (PBS
containing 1% BSA (Sigma Aldrich #A4503), 0.5% Tween-20
(#8.22184.0500, Merck Millipore), and complete protease
inhibitor cocktail (#11836145001, Roche Diagnostics) were
added to each well, and the samples were incubated for 1 hour
at room temperature on a microwell shaker set at 900 rpm. The
extracts were analysed using U-plex plates (Meso-Scale
Diagnostics (MSD), Maryland, US) coated with antibodies
specific for IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, IL-17,
TNF-a, MIP-1b on one plate (#K15067 customized) and
BDNF, GM-CSF, IL-10, IL-18, IFN-g, TNF-b, MCP-1, MIP-1a
on another (#K151AC customized) (both MSD). Supplier’s
instructions were followed, and extracts were analysed
undiluted. A third multiplex analysis was developed in-house
applying extracts diluted 1:10 in diluent 7 (#R54BB, MSD) using
antibodies specific for C3 (HYB030-07 and HYB030-06, SSI
Antibodies, Copenhagen, Denmark), C5a (10604-MM04 and
10604-MM06, Sino Biological, Eschborn, Germany), C9 (R-
plex kit #F21XZ, MSD), MMP-9 (BAF911 and MAB911),
RANTES (MAB278 and AF278NA) and CRP (BAM17072 and
MAB1701) (all R&D Systems, Minneapolis, US) for coating the
U-plex plate and for detection, respectively. Coating antibodies
(used at 1 µg/mL, except CRP used at 10 ng/mL) were
biotinylated (using EZ-Link Sulfo-NHS-LC-Biotin #21327,
Thermo Fisher Scientific) in-house (if not already biotinylated
at purchase) and detection antibodies were SULFO-tagged
(R91AO, MSD), both at a challenge ratio of 20:1. The
following calibrators were used: C3: #PSP-109 (Nordic Biosite,
Copenhagen, DK), C5a: #10604-HNAE (Sino Biological), C9:
#F21XZ (from R-plex kit, MSD), MMP-9: #911-MP, RANTES:
#278-RN and CRP: #1707-CR/CF (all from R&D Systems).
Calibrators were diluted in diluent 7, detection antibodies
(used at 1 µg/mL, except CRP used at 100 ng/mL) were diluted
in diluent 3 (#R50AP, MSD). Controls were made in-house
from part of the calibrator solution in one batch, aliquoted
in portions for each plate and stored at -20°C until use. The
samples were prepared on the plates as recommended from the
manufacturer and were immediately read on the QuickPlex SQ
120 (MSD). Analyte concentrations were calculated from the
calibrator curves on each plate using 4PL logistic regression
using the MSD Workbench software. Intra-assay variations
were calculated from 16 measurements of a pool of the same
control sample on the same plate. Inter-assay variations
were calculated from controls analysed in duplicate on each
plate during the sample analysis, 4 plates in total. Limits of
detection were calculated as 2.5 standard deviations from
duplicate measurements of the zero calibrator. The higher
detection limit was defined as the highest calibrator
concentration. Median intra-assay variation was 8.2% and
median inter-assay variation was 11.1%. Detection limits are
detailed in Table S1.
Frontiers in Immunology | www.frontiersin.org 3
Placental Examination
Placental examination was performed by an experienced
perinatal pathologist (M.J.E.) and placental reaction patterns
were reported according to the site of inflammation, using a
structured system (31). HCA was defined as the presence of an
inflammatory response in the placental membranes of any grade
or stage. Maternal inflammatory response (MIR) was defined as
the presence of chorionitis, chorioamnionitis or intervillositis.
Fetal inflammatory response (FIR) was defined as the presence of
vasculitis in the chorionic plate or funisitis involving any vessel
of the umbilical cord.

Statistical Analysis
Participant demographics are described as mean ± SD if
normally distributed and mean (range) if skewed. Student’s T
test or Mann-Whitney U were used to compare distributions,
and Chi-square tests were used to compare proportions. Analytes
with values less than the level of detection (<LOD) were assigned
the lowest detectable level prior to statistical analysis, and
analytes with concentrations <LOD in ≥75% of samples were
excluded from subsequent statistical analysis. Data normality
testing with Shapiro-Wilk confirmed a non-normal distribution
of analyte concentrations, so to investigate group differences in
blood immune mediator profiles we used the Mann-Whitney U
or Kruskal Wallis and post hoc Dunn test, with Bonferroni
correction for multiple tests.

Principal component analysis (PCA) was used to identify
analytes contributing to variance in the cord blood profile and
analytes that contributed to PCs with eigenvalues >1 were then
entered as independent variables in a logistic regression model to
predict preterm or term category. Analytes contributing to
variability within PCs predictive of gestational category were
then investigated individually using Spearman’s rank order
correlation to identify developmentally regulated analytes most
strongly correlated with gestational age. Statistical analyses were
performed using SPSS version 24.0 (IBM Corp., Armonk, NY),
with the exception of PCA, which was performed using R version
3.6.1 (R Core Team, 2019).
RESULTS

Umbilical Cord Blood Profile Associated
With Preterm Birth
Umbilical cord blood samples were available for 59 term and 55
preterm infants. Participant characteristics are detailed in
Table 1. 10 analytes (GM-CSF, IFN-g, IL-2, IL-4, IL-5, IL-10,
IL-12, IL-17, MIP-1a and TNF-b) were <LOD in ≥75% of
samples and were therefore excluded from subsequent analysis.
Median and interquartile range of analytes are shown in Table 2.
There were significant group differences for 9 immune mediators
(p<0.004, Bonferroni corrected). Pro-inflammatory proteins IL-6,
MCP-1 and CRP were elevated in the cord blood of preterm
infants whilst BDNF, C3, C9, IL-18, MMP-9 and RANTES were
decreased compared to controls born at term. PCA showed that
August 2021 | Volume 12 | Article 722489
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five principal components (eigenvalues>1) explained 76% of the
variance in the cord blood profile with the majority of variance
explained by the first two components (25% and 20%
respectively, Table S2). Projection of individual inflammatory
profiles onto the first two principal components is shown
in Figure 1.

In a logistic regression model to predict preterm or term
category based on cord blood profile, principal components
predicted gestational age category with a classification accuracy
of 86% (95% CI 0.78-0.92), p value= 1.242x10-14 (Table 3). The
percentage contribution of each analyte to the principal
components is shown in Figure 2. Amongst immune
mediators contributing to variability within the principal
components that predicted gestational category, correlation
analysis showed that cord blood MMP-9 and BDNF were
highly correlated with gestational age at birth (rho >0.65,
p<0.001) (Table 4).
Frontiers in Immunology | www.frontiersin.org 4
Histologic Chorioamnionitis Is Associated
With an Altered Immune Profile on Day 5
After Very Preterm Birth
Ninety-six preterm infants had placental histopathology and
postnatal day 5 blood samples. Participant characteristics are
detailed in Table 5. Thirty-one infants (32%) were exposed to
HCA and 18 of those had histopathological evidence of a fetal
inflammatory response. Infants with HCA exposure had lower GA
at birth than infantswithoutHCA:meanGA28+2weeks versus29+4

weeks (p=0.03), were more likely to have been delivered vaginally
(p<0.001) andmore likely to haveprolonged rupture ofmembranes
prior to delivery (p<0.001). However, there were no statistically
significant group differences in exposure to antenatal steroids or
magnesium sulphate, birthweight or infant sex.

The concentrations of eight analytes (BDNF, C3, C5a, C9,
IL-8, MCP-1, MIP-1b and MMP-9) differed on day 5 in preterm
TABLE 1 | Clinical characteristics of participants for umbilical cord blood analysis.

Preterm n = 55 Term n = 59 p-value

Mean gestational age, weeks (range) 29+0 (23+3-32+0) 39+4 (37+3-42+0) <0.001
Mean birthweight, g (range) 1202 (454-2110) 3549 (2556-4800) <0.001
Mean birthweight z-score (SD) -0.2696 (1.24) 0.6828 (1.08) <0.001
Male sex, n (%) 33 (60) 30 (51) 0.326
Maternal factors
BMI, mean (SD) 26.2 (5.8) 26.4 (5.5) 0.845
Pre-eclampsia, n (%) 3 (5) 3 (5) 0.930
Antenatal steroids, n (%) 54 (98) NA NA
Antenatal magnesium sulphate, n (%) 52 (95) NA NA
Delivery mode, n (%):
Vaginal 23 (42) 23 (39) 0.484
Caesarean 32 (58) 36 (61) 0.223
-Pre-labor 22 (40) 27 (46) 0.506
-In labor 10 (18) 9 (15)

Any labor, n (%) 33 (60) 32 (54) 0.535
Histologic chorioamnionitis, n (%) 24 (44) 10 (17) 0.002
MIR+ FIR- 11 2
MIR+ FIR+ 13 8
August 2021 | Volume 12 | Article
NA, Not applicable.
TABLE 2 | Cord blood analytes in preterm infants and term-born controls.

Analyte (pg/ml) Preterm n = 55 Term n = 59 p-value*

Median Q1, Q3 Median Q1, Q3

BDNF 22.27 6.04, 36.90 62.33 43.18, 113.68 <0.001
C3 3081995.73 1858060.85, 4569905.86 4447458.83 3520957.75, 5613382.51 <0.001
C5a 3694.52 2420.56, 11470.85 7136.48 4059.83, 9443.64 0.004
C9 1236.73 215.00, 6901.99 12628.69 3608.60, 43156.07 <0.001
CRP 100.88 89.00, 12054.79 89.00 89.00, 89.00 <0.001
IL-1b 0.26 0.26, 0.49 0.11 0.02, 0.34 0.016
IL-6** 0.45 0.45, 6.00 0.45 0.45, 0.45 <0.001
IL-8 12.05 5.75, 81.08 8.29 4.89, 14.71 0.134
IL-18 25.62 10.35, 38.34 41.27 27.50, 54.78 0.003
MCP-1 109.09 68.69, 210.75 48.12 38.54, 66.63 <0.001
MIP-1b 12.01 7.47, 18.82 9.72 6.88, 18.24 0.331
MMP-9 14000.68 4485.50, 40077.02 155885.89 87194.67, 358084.73 <0.001
RANTES 1460.12 702.74, 2754.37 3127.55 1817.10, 5295.39 <0.001
TNF-a 0.27 0.27, 0.37 0.27 0.27, 0.27 0.304
*MannWhitney U test to compare ranks (Bonferroni corrected threshold p < 0.004). **IL-6: For preterm infants: 27 were below the lower limit of detection (0.45pg/ml), and the range for the
remaining 28 was 0.46-249.56pg/ml. For term infants: 50 were below the lower limit of detection and the range for the remaining 9 was 0.66-11.46pg/ml.
722489

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sullivan et al. Histologic Chorioamnionitis and Immune Dysregulation
infants who were exposed to HCA compared to those who were
not exposed (Mann Whitney U test, p<0.05). These differences
appear to be driven by histological evidence of a fetal
inflammatory response for all but C5a (Kruskal Wallis with
Dunn’s post hoc test, p<0.05) (Table 6).
DISCUSSION

By combining placental histopathology with a customized array
of immune mediators in umbilical cord blood and postnatal
blood from a large group of mother-infant dyads, this study
characterizes differences in the systemic immune profile of very
preterm infants compared with term-born controls, and
demonstrates that exposure to HCA with evidence of a fetal
inflammatory response is associated with postnatal immune
dysregulation on day 5 after birth.

The umbilical cord blood immune profile was distinctly pro-
inflammatory in preterm infants with significant elevations in
proteins associated with the acute phase response: IL-6, MCP-1
and CRP. In contrast, six proteins were elevated in healthy term-
born controls, suggesting developmental regulation with increasing
gestational age: BDNF, C3, C9, IL-18, MMP-9 and RANTES. Eight
proteinswere increasedonpostnatalday5 inpreterminfants exposed
toHCAcompared to preterm infantswithoutHCA:BDNF,C3,C5a,
C9, IL-8, MCP-1, MIP-1b and MMP-9. Our findings are consistent
with previous studies showing that the neonatal systemic
Frontiers in Immunology | www.frontiersin.org 5
inflammatory response can be dysregulated and prolonged in the
weeks after preterm birth (4, 27, 28, 32), but additionally suggest that
this is programmed by a fetal inflammatory response.

BDNF expression has previously been shown to correlate with
gestational age and postnatal age (29, 33) but here we show
upregulation in preterm infants exposed to HCA with evidence
of a fetal inflammatory response. BDNF belongs to the family of
neurotrophins: an important group of signaling molecules
responsible for neuronal growth, maturation and synaptic
plasticity during development (34). Prematurity, placental
dysfunction and fetal growth restriction have all been associated
TABLE 3 | Logistic regression for the prediction of gestational age category
using principal components derived from the umbilical cord blood profile.

B b p-value

PC1 2.8189 5.3424 0.000337
PC2 -2.6162 -4.4331 1.71e-06
PC3 -0.1343 -0.1850 0.648519
PC4 0.8840 1.0084 0.135172
PC5 -0.8628 -0.9076 0.027207
FIGURE 1 | Projection of individual cord blood inflammatory profiles onto the
first two principal components, grouped by gestational age category. Term
infants are represented in green and preterm infants in gold, with ellipses
modelled on the mean and covariances of each group.
FIGURE 2 | Heatmap demonstrating the percentage contribution of each
analyte to variability in the cord blood profile, grouped by principal
component.
August 2021 | Volume 12 | Article 722489
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with reduced levels of BDNF (29, 35–37) which may have
important implications for long-term brain health. Reduced
BDNF in the neonatal period has been associated with increased
risk of developing autism spectrum disorder (38) whilst elevated
BDNF in the weeks after preterm birth is associated with better
cognitive performance in childhood (39, 40).

C3 was identified as a novel postnatal marker of exposure to
intrauterine inflammation. The complement cascade plays a key
role in the innate immune response (41) but is a potent
inflammatory system which when dysregulated can cause
significant tissue damage following injury. The complement
cascade can be activated through several mechanisms, but all
component pathways converge at Complement protein C3 (42).
C3 participates in multiple key processes affecting developing
brain architecture, including tagging of synapses for pruning by
microglia (43, 44). The complement system is under-developed
in preterm infants and complement regulators are low (45, 46),
which may contribute to an uncontrolled complement response
in the context of inflammation (47). We have previously shown
that the downstream anaphylatoxin, C5a is elevated in the
cerebrospinal fluid (CSF) of preterm infants when compared to
term-born controls (6) and numerous studies beyond the
neonatal period have also implicated complement C3
dysregulation in CNS pathology including neurodevelopmental
Frontiers in Immunology | www.frontiersin.org 6
disorders (48), multiple sclerosis (49), traumatic brain injury (50)
and neurodegeneration (51).

MMP-9 on postnatal day 7 has previously been shown to
correlate with the severity of funisitis following extremely
preterm birth (27). MMP-9 is a member of the zinc-dependent
endopeptidases that prototypically cleave extracellular matrix
(ECM), cell adhesion molecules and cell surface receptors.
Matrix-metalloproteinases also modulate the inflammatory
response through the regulation of endothelial barrier function,
cytokine activity and chemotactic gradient formation (52). The
ECM is a key regulator of neural network development and
plasticity through the stabilization of synaptic contacts.
Dysregulation of MMP-9 during a critical window of CNS
vulnerability may therefore have long-term consequences on
structural connectivity (53). MMP-9 is higher in the CSF of
preterm infants when compared to term-born controls and also
higher amongst preterm infants with post hemorrhagic
ventricular dilatation (PHVD) when compared to those
without brain injury (6, 54). Elevated plasma MMP-9 is also
associated with hypoxic-ischemic encephalopathy, correlating
with severity of injury in human infants born at term (55–57).

The data provide new insights into immune dysregulation in
the context of HCA and support several lines of evidence that
suggest a link between HCA, immune response and
neurodevelopment. First, activation of the fetal inflammatory
response is an independent predictor of neonatal morbidity after
adjustment for gestational age and obstetric indication for
delivery (20). Second, sequencing studies have shown that
exposure to HCA results in fetal immune programming in
preterm infants with modulation of monocyte responses (58–
60). Third, intra-amniotic inflammation is associated with
adverse perinatal outcomes whether or not microbes are
detected (61). Fourth, exposure to HCA has been associated
with an increased risk of intraventricular hemorrhage (62), white
TABLE 4 | Correlation between individual analytes that contributed to the principal
components predictive of gestational category and gestational age at birth.

Analyte Spearman’s rho p-value

MMP-9 0.685 4.1162x10-17

BDNF 0.654 2.8795x10-15

RANTES 0.346 0.000160
C3 0.290 0.002
IL-1b 0.190 0.043
TABLE 5 | Characteristics of preterm infants with day 5 blood samples.

No HCA n = 65 HCA n = 31 p-value

Mean gestational age, weeks (range) 29+4 (24+0-32+0) 28+2 (23+2-32+0) 0.030
Mean birthweight, g (range) 1246 (454-1915) 1187 (500-2060) 0.447
Mean birthweight z-score (SD) -0.3287 (1.23) 0.1870 (0.69) 0.010
Male sex, n (%) 37 (57) 18 (58) 0.916
Antenatal steroids, n (%) 61 (94) 30 (97) 0.546
Antenatal magnesium sulphate, n (%) 59 (91) 30 (97) 0.290
Delivery mode, n (%):
Vaginal 15 (23) 23 (74) <0.001
Caesarean 50 (77) 8 (26) 0.003
-Pre-labor 34 (68) 8 (100) 0.033
-In labor 16 (32) 0 (0)

Any labor, n (%) 31 (48) 23 (74) 0.014
Prolonged rupture of membranes, n (%) 8 (12) 14 (45) <0.001
Early onset sepsis, n (%) 4 (6) 4 (13) 0.263
Late onset sepsis, n (%) 9 (14) 4 (13) 0.955
Bronchopulmonary dysplasia, n (%) 18 (28) 12 (39) 0.189
Necrotizing enterocolitis, n (%) 3 (5) 5 (16) 0.042
Retinopathy of prematurity, n (%) 3 (5) 5 (16) 0.042
August 2021 | Volume 12 | Article
Prolonged rupture of membranes: >24 hours before delivery. Sepsis: Positive blood culture with a pathogenic organism and/or antibiotic treatment course for ≥5 days. Early-onset sepsis:
<72 hours after birth, late-onset sepsis: >72 hours after birth. Bronchopulmonary dysplasia: supplemental oxygen therapy or respiratory support at 36 + 0 weeks gestational age.
Necrotizing enterocolitis: medical treatment for ≥7 days or surgical treatment. Retinopathy of prematurity: requiring treatment.
722489
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matter injury (17, 18) and neurodevelopmental impairment (15,
63) in children who were delivered preterm. Finally, intrauterine
infection or stimulation with lipopolysaccharide can induce a
systemic fetal inflammatory response, neuroinflammation and
white matter injury (64–66). It is estimated that 3-5% of infants
born by spontaneous vaginal delivery at term are exposed to
HCA (67). Given that HCA is associated with cerebral palsy
among children born at term (68), and maternal immune
activation in term pregnancies is linked to neurodevelopmental
and psychiatric diagnoses (69), further work is warranted to
determine the relevance of our observations in preterm infants to
births at term complicated by HCA.

Strengths of the study include investigation of a large number
of inflammation-associated proteins representative of the
perinatal immune response, and a data driven approach to
characterize the inflammatory profile associated with very
preterm birth and exposure to HCA. A limitation of the study
is that the concentration of anti-inflammatory cytokines IL-4
and IL-10 were below the level of detection in our participants
and so inferences about the balance of damaging and protective
factors could not be explored. Another limitation is that amniotic
fluid was not available for microbial analysis. Recent
transcriptomic studies have shown that the presence of a fetal
inflammatory response is more strongly associated with
microbial invasion rather than sterile inflammation (70) but an
alternative study design would be required to investigate
differences in the postnatal immune profile of infants exposed
to intra-amniotic infection compared to sterile inflammation.

Our data suggest that systemic fetal inflammation modulates
neurotrophic capability and complement system activation in the
perinatal period. However, a larger sample size would be
required to perform sub-group analyses based on gestational
age or sex, and to investigate possible confounding by antenatal
steroids, mode of delivery and postnatal events.

Future work with a larger sample size and a replication cohort
is needed to investigate the relationship between immune
profiles and lung disease, gastrointestinal complications and
Frontiers in Immunology | www.frontiersin.org 7
neurocognitive outcomes following preterm birth, and to test
for causality.

By combining placental histopathology with a comprehensive
assessment of the immune response, we have shown that very
preterm infants have a distinct pro-inflammatory profile in
umbilical cord blood and that fetal inflammation is associated
with an altered neonatal immune profile on postnatal day 5.
These results focus research attention on improved detection of
fetuses exposed to intrauterine inflammation and suggest there
may be a therapeutic window for targeted intervention that could
reduce the risk of co-morbidities associated with HCA.
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C5a 6457.25 4218.14, 9987.78 10511.70 7785.16, 13840.42 9145.47 7178.41, 13079.57 0.004
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*Kruskal-Wallis test comparing three groups. Analytes highlighted in bold demonstrated significant group differences in a pairwise comparison of no HCA versus MIR+ FIR+ groups using
post hoc Dunn’s test. For C5a, post hoc tests showed the contrast was due to no HCA versus MIR+ FIR-.
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