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Abstract

Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the
degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms.
Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder.
Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been
firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting
and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic
implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neuro-
physiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive
and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological
alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising
non-invasive biomarkers to detect pre-clinical cognitive decline.

Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological
alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on
easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral
impairments of ALS patients.
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Introduction

Amyotrophic lateral sclerosis (ALS) is the most common mo-
tor neuron disease (MND) and is characterized by the progres-
sive loss of upper and lower motor neurons causing weakness
of bulbar, limb, trunk, and respiratory muscles [1]. Around
10% of cases of ALS is familial (FALS), while 90% is spo-
radic (SALS) [2]. In 2 out of 3 ALS patients, we observe a
spinal outbreak and in 1 out of 3 a bulbar onset of disease, and
only in 1% of cases, there is a respiratory onset [3].
Pathophysiology is unknown, phenotypes are different, and
there are no effective treatments [1].

Diagnosis is mainly based on clinical and neurophysiolog-
ical grounds (applying El Escorial criteria [4]), though some
encouraging results are obtained from biomarkers studies [5].

Although for a long time ALS was considered a disease
confined to motor neurons, nowadays it is established to be a
multisystemic syndrome [6], and cognitive domains are in-
volved in at least half of patients [1]. In 2017, Strong and
colleagues described new criteria to classify cognitive and
behavioral alterations in ALS patients, using the term
frontotemporal spectrum disorder (ALS-FTSD) [7]. They
identified a continuum from ALS cognitively normal (ALS-
cn) to ALS with frontotemporal dementia (ALS-FTD) that
includes ALS with behavioral impairment (ALSbi), ALS with
cognitive impairment (ALSci), and ALS with combined cog-
nitive and behavioral impairment (ALS-cbi). The identifica-
tion of biomarkers able to detect a pre-clinical cognitive in-
volvement would be important to better classify patients both
for clinical management and for clinical trial recruitment and
follow-up.

Therefore, the current review focuses on the up-to-date
state of art of neuropsychological tests used to detect cognitive
impairment in ALS patients and on promising non-invasive
biomarkers of pre-clinical cognitive impairment.

Neuropsychological profile in ALS

Up to 40% of ALS patients exhibit mild to moderate neuro-
psychological alterations, which tend to be mainly observed in
the bulbar phenotype, while nearly 15% of ALS cases fulfill
the criteria for the behavioral variant of frontotemporal de-
mentia (bv-FTD) [8]. The main cognitive impairment ob-
served in ALS is represented by executive dysfunctions (Fig.
1), with verbal fluency deficit, expression of dorsolateral pre-
frontal alterations [9]. Executive disorders, which are a well-
established measure of disease management and progression
[10], include processes of inhibition, cognitive flexibility,
prolonged attention, and working memory. A recent study
emphasized as two specific executive sub-functions (e.g.,
set-shifting and initiation) seems to show greater impairment
in non-demented ALS patients [11]. Another cognitive
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Fig. 1 The main affected domains in patients with ALSci, ALSbi, and
ALS-FTD and some available diagnostic tools. The disposition of the
cognitive domains reflects the partial overlap of the underlying cognitive
processes. The central position of the executive functions is due to the key
role, for dysexecutive symptoms, in affecting every other cognitive do-
main, as well as the behavior. According to Strong criteria, to detect the
presence of an ALSci clinical picture, the assessment of three “main”
domains is crucial: verbal fluency, executive functions, and language
skills. However, social cognition and pragmatics deficits are proxy fea-
tures of executive and language impairment, respectively

domain frequently impaired is language, although it may be
difficult to disentangle fluency and language deficits [12].
Conversely, memory impairment is slightly less described in
ALS, and it tends to appear in an advanced stage of disease,
with hippocampal structural alterations [13].

Furthermore, social cognition (SC) and theory of mind
(ToM), characterized by severe difficulties in the recognition
and processing of emotions, are other features frequently af-
fected in ALS [14]. Apathy is the most common neuropsychi-
atric symptom, also related to a negative prognosis, which
occurs in about 50% of ALS cases. Executive, emotional,
and initiation apathy [15] represent three forms of the same
disturbance: executive apathy relates to a loss of attention,
planning, and organization; emotional apathy, with emotional
neutrality or indifference; and initiation apathy concerns a lack
of motivation for the production of thoughts. To date, initia-
tion apathy is considered the typical subtype commonly re-
ported in ALS. The early presence of apathy has been con-
firmed also by recent studies [16, 17] and was reported to be
directly correlated with depression severity [16], poor quality
of life [16], and with widespread microstructural changes
within the motor and non-motor white matter fibers, with
main involvement of the corpus callosum and in the left thal-
amus [17]. Finally, the presence of behavioral disturbances
includes also disinhibition, depression, stereotyped behaviors,
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and dietary changes [7]. Furthermore, the appearance of de-
pression, although it can be justified by the patient negative
prognosis, seems to be evident at least 1 year before the dis-
ease onset, suggesting a role of mood disorder in ALS patho-
genesis [18]. Therefore, in order to firstly detect subtle cogni-
tive and behavioral changes, recent efforts are being made to
find suitable neuropsychological batteries for this purpose.

Neuropsychological assessment

Great efforts have been directed towards a refined detection of
cognitive deficits, in past few years. Specifically, since the
new criteria from Strong et al. [7] emphasize the relevance
of prodromal changes in cognition and behavior, many studies
have focused on the research of new, accurate neuropsycho-
logical tools, which ought to be suitable also for speech and
motor impaired patients.

Being the presence of executive deficits well established,
also in ALS patients without a clear picture of cognitive im-
pairment [7], few recent works [19] directly addressed its de-
tection. Indeed, a new neuropsychological assessment, the
Arrows and Colors Cognitive Test (ACCT), which is eye-
tracking based in order to bypass verbal and motor disabilities,
showed its utility in evaluating cognitive flexibility and also in
discriminating between ALS patients and healthy controls
(HC) [19]. Moreover, well-established screening batteries like
Edinburgh Cognitive and Behavioral ALS Screen (ECAS)
[20] and ALS Cognitive Behavioral Screen (ALS-CBS)
[21], as well as more specific tests Trail Making Test and
backward Digit Span, have also proven their efficacy and
accuracy. The presence of verbal fluency deficits can be
assessed in clinical practice by means of letter and category
fluency tests, or by the specific ECAS item and corrected by
the Verbal Fluency Index [20]. As enlightened by a recent
study [22] on a cohort of non-demented patients, including
ALS, ALS-bi, and ALS-ci cases, the presence of verbal flu-
ency deficits appears to be highly predictive for TDP-43 de-
position in specific brain areas (Broadmann area 9, 41, 44).

Several evidences are being gathered on different aspects
of language impairment in ALS. Word retrieval deficits have
been commonly outlined using both verbal fluency and con-
frontation naming tests. However, verbal fluency is a well-
known marker of executive dysfunction too, indicating as
both executive and language processes may be involved in
the final performance on this task [12].

Currently, given the assumption that FTD may present with
a clinical picture of primary progressive afasia (PPA), typical-
ly non-fluent/agrammatic (nfvPPA), or semantic variants
(svPPA), the presence of a perfect overlap with ALS-related
pictures of nfvPPA and svPPA is not clear-cut. This issue has
been addressed by Long et al. [23], who compared language
performances of ALS, nfvPPA, svPPA, and HC, using
Sydney Language Battery (SYDBAT) [24] and Test for

Reception of Grammar (TROG) [25]. The presence of a de-
gree of language impairment was very high in the FTD-ALS
(88.5%). However, two distinct patterns were observed: a
mild mixed phenotype, with both semantic and syntactic def-
icits, and a nfvPPA-like pattern, with more pronounced syn-
tactic impairment [23]. Post hoc analysis also showed a dif-
ference between scores at SYDBAT and TROG between
ALS-cn and HC [23], confirming the presence of subtle, not
clinically relevant, language deficits also in patients with ALS
who do not meet criteria for ALS-ci or ALS-FTD.

One more expanding field of research in ALS patients is
represented by SC abnormalities, which are multi-faceted and
complex, encompassing both cognitive and affective aspects
[26]. As highlighted in a recent review [26], SC deficits in
ALS range from ToM abnormalities, to lack of empathy and
changes in social behavior. With respect to diagnostic tools,
Reading the Mind in the Eyes [27] and the Faux-pas Test are
indeed the most well-known tests assessing ToM [7], and the
Animated Shapes task [28], which provides moving stimuli,
has also been used in a recent study [29]. Additionally, per-
formance on understanding thoughts and feelings of cartoon
characters (Happé cartoons) is also compromised in ALS. By
contrast, other studies revealed opposing results for the pre-
serve abilities in making social inferences using dynamic
videos, The Awareness of Social Inference Test (TASIT) or
in judging others’ preferences (Judgment of Preference task)
[30].

On the other hand, self-reported and partner-reported inter-
views can provide information on empathy and social behav-
ior changes. Intriguingly, a recent study by Bambini et al. [29]
addressed another underestimated aspect of ALS, which strad-
dles between SC and pragmatic fields: the impairment of ver-
bal humor comprehension at the Phonological and Mental
Jokes [31]. Furthermore, a prominent role for pragmatic im-
pairment was observed, while scores at tests assessing execu-
tive and ToM abilities did not show a significant predictive
role, in opposition to previous studies. Therefore, evaluation
of pragmatic abilities could be considered in neuropsycholog-
ical assessment of ALS patients, using the Assessment of
Pragmatic Abilities and Cognitive Substrate (APACS) test
[32] or other diagnostic tools.

As regards behavioral changes, a recent multicenter study
[33] examined Japanese ALS patients with and without FTD
in order to characterize cognitive and behavioral dysfunctions.
The ALS-FTD-Questionnaire (ALS-FTD-Q) was assessed for
behavioral screening, whereas the Montreal Cognitive
Assessment (MoCA) and the Frontal Assessment Battery
(FAB) were administered to evaluate cognitive performances,
finding as behavioral changes were less frequent compared to
cognitive deficits in ALS patients.

Moreover, the presence of apathy may be tested using the
Dimensional Apathy Scale (DAS), a validated and indepen-
dent of physical disability battery, combining the three
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previously reported subtypes of apathy. A recent research [34]
showed a strict association between initiation and emotional
apathy with executive and emotional cognitive dysfunctions,
respectively, suggesting the presence of possible common un-
derlying mechanisms among those neuropsychological tasks.
Finally, an impact of depression on global performance at
ECAS, as well as on executive functions [35], has been re-
ported in ALS patients.

Cognitive profile in C90rf72 carriers

Carriers of C90rf72 hexanucleotide expansion (C9+) are
known to present with a “subphenotype” of ALS.
Specifically, an earlier onset of the disease, a greater family
history for ALS and/or FTD, and a greater degree of cognitive
and behavioral impairment have been reported [36, 37].
Converging evidences pointed towards the existence, in pre-
symptomatic carriers (C9+pc), of slight cognitive changes
[38—44]. The earliest alterations (i.e., denomination and exec-
utive deficits) have been observed up to 5 years before the
expected onset of motor deficits, as reported by a large multi-
center study [40]. On the other hand, contrasting results
emerged, over the years, on the specific cognitive domains
and functions affected at the pre-symptomatic stage.
Specifically, Ryan et al. found poor performances, in C9+pc,
at cognitive inhibition tasks (e.g., the Hayling Sentence
Completion Test, HSCT) [38]. Two studies reported a verbal
memory impairment in C9+pc compared to healthy controls
[41, 43]. Praxis deficits were also observed [43], as well as
impaired letter fluency [44], along with deficits at the Stroop
test [42].

As regards symptomatic C9+, a more rapid cognitive de-
cline has been observed compared to non-carriers [45].
Prominent executive alterations, shown by verbal fluency,
Stroop test, and Brixton spatial anticipation tasks, seem to
characterize this phenotype. Difficulties in timed tasks, as well
as in complex attentive tests, are also frequently found [46].
However, a relative sparing of memory (except for working
memory) and visuo-spatial domains is commonly reported
[47]. Even though language is progressively affected during
the disease, and PNFA represents the most common pheno-
type among PPA variants, speech impairment is not a preva-
lent feature at C9+ symptomatic stage [48, 49].

In behavioral phenotype of C9+, the presenting symptoms
commonly include disinhibition, apathy, and anxiety [50].
Psychotic disturbances, especially paranoid delusions and hal-
lucinations, may represent a major hallmark of C9+ patients
[48, 51].

Hence, despite a clear agreement on the existence of typical
cognitive and behavioral abnormalities in C9+ individuals,
further investigations are needed to better define their features,
especially for the pre-symptomatic stage, also in accordance
with the most recent diagnostic criteria [7].

@ Springer

Progression of cognitive dysfunction

Nowadays the undefined issue concerns whether the cognitive
impairment is stable or progressive over the ALS trajectory. In
the literature, few heterogeneous studies are proposed in order
to investigate this theme: while some authors used a cross-
sectional approach demonstrating a correlation between clin-
ical stage and cognitive disturbances [52, 53], other authors
observed the stability [54, 55] or the evolution of cognitive
dysfunction during a longitudinal follow-up [56, 57].

Particularly, the cognitive status worsens at the same level
as the motor disability measured by ALS Functional Rating
Scale—Revised scale [56, 57]. The longitudinal design is the
most rigorous methodological approach in order to understand
the trajectory of cognitive impairment, even though the diffi-
culties are related to the low sample size [54] and the short
duration of follow-up [56] considering the rarity and the poor
prognosis of ALS patients. An additional issue regards the
choice of specific but manageable tools to longitudinally test
patients. Kasper et al. evidenced the initial presence of cogni-
tive impairment that subsequently disappeared at the follow-
ing time points, likely due to the starting difficulty to under-
stand the neuropsychological battery [55]. At the moment,
ECAS is the gold standard even if a practice effect can be
noticed [58]. When the cohort was consistent and the
follow-up adequate, it seems that cognitive profile changed
over time with a direct influence on motor progression and
final prognosis. Particularly patients characterized by normal
status at baseline can develop cognitive dysfunctions during
the follow-up [57].

Role of genetic mutations

The majority of ALS and FTD cases are sporadic, with no
positive family history for neurodegenerative and psychiatric
diseases, although around 15-20% of ALS cases are inherited,
usually with an autosomal dominant transmission [59]. To
date, based on the definition of the Online Mendelian
Inheritance in Man [60], 5 ALS-FTD genes—namely,
C90rf72 [61], CHCHDI10 [62], SQSTMI1 [63], TBK1 [64],
and CCNF [65]—have been recognized along with roughly
30 genes associated to ALS-FTD.

These represented the major risk factors for developing
familial forms of ALS-FTD; all these genes have an autoso-
mal dominant pathway of transmission and an adult onset.
Also, there are other genes which have been characterized as
causative for ALS and also described in pure FTD or in cases
of ALS and cognitive involvement: they are TARDBP [66],
with adult onset and AD pattern, FUS, characterized by a
possible juvenile onset with AD or AR pattern [67] and
OPTN [68].
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With the discovery of several mutations associated to cog-
nitive impairment in ALS, several studies have begun to char-
acterize the different phenotypes associated with these genes
in terms of epidemiology, clinical presentation, imaging, and
pathology. In particular, the current idea of considering ALS
and FTD as part of the same disease spectrum is sustained by
converging mechanisms of neurodegeneration involving
RNA processing, oxidative stress, protein aggregation, and
autophagy, showing as common mechanisms are responsible
for susceptibilities specific to neuronal classes [69, 70].

In our opinion, the published works on genetic involve-
ment in ALS demonstrated that some mutations, first of all
the C90rf72 one, can be considered biomarkers able to
predict the development of cognitive impairment in ALS
patients.

Consequently, in clinical practice, the application of next
generation sequencing—as whole exome or whole genome
sequencing—Ilooking for genetic mutation in cognitive altered
ALS patients has a potentially strong impact. It is important to
consider, however, that not the totality of mutation carriers
develop cognitive impairment with consequent clinical and
ethical implications.

Fluid biomarkers

During the last two decades, lots of biomarkers detectable in
fluids and tissues have been evaluated in MNDs. Some of
them are useful in clinical trial recruitment, and others have
a diagnostic or a prognostic or a predictive role. The most
recently studied markers are neurofilaments, both light (NfL)
and heavy chains (pNfH); they are now becoming a widely
accepted prognostic biomarker for ALS and other neurode-
generative diseases [71]. Unfortunately, despite the great at-
tention put on biomarkers, only few studies showed the simul-
taneous evaluation of cognitive profile and humoral bio-
markers in ALS, and no published studies analyzed tissue
biomarkers and cognitive profile together. Most of those stud-
ies used ECAS in order to evaluate the cognitive profile.
Thompson and colleagues [72] measured the levels of
chitinase proteins Chitotriosidase-1 (CHIT1), Chitinase-3-
like protein 1 (CHI3L1), and Chitinase-3-like protein 2
(CHI3L2) in cerebrospinal fluid (CSF) in ALS, founding only
a weak association between higher CHI3L1 levels and worst
ECAS score. Gala et al. reported decreased levels of soluble 3
fragment of amyloid precursor protein (SAPPf3) and increased
levels of CHI3L1 in CSF in the ALS-FTD spectrum compared
to controls [73]. Moreover, the ratio SAPP(3/ CHI3L1 corre-
lated with cortical atrophy in frontotemporal regions in ALS
and FTD. Unfortunately, none of these biomarkers correlated
with the degree of cognitive and/or behavioral profile. Ahmed
et al. [74] showed that hormones involved in food assumption
and storage could have not only a prognostic role in ALS but

can be also markers of cognitive impairment. In particular, the
more the cognitive profile is altered, using the Addenbrooke’s
Cognitive Examination-Revised (ACE-R), the lower levels of
neuropeptide Y are and the higher levels of leptin serum are.
In a recent Australian work [75], authors did flight mass spec-
trometry on plasma of 24 ALS patients, and they assessed
cognitive profile using the ACE-III. They observed that the
levels of 20 proteins were different between ALS patients with
and without cognitive impairment. Contrarily, some authors
showed no correlation between CSF and plasma levels of NfL
and pNfH and cognitive alterations [72, 73, 76]; others ob-
served no correlation between cognitive impairment and, re-
spectively, brain-derived neurotrophic factor (BDNF) serum
levels [77] and sPAPP [73].

Limitations of these studies include restricted number of
studies concerning the simultaneous evaluation of biological
biomarkers and cognitive profile, heterogeneity in scales used
to evaluate cognitive impairment, scarce use of Strong criteria
[7] of classification, cross-sectional analyses or short period of
follow-up, lack of evaluation of fluids and tissue biomarkers
before the development of cognitive impairment, and measure
of biomarkers in CSF rather that in blood.

These works demonstrated that there is a lack in the eval-
uation of biomarkers predictive of cognitive impairment, use-
ful to predict progression of disease, to set up a right follow-up
and to screen patients to recruit in clinical trials.

Neuroimaging as a biomarker
of cognitive/behavioral impairment

In recent years, several studies have aimed to elucidate the
neuroimaging signatures of cognitive and behavioral impair-
ment in the ALS-FTD spectrum. Magnetic resonance imaging
(MRI) was the most commonly applied tool in these studies,
particularly using advanced techniques able to study even
subtle brain structural and functional alterations, although also
positron emission tomography (PET) techniques have been
increasingly explored in such context [78]. However, most
of these studies assessed neuroimaging correlates of impair-
ment in specific cognitive/behavioral scales, rather than pro-
viding a systematic characterization of ALS patients with mild
cognitive and/or behavioral impairment according to the re-
cently revised Strong criteria [7] or other previous classifica-
tion systems [79, 80]. Moreover, there is a dramatic lack of
longitudinal studies, which are necessary to support a role of
these tools for predicting the future development of cognitive
decline in ALS.

Magnetic resonance imaging

On visual inspection of conventional MR images, global brain
atrophy is relatively mild or even undetectable in patients with
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ALS [81]. Therefore, the assessment of regional differences in
gray matter (GM) loss by voxel-based or surface-based mor-
phometry analyses is likely more important to characterize the
underpinnings of cognitive alterations in ALS patients.
Although, as expected, ALS-FTD patients have shown the
most severe atrophy involving widespread frontotemporal
cortical areas and subcortical regions (e.g., the caudate nucle-
us) [82, 83], significant GM loss in extensive frontal, tempo-
ral, and—to a lesser degree—more posterior cortical brain
regions has been observed also in patients with subtle cogni-
tive and/or behavioral impairment [82, 84]. Among studies
which assessed specifically ALS-cbi patients compared with
ALS-cn, greater thinning of inferior frontal, temporal, cingu-
late, and insular cortices was associated with worse perfor-
mance in executive, language, verbal fluency, social cogni-
tion, and episodic memory task [84, 85], in contrast with the
focal cortical thinning observed in the dorsal motor cortex of
ALS-cn patients [86]. Reduced volumes of the precuneus [87]
and subcortical structures, including the thalamus and the
amygdala [88], have also been shown in ALS-ci compared
with ALS-cn. In particular, basal ganglia alterations have been
associated with greater behavioral impairment in ALS patients
[89].

Diffusion tensor imaging (DTI) studies have also demon-
strated distinctive microstructural abnormalities of the white
matter (WM) in ALS with mild cognitive/behavioral impair-
ment, in terms of diffusivity alterations within extra-motor
(i.e., associative) tracts, including the uncinate, cingulum,
superior longitudinal fasciculus, and fornix [83, 86], corre-
lating with the severity of cognitive and behavioral alter-
ations [17]. These findings, as well as a recent network-
based study correlating the structural disruption of frontal
networks with executive dysfunction in ALS patients [90],
support the notion of cognitive impairment in this condition
as the result of a “disconnection syndrome” occurring when
extra-motor brain WM tracts are pathologically involved.
Although longitudinal progression of such extra-motor
WM alterations has been shown by several studies [91, 92],
and even a sequential cognitive staging system based on
cross-sectional DTI findings has been proposed for ALS pa-
tients [13], further studies are needed to test the theory that
neuroanatomical progression of pathology to widespread
frontotemporal regions might parallel worsening cognitive
functions.

Functional MRI holds the promise to further elucidate the
underpinnings of ALS-cbi, as executive dysfunction and be-
havioral disturbances in ALS have been associated with
disrupted functional connectivity in frontoparietal, salience,
and executive networks [93, 94]. However, to date, only one
study has specifically assessed functional rearrangements in
patients fulfilling ALS-cbi criteria, showing more severe rear-
rangements in inferior parietal and cerebellar networks, com-
pared with ALS-cn [95].
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PET studies

According to the 2018 European Association of Nuclear
Medicine recommendations for the use of 18F-FDG PET in
neurodegenerative cognitive impairment and dementia [96],
18F-FDG PET may have diagnostic and prognostic value in
selected cases; however, its utility for general clinical pur-
poses in ALS-cbi patients remains controversial. Therefore,
panelists suggest 18F-FDG PET to only be used for research
purposes, not recommending it for clinical use [96].

While no definite 18F-FDG PET biomarker for future cog-
nitive decline has been identified yet, data from few cross-
sectional studies show how changes in cerebral glucose me-
tabolism also occur in extra-motor regions. Canosa et al. [97]
showed a decreasing gradient of frontal lobe metabolism in
ALS patients, going from ALS-cn to ALS-FTD cases. Their
results suggest a continuum of hypometabolism paralleling
increasing cognitive decline. Furthermore, a study [87] found
changes in cerebral glucose metabolism even in ALS patients
without cognitive and behavioral deficits, compared to healthy
individuals. Interestingly, the authors showed how hyperme-
tabolism in the right and left hippocampus as well as in the left
parahippocampal gyrus was associated with poorer scores in
episodic memory tests, and hypermetabolism in the left fusi-
form gyrus was associated with impaired ToM [98]. The au-
thors suggested a deleterious neuronal and/or astrocytic pro-
cess to be the cause of the hypermetabolism.

Impaired GABAergic neurotransmission shown by re-
duced uptake of 11C-flumazenil has also been correlated with
poor performance at executive tasks in ALS patients [99]. The
recent development of PET ligands which target glutamater-
gic synapses might provide further insights regarding
excitotoxic alterations in ALS and their relationship with
cognitive/behavioral symptoms.

Imaging in C90rf72 carriers

MRI has been also applied to the study of genetic forms of
ALS, such as C90rf72 mutations, the best-known molecular
link between ALS and FTD. Compared to non-carriers, ALS
patients with a C9Orf72 pathological expansion exhibit great-
er cortical and subcortical brain atrophy (notably, involving
parieto-occipital cortical regions, thalami, and cerebellar
structures), more diffuse involvement of white matter path-
ways, and distinctive alterations of visual and thalamic func-
tional networks [100—102]. Subtle structural and functional
imaging alterations in a similar pattern have also been reported
in young adult C9+pc, compared with familial non-carriers of
similar age, suggesting early rearrangements occurring long
before the development of motor and/or cognitive symptoms
[41, 103].

In PET studies, an interesting work conducted on C9Orf72
ALS-FTD patients showed how hypometabolism in the
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thalami may discriminate C9Orf72 mutation carriers from
non-carriers [104]. Bilateral thalamic relative
hypometabolism has also been observed in C9+pc compared
with C9- healthy controls, as well as hypometabolism in the
frontotemporal and insular cortex and the basal ganglia [105].

Neurophysiological approaches

Recent anatomopathological studies in ALS subjects sug-
gested that misfolded TDP-43 progressively spreads along
corticofugal axonal pathways from the motor cortex to other
cortical and subcortical regions [106]. These results pave the
way to the novel concept of disconnection syndromes [107]; it
has been suggested, in fact, the existence of shared patterns of
connectivity impairment across neurological disorders [107].
A recent position paper hypothesized that biomarkers indica-
tive of networks impairment may be altered before the begin-
ning of axonal degeneration: thus, the evaluation of network
dysfunction has the potential to be developed as a predictive
biomarker of cognitive deterioration in ALS [108].

Advanced neurophysiological techniques have been used
as a tool to investigate the functioning of specific brain net-
works [109]. Both the mismatch negativity (MMN) paradigm
and the error detection task provided quantitative measures
that correlate with cognitive change in ALS patients. When
subjects with ALS underwent the mismatch-negativity proto-
col with a high-density EEG (HD-EEGQG), they showed signif-
icant increase in power of the left posterior parietal, central,
and dorsolateral prefrontal cortices as compared with HC
[110]; these changes strikingly correlated with clinical scores
aimed to evaluate cognitive flexibility [110]. ALS patients
enrolled in another study showed that MMN waveforms were
attenuated in early onset with an increased average delay
[111]; this enhanced delay strikingly correlated with changes
in the Stroop test, a neuropsychological test designed to eval-
uate the functioning of the anterior cingulate cortex, and the
dorsolateral prefrontal cortex [111].

ALS patients engaged in Go-NoGo trial demonstrated a sig-
nificant different activation of the P3 wave in the left posterior
parietal and insular cortex, and this difference negatively corre-
lated with a clinical score indicating behavioral inhibition [112].

Focusing on brain networks, an innovative HD-EEG study
pointed out that ALS patients showed a nonspecific and wide-
spread increasing in connectivity pattern among brain areas
[113]. The grouping of the complex connectivity pattern into
distinct brain networks gave the opportunity to selectively
study the specific involvement of frontoparietal and
frontotemporal networks, demonstrating an increased co-
modulation in the theta-frequency band in the frontal-
parietal network in ALS [113]. Furthermore, the co-
modulation of brain waves in the gamma-frequency band
within the frontotemporal network has been found to be

higher in ALS patients and correlated with language impair-
ment [113].

Complementary to HD-EEG findings, transcranial magnet-
ic stimulation (TMS) has also been used as a tool to assess the
functioning of the cortex and to further investigate cortical
networks [114]. In a recent study, patients suffering from
ALS underwent a neurophysiological study including TMS
and a complete cognitive and behavioral assessment [115].
Authors described that a lower resting motor threshold
(RMT) as well as the bulbar onset were independently asso-
ciated with cognitive impairment as assessed with the ACE
score [115]; it suggests that cortical circuits underlying RMT
generation also play a role in the development of cognitive
decline. Cortex hyperexcitability as highlighted by a lower
RMT, in fact, is a key feature of both ALS and FTD [116].
Same findings were replicated in a larger cohort of FTD pa-
tients using the Mini Mental State Examination test [117].

Looking at these data, we could conclude that these novel
approaches can provide details about networks impairment in
ALS patients, spanning from the columnar structure of the
motor cortex to broader brain networks. Since characterization
of pre-symptomatic subjects is a priority for ALS, these
methods are ideal candidate biomarkers to detect cognitive
impairment during the pre-clinical phase of the disease and
to be used as data-driven quantitative outcomes in clinical
trials. A main limitation of these findings is the lack of homo-
geneity of the used neuropsychological batteries as well as of
the neurophysiological techniques and outcomes.

Conclusions

During the last years, the confirmation of cognitive dysfunc-
tion in ALS patients have changed our point of view from a
pure “motor” syndrome to include also “extra-motor” symp-
toms. Coherently, the search for candidate biomarkers of cog-
nitive impairment has launched, including reproducible and
non-invasive tests such as imaging, physiology, genetic, and
biofluid measurements.

Nevertheless, the development of such biomarkers is still at
the early stage of identifying measures that differ in group com-
parisons. This seems to be mainly due to the lack of a common
assessment and evaluation of cognitive impairment, to the limited
number of longitudinal studies concerning contemporary evalu-
ation of cognitive assessment and other biomarkers, to the use of
cognitive data as an associated variable rather than a primary
outcome and to the very rare number of studies on pre-
symptomatic patients carrying a pathogenic mutation.

In our opinion, it would be important to achieve longitudi-
nal studies in which non-invasive biomarkers should be eval-
uated together with the cognitive assessment, recruiting ALS
patients at the beginning of the disease. Furthermore, the cog-
nitive assessment should be done using a batch of
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neuropsychological tests able to better classify patients fol-
lowing the currently used Strong criteria. That pursuit would
be useful for patients’ deep phenotyping, subgrouping, better
clinical evaluation and follow-up, and early identification of
responders in future clinical trials.
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